1. Preparation

1.0 In this chapter, z, {, and q denote non-zero complex numbers, q being of

modulus less than one.

"/
E denotes a sum over all integers n and E a sum over all non-zero integers n.
n n

Define

(@o = 1-@1-gD1-4%...

z;ql, = (1-2)1-2q)(1-2q%)... x (1- 27 1)1 - 21 -2"3 ...

Each of these Infinite products 1s absolutely convergent, since lql < 1, and (z; ql,

is a function of z that is meromorphic away from zero (i.e. meromorphic in every

region O < r < |zl < ¢’). Note that

z7%;ql, =-z"lz;ql, = [zq;ql, 1.0.0

I shall make frequent use of the Jacobi triple product identity, which states
[z;ql_ (), = D (-2 D72, 1.0.1
n

There are numerous proofs of this illustrious identity. It was found by Jacobi
(Jac]) (though there is evidence that it was known to Gauss) in the course of his

Investigations into elliptic functions. Algebraic proofs have been given by

Rademacher [(Rad, §100], Andrews [And] et al. and combinatorial proofs

by Sylvester [Syl], myself [Lew] et al.




Writing q3 for q and q for z in 1.0.1 gives the Pentagonal Number Theorem,

viz.
(q)m - }:(_)nqn(3n-1)/2 1.0.2
n
1.0.2 was found by Euler [Eul, §40], though it cannot be said that he gave a

rigorous proof. A celebrated and most elegant combinatorial proof was given by

Franklin (Fral, [Andl, Thm1.6), [H+W, §19.11].

Another identity I shall use is the quintuple product identity, which was stated

by Gordon [Gor] in the form:

n(l - sn)(l - Snit)(l - Sn-lt—l)(l - 52n—1t2)(1 - $2n-1t-2)

n=1

2 e
& Zs(3n +n)/2(t3n -t 3n .l), Isl <1, t#0.
n

With the help of 1.0.1, this identity may be recast in the form

2 o L
_%z_»ﬂi_m (@), = ([_23(1; qS]m - 2(-23q; qs]co) (qs)w 1.0.3
-Z; q -

In fact, Gordon was anticipated by Watson who, 32 years earlier, found an
equivalent identity [Wat, pp 44-45]. Apparently [C+S], 1.0.3 may be traced to
an elliptic sigma formula of Weierstrass. Following [A+SD, lemma 5], I shall

show how 1.0.3 is a simple consequence of 1.1.5 below.

1.1 A few definitions. Say that complex numbers z and z’ are equivalent
(g-equivalent would be more precise) if z7 = zqn, for some integer n. Here, z, 27,

q are as in 81.0. If $ Is a function meromorphic away from zero and a z O,
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let ord(§;a) denote the order of § at a, l.e. that integer k such that

Lim (z - a) “§(z)

Z-—>a
is finite and not zero. If r is any positive real number, let

A_w= {z s rlql < 1zl < :r},
l.e. the half-open annulus bounded by
. -
C =z : |zl r}

and C
rlg

Suppose the function 6 (meromorphic away from zero) satisfies

$(zq) = Cz"§(2) 1.1.0

for every z # 0, where C # 0 and (integer) n are constant. Then it is plain that,

if a and b are equivalent, ord(f;a) = ord(§;b). So

§

N, = Sﬂord(ﬁ;x) = Zord(ﬁ;y)
6 A yTA,
the first sum being over any complete set of inequivalent points x and, in the

second sum, r is any positive real.

