
ln
1

I

Drylt unh 4rt tLe fu)wu- aanh to tlu nuiluh E, g anl ,tz,

kwt

of Sussex.

r991.



Dqson's unh ad t/re rdwn's-Qawan cunrrt, to tAe w)urr g, g an) 12,
ft,icAat) kois

Abstract
rn 7944' Dyson tDysl deflned the rank of a parttton as the dtfference betweenIts largest part and the nurmber of rts parts. Denott'g by N(r. m . n) the number ofpartltlons of n whose ranks are congruent to r morjulo m, he nottced that anumber of rrnear reratons appeared to hord betwee:n the numbers N(r,m,kn+s).

when (m,k) = (5,5) and (2,7r. These relations werer all later proved by Atkinand Swinnerton_Dyer tA+SlDl.

Some years later (19g6_2), l\ndrews and Garvan
partlfion. Wtth M(r,m,n) denoflng the number of
congruent to r modulo ft, G,arvan [GarJ, fGarl,
linear relations between the M(r,m.kn + s), when
(8,4), (9,3) and (I0,5).

tA.rGI deftned the crank of a

pafitltlons of n whose cranks are

Garr:2l established a number of
(m.lk) = (5,5). (7,2). (11.11).

I glve here some rerations bertween the N(r,m,kn+s) when (m,k) = (g,4). (9,3)
and (12,u. r also grve some rera*ons between the NI(r,D.kn+s) and the
M(r'm,kn+s) for (m,k) = (4,2), (g,4) and (9,3) ancr some rnequarrties holdrng
amongst the N(r'9,3n+s) and between the N(r,g,4n +s) and the M(r,g.4n+s).

All but one of the proofs of the main theorems use trne theory of modular forms
of half-tntegral wetght on certaln subgroups of SL,(Z) to show that each of the
theorems may be proved srmpry by examinrng the first few cases. The same
methods may be used to prove all the relations of Dyson and Garvan.
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