Dyson's rank and the Andrews-Garoan crank to the moduli 8,9 and 12.
 Richard Lewis

The University of Sussex.
September 1991.

Dyson's rank and the Andrewo's-Garoan crank to the moduli 8, 9 and 12.

 Richard Lewis
Abstract

In 1944, Dyson [DHs] defined the rank of a partition as the difference between its largest part and the number of its parts. Denoting by $N(r . m . n)$ the number of partitions of n whose ranks are congruent to r modulo m, he noticed that a number of linear relations appeared to hold between the numbers $N(r, m, k n+s)$. when $(\mathrm{m}, \mathrm{k})=(5,5)$ and $(7,7)$. These relations were all later proved by Atkin and Swinnerton-Dyer [A+SD].

Some years later (1986-7). Andrews and Garvan [A+G] defined the crank of a partition. With $M(r, m, n)$ denoting the number of partitions of n whose cranks are congruent to r modulo m , Garvan [Gar], [Gard, Gar] established a number of linear relations between the $M(r, m, k n+s)$, when $(m, k)=(5,5),(7,7),(11,11)$, $(8,4),(9,3)$ and $(10,5)$.

I give here some relations between the $\mathrm{N}(\mathrm{r}, \mathrm{m}, \mathrm{kn}+\mathrm{s})$ when $(\mathrm{m}, \mathrm{k})=(8,4),(9,3)$ and $(12,2)$. I also give some relations between the $N(r, m, k n+s)$ and the $\mathrm{M}(\mathrm{r}, \mathrm{m}, \mathrm{kn}+\mathrm{s})$ for $(\mathrm{m}, \mathrm{k})=(4,2),(8,4)$ and (9.3) and some inequalities holding amongst the $N(r, 9,3 n+s)$ and between the $N(r, 8,4 n+s)$ and the $M(r, 8,4 n+s)$. All but one of the proofs of the main theorems use the theory of modular forms of half-integral weight on certain subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ to show that each of the theorems may be proved simply by examining the first few cases. The same methods may be used to prove all the relations of Dyson and Garvan.

Table of contents.

Chapter 0: Introduction

0.0 Partitions, their weight and length.

> 0.1 The Ramanujan theorems and conjectures on the congruence properties of partitions.
0.2 Dyson's rank and its generating function. The numbers $N(r, m, n)$ The definition of P .
0.3 The Andrews-Garvan c
$\mathrm{M}(\mathrm{r}, \mathrm{m}, \mathrm{n})$. The k-rank. $\mathrm{M}(\mathrm{r}, \mathrm{m}, \mathrm{n})$. The k -rank.
0.4 Theorems A-H on relations between $N(r, m, n)$ and $M\left(r^{\prime}\right.$ p. 4
0.5 Overview of what's to come.
0.6 Acknowledgements. p. 17

$$
\text { p. } 19
$$

Chapter 1: Preparation.

1.0 The functions $(q)_{\infty}$ and $[z ; q]_{\infty}$. Jacobi's triple product identity, Euler's pentagonal number theorem, the quintuple product identity. p. 20
1.1 Two compex analytic lemmas and a corollary. Winquist's identity. p. 21
1.2 Applications of the lemmas of 1.1. $T_{1}(z, \zeta, q), T_{3}(z, \zeta, q), g_{N}(z)$, $g_{M}(z), h(z)$ and $H(z)$ and sorne identities concerning them.
1.3 The definitions of $S_{k}(r, m)$ and $N_{k}(r, m) . N_{k}(r, r n)$ in terms of the $S_{k}(r, m)$.
1.4 The definition of $X_{r}^{(m)}$. Expressions for $P_{r}^{(m)}$ in terms of the functions $\left[q^{k} ; q^{n}\right]_{\infty}$ and $\left(q^{n}\right)_{\infty}$. Three identities.
$1.5 N_{m}(r)$ and $M_{m}(r) \cdot A_{N}(m, n), A_{M}(m, n), U(m), g_{N}(m)$ and $g_{M}(m)$. $N_{8}(r)$ and $M_{8}(r)$ in terms of these functions.
1.6 $B(m, n), V(m), Y(m)$ and $h(m) . N_{9}(r)$ in terms of these functions.

p. 41
 1.7 $C(m, n), W(m), Z(m)$ and $h^{\prime}(m) . N_{12}(r)$ in terms of these functions. p. 43

Chapter 2: Modular forms.