Lemma [A+SD]}
Supposef is a complex-valued function on €, meromorphic away

from zero, and satisfying 1.1.0. If § is not identically zero,

N‘ = -n. 11.1

(So, 6 is either identically zero or has exactly n more inequivalent

poles than inequivalent zeros)
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Proof Choose r (as we may) so that $ has neither poles nor zeros on

N = s'Z:cd:;flc’:l(ﬁ;SI)
o1 N
= é{d(log 6(2)) ﬁc‘[ d(log 6(2))

rlql
(the circles being traversed in an anticlockwise manner)

i

- 0_ [d(log 2)

2ni ¢
r

(by the hypothesis 1.1.0)

As an example of the use of 1.1.1, I'll give a proof of Winquist’s identity [Win]

This states:

[T - a™2a - agYy1 - a g™ - 2q™ (1 - 2717

n=1
x(1-azq™ })(1- a~lz71q™)(1 - a lzq™ )1 - az"1g")

oo

= Z(_)w{(a-al - a31+3)(z-31 _ 231«»1)
i=0 j§

- (a~31+1 _ él:314-2)(2-31—1 _ Z3J+2)}‘_131(1-'-1)/2 +)(33+1) /2

As Hirschorn [Hir] observed, we can use 1.0.1 to rewrite 1.1.2 as

[z;q]m[a;q]m[za;q]m[za'l; q]m(q)i = {[23; qslm([iiaq; qs]oo - ala™3q; qs]oo)

x za"1[a3;q3]|°° ([zgq;qailoo - z[z'sq;t.tls],,‘,)}(c13)§°

1 L 1
o ({d(log 6(2)) - (}I; d(log 6(zq))

C . Then
r

1.1.2

1.1.3

Let § (2) and $z(2) denote the LHS and RHS of 1.1.3 and let =6 - b

Then 1.0.0 shows that



- -3 - -3
$ (zq) = -z $, (2), frlzq) = -z (2
and so 6 satisfies 1.1.0 with C = -1, n = -3, 6 plainly has no non-zero poles,

so it is enough to show that $ has four inequivalent zeros. Now
§(1)=0-= (1) and §.(a) = 0 = . (a)
and, if © is one of the primitive third roots of 1,

6,__((9) = -a'lw[c-j);q_]lm(q)co[a;q]m[wa;q]w[wza;q]w(q)w

-a~lo(1 - w)a3; q3]°°(q3)°°(q)°°

-a (1 - w)lad; qalw(q‘c’)w[q; qslm(qs)'co

g (w).

So § has four inequivalent zeros (unless a happens to be equivalent to a third

root of 1, in which case it is easy to check that 1.1.3 holds).

Again suppose 6 Is meromorphic away from zero, but now suppose ﬁ satisfies a

stronger version of 1.1.0, viz.
§(za) = q (2. 1.1.4

If a and b are equivalent points and § satisfies 1.1.4, it is easy to see that §
has the same residues at a and at b: res(f;a) = res(§;b). The following lemma

Is really a well-known result about elliptic functions in disguise.



Lemma

Suppose 6 is meromorphic away from zero and satisfies 1.1.4.

BEachiBrlin g

Then

z:res(6 ;x) =0,

e S g ki

where the sSum is over a complete set of inequivalent ( non-zero)

points x.

Proof Choose r so that § has no poles on Cr. Then

Zres(ls;x) = Zres(f;x)
x:At
= 1 fﬁ(z)dz + 1 fé(z)dz
™ 27 e, 2ni Cel ]
= Q,
because of 1.1.4. @

1.1.5 has the following elegant and useful

Corollary

Suppose that a,...a and bz' e bn are non-zero complex
n

numbers, the b’s being pairwise inequivalent, that satisfy

Then

r -1 =2 -1,
5" Lazb,"; q] [azb, s Qle...La,b, " ; ql,

r=1 [bsb7 %5 q1_[b,b"L @l ..2.. (b, b7 ; ql_

= Q,

where ©~ means that the term [ brb;l ;ql is to be left out.

11.5

1.1.6

1.1.7
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Proof Take

#l2) = layz;ql, [agz;ql, ... [az; ql, (q)i .
zlbyz;ql [boz;ql,...[b,z; ql,

$ is meromorphic away from zero and the hypothesis 1.1.6, with 1.0.0, ensures
that ‘ satisfios 1.1.4. The b Y's make up a complote sot af inoquiwalont palos af

$ and the term displayed in 1.1.7 is —res(ﬁ;b;l). 1.1.7 now follows from 1.1.5. ked

1.1.7 appears (in a slightly different form) as an exercise in the book by
Whittaker and Watson [W+W, §20.53, ex. 3]. It is a generalisation of [A+SD,

lemma 4].

