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Abstract

partitions of n whose ranks are congruent to r modulo m, he noticed that a
number of linear relations appeared to hold between the numbers N(r,m, kn +5s),

when (m,k) = (5,5) and (7.7). These relations were ajj later proved by Atkin

and Swinnerton—Dyer' [A+SD].

Some years later (1986-7), Andrews and Garvan [A+G] defined the crank of a
partition. With M(r.m.n) denoting the number of partitions of n whose cranks are
congruent to r module m, Garvan [Gar], [Gar1, Gar2] established a number of
linear relations between the M(r,m.kn +s), when (m.k) = (5,5). (7.7). (11.11),

(8,4), (9, 3) and (10,5).

'z I give here some relations between the N(r.m.kn +s) when (m.k) = (8,4), (9.3)
and (12,2). I also give some relations between the Nir,m,kn +s) and the

‘ M(r,m,kn +s) for (m.k) = (4,92), (8,4) and (9,3) and some inequalities holding

amongst the N(r,9,3n +s) and between the N(r.8,4n +s) and the M(r.8.4n +s).

| All but one of the proofs of the main theorems use the theory of modular forms

of half-integral welght on certain subgroups of SLZ(Z) to show that each of the

theorems may be proved simply by examining the first few cases. The same

methods may be used to prove all the relations of Dyson and Garvan.
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