2.0 The modular group.
2.1 $\Gamma(N), \Gamma_{0}(N)$ and $\Gamma_{1}(N)$. Calculation of the index $\left[\mathrm{SL}_{2}(\mathrm{Z}): \Gamma_{1}(N)\right]$.
2.2 The way $\mathrm{SL}_{2}(\mathbb{Z})$ acts on \mathbb{H}. Cusps. The cusps of $\Gamma_{1}(\mathbb{N})$.
2.3 The width of a cusp. The widths of the cusps of $\Gamma_{1}(N)$.
$2.4 \eta(\tau)$. How $\eta(\tau)$ transforms under $A \in S L_{2}(\mathbb{Z})$. The action $\left(\left.\bullet\right|_{k} A\right)$. $\operatorname{ord}(f, \zeta, \Gamma)$. Modular forms of weight $k / 2$. Rankin's theorem.
2.5 $\eta(n), s_{n}(k)$ and $t_{n}(k)$. How these functions transform under $A \in \Gamma_{0}(n)$. Theta products, their weight, index and sign. $v(X(m) ; A)$. Compatible and coherent theta products.
2.6 The orders of $\eta(r)(r \mid n), s_{n}(k)$ and $t_{n}(k)$ at the cusps of $\Gamma_{1}(2 n)$ p. 55

Chapter 3: The proofs

3.0 Proof of the " ${ }^{6}=$ "'s of theorem E.
3.1 Proof of the " $=$ "'s s of theorem E. The functions $P_{k}^{(n)}$.

p. 72
3.3 Proof of theorem H.

$$
\text { p. } 79
$$

3.4 Definitions of the functions $Q(i, j, k), R(i, j, k), U^{*}(m), V^{*}(m)$ and Π that appear in the identities of B. 0 and B.1. Outline proofs of these identities.
3.5 Inequalities derived from the identities of B.O and B.1.

$$
\text { p. } 87
$$

Chapter 4: Odds and ends.

4.0 Brief account of the crank statistics of $[G+K+S]$.

4.1 A "bijective" proof of a theorem about ranks.
p. 89
4.2 How to prove linear relations amongst the $N(r, p, p n+s)$ and the $M(r, p, p n+s)\left(p>3\right.$ and prime). Each $P_{k}^{(p)}$ is a modular form of weight $-1 / 2$ on $\Gamma_{1}(2 p)$.

4.3 Brief account of Santa-Gadea's methods.
 p. 99
 p. 108

Appendix A: Tables

A. 0 Tables of the cusps of $\Gamma_{1}(18)$ and of $\Gamma_{1}(32)$. Tables of the orders of various functions at these cusps.
A. 1 Tables of the values of $N(r, m, n)$ and $M(r, m, n)$ needed to perform
the verifications required in $\S \S 33.1,3.2$ and 3.3 . p. 113

Appendix B: Lists

B. 0 A list of expressions for $\sum N(r, 9,3 n+s)-\sum N(0,9,3 n+s)$ in terms of the functions $V^{*}(m)$ and the theta products \prod.
B. 1 A list of expressions for all $\sum N(r, 8,4 n+s)-\sum M\left(r^{\prime}, 8,4 n+s\right)$ in
terms of the functions $U^{*}(m)$ and the theta products $\prod 1 . \quad$ p. 117

References.

$$
\text { p. } 126
$$