The quintuple product identity 1.0.3 is a consequence of 1.1.7. Write q° for q in
1.1.7 and take n = 3 and (a_,a_,a_;b.,b_.b_) = (22 Z-JZq—l qgd _z—]i.q-1 sz}
odao 1 A 1p 2: 39 1: 2; 3 > 5 5 A4 , .

After some regrouping, out drops 1.0.3.

1.2 Now for some applications of 1.1.1.

For k = 1 or 3, define

a Cn kn(n + 1)/2
(z C.q) = Z() S — ,

Cn kn(n + 1)/2
k(Cq)a_Z() l-q —_— "
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Lemma

-1
T,(2(,C.q) = L :de T(-z,-1,q)

(-1;4q], - B
L [-20: 91 L-0 " qlo(a)y
(z0;ql (-z;q9],[-1;ql,

1.2.0

) I La;qlL02; a1 ()2
CT(20.C.q) + T (20"5.07%, q) Jell’ s 2 slats 1.2.1

[zﬂ @l LC;:ql [2071 ;ql,,

T2, 8% a) + T (207,072, q)

- - - 2 .
-8kt (2,1,9) + [L;als [T "’]°°(qff’ 1.2.2
[C;ql, 3 [z0; ql [z;q] (20" ;ql,

Proof Write 1.2.0 as
$,(2) = §,(2) + §,(2)
Then
$,(z0) - §,(zq) + 2(61(:?.) - 62(2))

V nCn n(n+1)/2 A Cn n(n+1)/2
(. ZZ( n.
1 - 2™" 1 - 20q"

[C~1.q] Z qn(n+1)/2 q.n(n*—lv)/2
-2 ! Vo — | + z Z . N
I[—l;q],,, 1+ zqrn-l 1+ 2qn+1

= Z(—)"'lcmlq“(“'”/z - [C-l;q]oo an(n- 1)/2
-1;ql_,

..1.
=l - B Yoy q1 (g,
{-1;4q]

<o

by 1.0.1,
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Furthermore, 1.0.0 shows that { (zq) = - §5(2) and so §:=46; - 6, - 65 satisfies

1.1.0 with C = -1 and n = 1. It follows from 1.1.1 that, to establish 1.2.0, it is

enough to show that § is free of (non-zero) poles.

Now § has poles at z = C'l, z = -1 and at equivalent points. We have

-10 -10
res(§,;-1) = O, res(§,;-1) = K sale . res(fgi-1) = - L ale

[-1;ql, {-1;ql,
and
res(él;C'l) = -1 res(éz;lg'l) = 0, res(ﬁs;-l) S
and so § is Indeed free from poles and 1.2.0 is proved. fed

Now 1.2.0 gives
(T (20,0, ) + T, (20,0 @)

[zl I -0 (@2, -20h alul- s dla(@
Gz -ql,  RUhal bzl -l dl,

[z;ql L 2 q.]go(q)coz
[20; ql L [ @120 ale

by 1.1.6, with n = 3 and (a;,a,,a,3b;,b,,bg) = (-z,27%,1;C1, ¢, -1). This is

1.2.1

1.2.2 is [ASD, 5.1]. The proof given there is an enhanced version of the proof

've gilven of 1.2.0. E

I pause here to show how 0.3.8 may be derived from 1.2.0. Setting { = 1 in

1.2.0 gives
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n(n+ 1)/2
T (z,1,q) = Z(")n q = (q)i‘i 1.2.3
z - 1-2zq" [z;ql,

Now it is obvious from the definition of Nv that

m_n _ (1 = 2)(q_)oo
q = ——————

' N (m,n)z
‘2—;1 v [z;ql,

and, since P(q)_ = 1, 1.2.3 yields 0.3.8.

Define
= e T (2 % -1
gp(2) = Gy (2> @ = - 21 [z z,q - T2, a)
2. }
qN(z) = glN(z,q) =z E—-’—(Q‘”Ts(z,l,q) - 23'1'3(22 22, q) - T;(z 3, 9.

(z;ql o

Az) = Mz,q) = Lz:al, Tl(-z ,-1,q ) - 'I':E(z'1 ,q)
[-1;ql,

2 13 (12
Hz) = Hiz;q = 2 Ve (de
[z; q12123; .,

Note the following two properties of H(z)

| H(zq) = H(z2), 1.2.4

H(z) + H(z™) = 0. 1.2.5

Now the poles of
02, 63,22, (D) (2 A2, A®), Hiz), H(®) and H(-2)  1.2.6

are all simple and they all lie in

H = {z . 2% = q", n e Z}.
Break H up into sets ]H.l’ ﬂ[z, Hs and ns’ where



Hr = {z 2" =q", 0<reZ ne Z, r minimal with this property}.

Then the residues of the functions 1.2.6 at a e H are as in the following table :

R 1, 1 I, Il
gM(;z) a/2 | -a/2 0] 0
gwﬂzz3 )| as6 | -as6 | a/6 -a/6

glz) |-3a/2]-as2 | 0 0
gN(iz:S) -a/2 | ~a/6 | -a/2 | -a/6

b 1.2.7
. | h(z) 0 | as3 Y a/3

H(z) |-8as3| 0 | as3 | ©

i H(-z) | 0 |8/3| 0 |[-a/3

e H(z?) |-4a/3| -4a/3| a/6 | a/6

% 1 Lemma

§ 9p(z) - 9p4(79) = -L 1.2.8
; -

i dpg(2) *+ Gpg(277) = 0, 1.2.9
39, (z) - Gp, (%) = Hz®) - H(z), 1.2.10
% an(z) - gnfza) = -3 1.2.11
1 an(z) + gnz') = -2 1.2.12
3g,(2) - gp(2%) = H(z%) + Hz) - 2, 1213
i

| h(z) - h(zq) = -1, 1.2.14
h(z) + h(z"") = 0, 1.2.15
: 12, 2.

oh(z) - Mz2) s —LZiAIalZ  alo(a)s 1.2.16
| [-z;q120-2%;q12[-1;q],

3k(z) - h(z*) = H(-z). 1217

]
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Proof Of these ten identities, 1.2.8, 1.2.9, 1.2.11, 1.2.12, 1.2.14 and 1.2.15 are
a matter of elementary manipulations. (1.2.11 and 1.2.12 are, respectively, 5.11
and 5.12 in [A+SD1)}. If we denote by §(z) the difference between the left and

right hand sides of 1.2.10 (or 1.2.13 or 1.2.17), 1.2.8 (or 1.2.11 or 1.2.14)

together with 1.2.4 shows that
$za) = §(2).

Now examination of the table 1.2.7 shows that each of these three functions §
has no (non-zero) poles. Furthermore, 1.2.9 (or 1.2.12 or 1.2.15) with 1.2.5

shows that, in each case,
§z) + §zH =0
and so §(1) = 0. Now 1.2.10, 1.2.13 and 1.2.17 follow from 1.1.1.

The final identity, 1.2.16 may be proved in much the same way. E

1.2.10, 1.2.13 and 1.2.17 suggest that
g(2) = A(-2%) + h(-2) - 1 and g, (2) = h(-z%) - K(-2).

These are both true; as I do not need these facts I leave their proofs as easy

exercises for the reader.

1.3 For integers r, m and (odd) k, set

v qn(lrcn-l-l)/z + m
S (r,m) = E (-)"
k
n

mn

1-4q
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By reversing the order of summation, we find that

Sk(m -1-r,m) = - Sk(t ,m). | 1.3.0

Furthermore,

Zz_)nqn(kn + 1)/2+m

n

Sk(r,m) - Sk(r+m,m)

(D, - L 1.3.1

by 1.0.1. In fact, the only case I need of 1.3.1 is that with k = 3, m = 8 and

= 2, i.e.

54(2,8) = $,(10,8) - WP - 1L 1.3.2

Define numbers Nk(m,n) by

§N< mn___ Y‘ o n(Lm+1)/2
m,n)z (1-2)P Y (-) o 1.3.3

o l-zq

and let Nk(t,m,n) = tZ:Nk(xw-tm,n). So, as I noted at 0.2.4 and 0.3.8, N3 = N

and N, = N, = M. Set 0 := exp(2ni/m). Then 1.3.3 gives

m-1

Z'Nk(r,m,n)q”n = _ln;TZ: “"VN (u n)oYq"
n s=O u, n

n(kn +1)/2
- _1_ 2 m's" (1- ms)pg_l( )n + —-PZ(,)
m gun (,_)sqn s=0
’s(: 1)

n

P(Sk(O,m) - Sk(m-l,m) + 1)

P(ZSk(O,m) + 1), when r = 0, and

P(Sk(r,m) - Sk(r~1,m)), when 1 <r <m, 1.3.4
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since it is easy to see that

m-1
Zm’sr(l - 0®) = k1 - ¥ for 0 < r < m.
s=0

From now on, I'll write SM for 81 and SN for 83.

1.4 Suppose X = Xy * x,q + xzq2 + . .. 1is a power series in the variable q.

For positive integer m, define power series Xim) (0 <r <m) by

r+m r+2m

A (m)
D : +
"(r +mq Xx'-0-2m

r
1= +
xqu Xr‘

I call these Xim] the (m-)components of X.

I shall need to know suitable expressions for Pf_m) for m = 2, 3 and 4. Now

Euler [Eull remarked that
P =) plnlg” = (@)
n
Sorting the RHS of 1.0.2 into even and odd powers of q, we find with the help

of 1.0.1 and 1.0.3 that
(@ = (qls)a,[qz;qslw([-qs; qu]m - [-qz;qlslwq) 1.4.0
Since
(@)ol-De = (@275 %),

we have from 1.4.0

(~-q)<,c,(q2);,2[q2 § qsl;,l

P= (gt

(q16)°°(q2);2([-q6; qlélm + [--q2 : qlslmq). 1.4.1



4

2 _ (9 : (2) (q'®) 2 1
p -4 ) [ 6.4, and P = L e 2,40 q 1.42

° (2 (d9%

In like manner, we have
(@ = (q27)a,([q12 %71 - 1®:4% a - [qs;qmlqu) 143
With © = exp(27ni/3), we have

(@) (0q) (02, = (@3 ¢°ls

and so
P = (0 (020 (a2 ?1t

from which, by way of 1.4.3, we find that

q q /o i 3 27
P‘o"" ST HE ([qlzzqm]i - %5 d®71,0a% q ]mqs)
q ’ oo
(3) (") (a7 12 27, (.6, 27
Py = T ([qs;‘ 271243 + @ q" 1.0 q ]m)q
(q7)
(3) (®7)* (a7 2742 3 27, (12, 277 \.2
L PR - (ta®; 0?7212 + (a®5q” 1la s To)a 1.4.4
£ (q)es
1.4.2 and 1.4.4 were found by Kolberg [Kol). The derivations I've given here
2 are essentially the same as his.

Now to find similar expressions for the P:t” . 1.0.1 gives

[-q%; €1_(¢'0)., = (-a23;q%%1_ + [-a*:a®*_a®)a®),

and

R R RS B B T D B TR A
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-a®; q*®1,(a'®),, = (-42%:q®*1_ + [-a'%;¢®*1_q®)a®h),

Substituting these expressions into 1.4.1 gives

P = (q32)i(q4);4 ([._qlz ; q32‘]°° + [_q‘l» ; q32]mq2)12

x (1-a%%: 0%, + -9%%; 0% 10a + [-a*5 0% 10a® + -4%%5 0®M.a% )%,

and we have

P = [-q°%; q®*1 K + [-q*;¢®*1 L &,

P = (-a®%: %1 K + [-4%:q%*1 L q*)q .

PV = (1-q*:q®*1 K q* + [-q%8; %%, L)

pla) ([_qm: :q®*1_K + [-q2°; 64]mL)qEEi, 1.4.5

where
K = (q°%_(®)2 (q4);4([_q12; 3232 , g%, 3212 qs)
= (® (D2 (¢! _(dM)1q1%; *M12 (by 1.1.6) 1.4.6

and

L = 2(q®*"_(a®*®Z (a2 [-q*; ¢4, . 1.4.7

I note here three identities, each a consequence of 1.0.1.

64 ;2‘ K (et b0 1 g%, C

= ( - 1 *

(q.)oo = “q )oo _|( ) qL 28-8k 64 .?‘/11(05-
b i [-q S Rl N (s G)w,

s »e)

This may be proved by writing n = 8m+r in 1.0.2 and using 1.0.1 and 1.0.3.

The second of these identities is

([q12 -3u q27] - C11~u[q21-3|.1;(:‘.27]% - q2+u[q3-3u;q27]°°)(q27)m

<o

= 14" %1.(a%) e = o (@



o
by -4
=
5

5

where, writing u = 3m+s with s = 0, 1 or -1,

{ ‘(_)1mqm(1-s)—3m(m+1)/2’ fs=0or-1
oq =

0, if s = 1

The last of these three identities is

- | . - -2-4
([-q22 4u;q48]m . qu+2[-_q10 tlu; 48]@ & q2u+7[_q 2 u;q48]

<o

+ q3u+15[_q-14—4u ; q_48]<‘°)(q48)°°
= [qu+2; 3)m(q3)°° = au(q)w

with o« as in 1.4.9.

1.5 Set
Nm(r) = ZN(r,m,n)q"‘ and Mm(r) = jEM(r,m,n)q“.

In this section, I find usable expressions for the Ng(1) and the Mg(1), in

particular expressions in which their 4-components are apparent.

We have

¢ a q.(3n-|»-1)/2 + (Bu+1)n
S(Bu+1,8) = ) ()
1
n

8n
- q

which, on writing n = 8m +r, becomes

_ E(,)' qi‘3r(r'+2u+1)/2 z q.3(81r + 8u - 28)mq64.3m(m+1)/2
)

8r 64
rmod 8 m 1~ qrq T

1.4.9

1.410



(with Z for z when r = 0 mod 8)
m m

3-u
- Z(_)r q3;r(r4-2u+1)/2(—r3(q81" (B Bu-28) 6

-u

x‘:
r= 28 -8r-8 56 - 8r - 16 3(28 - 8r - 8u) 64
- ™ 8T (q FEY-q F=8u | q54)

?

* -2 < 28 - 2(28 - 8 3(28 -~
¥ Ts (-q3(8u ?8)’q61) . qa( 8 su)TS(q (28 “),’q (28 8u),q64)

1.5.0

For m # +n mod 16, set

AM(m ,n) = AMﬂm ,n;q =
[qfl-(ﬂﬂ'ﬂ) ;q64 ]w[_qfln; 64]°°[q4(m+n) ;q64]m

and
1| | an 64 8n_ _64 64,2
;f; AN(m,n) = AN(im,n;q) =z -q*"5a% 000 a7 Jed Do
8 [q4(m-n) ;q64]m[_"q4m, q64]m[q4(m+n); 64]<=°
%

and set

Ulm) = Ulm;q) = (ql64);}'r3(-q4"‘ .1,4%%) and

g,m) = g (m;q = 9*(-'q4m, &%),

for * = M or N.
Then, with the help of 1.4.8 and 1.2.0, 1.5.0 becormes

5 (Bu+1,8) = (-)*Hq)_q 3D/ 2 2G(7 - 2u) - g (7 - 2u)

3
o ()uqIuur /2N (yrgBer D ZA (7220, 7 - 2r) 1.5.1
r=0

r®u

In like manner, we fihd that
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Syy(u.8) = g, (7-2u)

3
+ (_)L‘lq-u(u*l)/ZZ:(_)rq!‘(r*l)/zAM(7 -%2u , 7T - 2% ) 1'5.2

r=0
r=u

Suppose m is odd (or at least » O mod 8) and set

R . i

X (m) = X (m;q) = H(@®;q®) + H(-a"":q%)

and XM(m) = )(M(m;q) 1= H(qsm; 645 = H(-q4m;q64)

so that 1.2.13 and 1.2.3 read

3¢y, (m) - g,,(3m) = X, (m), 1.5.3
3gp(m) - g (3m) = X (m) - 2. 1.5.4
Repeated applications of 1.5.3 now give
3 )
8lg, (m) - gy (8lm) = ) 3'X (37 7'm) - 80, 1.5.5
1=0
while repeated applications of 1.2.1 give
gpg(m) - gy (81m) = - 15m 1.5.6
and, from 1.5.5 and ]}.5a6, we have
‘ 3
80g, (m) = » 3'X (3%7'm) + 15m - 80. 157
1=0
In the same way, 1.5.2 and 1.2.11 give
3 3-1
| - < | ! =
80g,,(m) = 2_‘3 X, (87 'm) + 5m. 1.5.8

1=0

I have so far defined AN(m,n) and AM(m,n) only for m » +n mod 16. I now

extend these definitions to the case m = n, defining
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A (m m) = m/16 - Tng (m) = ZBiX (33"'m) and

80 1=0

3
= _ 1 1 3-1
AN(m,m) = 3m/16 - 1 - gN(m) = - 87;3 XN(3 m).

With these definitions, 1.5.7 and 1.5.8 show that 1.5.2 and 1.5.1 may be written

as
SM(u,8) = u/& - 7/16

+ (- )‘u u(u+1)/23( )F r(r+1)/2A (7-2u,7- 2r) 1.5.9
r‘"O

and
Sn(Bu+ 1,8) =3u/8 - 5/16 + (-)4*(q)_q 3ulu+)/ 2+21(7 - 2u)

- (e -3u<u+l)/<’Z( YFq® /28 (7-2u,7-2r) 1.5.10
r= Q0

From 1.3.4, 1.3.0 and 1.3.1 we have

Ng(0) = P(25,(0,8) + 1) = P(-25(7,8) + 1),
) =

Ng(D = P(s_(1,8) - S\(0.8) = P(s (1,8) + S.(7.8)),

Ng(2) = P(S(2,8) - s_(1,8)) = P(S(10,8) - 5 (1,8) - 1) - g,
Ng(3) = P(5,(3,8) - 5(2,8) = -P(5_(4,8) + S n(10.8) - 1) + 7},
Ng(4) = P(s(4,8) - 5 (3,8)) = 2PS_(4,8),

and so 1.5.10 gives

3
Ng(0) = P/8 + 2¢'2U(3) - 2P} (-)rgBrir+1)/ 2"3/5‘1“(3,,7-&),

r=

Ng(1) = P/8 - ¢*u(7) - q*2u(3)

3
+ PZ{:(-)rqs'(HIVZ(ANW ,7-2r) + q-gAN(S 7 - 2r)),
r=0
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Ng(2) = P/8 + q*'U(7) + ®U() - ¢!

3
- p‘Z(_)rq3v(r+1)/2(q-18AN(1 ,7-2r) + AN(7 g - 2r)),
r=0

Ng(3) = P/8 - q'8U(5) - q%U(1) + ¢t

3
+ ]?;;é-)rqsnrﬂ"z(q-sAN(S .7-20) + qquN(I .7 -21).

3
Ng(4) = P/8 + 2q'%U(5) - 2P} (-y'®**D/2-3y (5 7_5y). 1.5.11
r=Q

Likewise, 1.3.4 and 1.5.9 give

3
M,(0) = P/8 + P;);_‘o(-)'q”"ﬂ)/ 2A (7.7 - 21)

3
_ i (e+1)/2( -1 E i
M.(1) = P/8 - n‘“;é-)fq' TP (5.7 20 + A (7.7 -20)

M,(2) = P/8 +x>§:§-)‘q"¢’*“/ 2(q'3AM(3,7-2‘:r) + q7MAL(5,7 - 21))
| 3
M. (3) = P/8 -1F>;§-)‘q"‘*1’/ ?(a7®A (1.7 - 20) +q73A (3.7 -2n)
:}_' ..
Mg(4) = P/8 f:ziz_is(.-)'q"“‘l’/ 27 CA (1,7 - 20). 1.5.12

Note that, from 1.5.11 and 1.5.12,

u
o

Ngl0) + 2N(1) + 2N (2) + 2N (3) + N_(4)

and

Mg (0) + 2M (1) + 2M(2) + 2M(3) + Mg(4)

]
)

which is as it should be.
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1.6 In this section, I find expressions along the lines of 1.5.11 for the Ng(r).

We have

n(3n-0-1) /2 +un
(u 9) = 2( )n
1 - 4q on

= }-1( )r r{(3r+1)/2 + ur
-

q
r=-1 - ¢%'q%"™

9r+3u -12)m_27m(m+1)/2

(with Z’ for Z when r = 0)
m

m

= T-:‘(qﬁu—lz ql—u—rl(q-g 3u-21 27)

»qzl)' » q »q

< -
q2+uT1(q3, 3u-3 q27)

»

1.6.0

Set

B(m,n) = B(m,n;q) = [-q[
[a™; q27]°°[-q3“‘; ‘ 27]@[_1; ]oo

for n not a multiple of 3, and

V(m) = Vim; @) = [-1; #7117 LT (-¢%™, -1, 4%7),
Y(m) = Y(m;q) = H(-¢®™; ¢*"),

Alm) = Alm;q) =A(g®™;q%")
With these definitions and the help of 1.2.4, 1.6.0 becomes

S (.9 = ([q?z'su e q' e "1

o » oo

q2+u[q3-3u : q:27)°°)(q27)°° V(4 - u)

- Ma-u) + ¢"UB(4-u,-1) + ¢**“B(4-u,1). 1.6.1
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Now 1.2.16 shows that A(0) = 0 and then 1.2.15 shows that A(27k) = k (for

integer k). 1.2.18 and 1.2.16 now show that

9A(4 -u) = 3Y(4-u) + Y(12-3u) + 4 - u.

Now, when n is a multiple of 3, set
Blm, n) = -—- Y(m) - LY(Bm).
» 3 9

Then, with the help of 1.4.9 and 1.6.2, 1.6.1 becomes

qLn(3n-°-1)/2 + unB(4 -u,n))
-1

[

Sl 9) =42t 4 a (@ v(a-w +

n

So we have
1
Ng(0) = P/9 + 2V(4) + 2P) q™3n*1/2g(4 y),

n=-1

1
N9(4) = 13/9 +’_ q"ZV(l) - P,an(3n+1)/2+3mB(1'n)'

n=-1
and, for k = 1, 2 and 3,

Ny(k) = P/9 + o V(4-k) - o, _V(5-k

1 )
+ p]}_‘ qn(3n+ll)/.<. + (k—l)n(an(4 -k,n) - B(5-k, n))

n=-1

1.6.2

1.6.3

I do not give similar expressions for the Mg(r) because, at the time of writing, I

have not been able to work them out. In any case, I do not need them for the

proof of theorem E. The difficulty lies in the appearance of functions T

(

13"t

in the expressions for SM(u,Q) analogous to 1.5.0 and 1.6.0 and I have not

been able to find transformation rules along the lines of 1.2.0 and 1.2.4 for such

functions. Maybe there are similar transformation rules or maybe there are ways

round this problem.
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1.7 In the final section of this chapter, I find expressions for the le(r). I do

not do the same for the M 12(() for the reasons given at the end of the previous

section.

For n not zero mod 4, set

Clm,n) = Clm,n ;q) =

(=)

and set

Wim) = Wim; @) = [-1; ¢*®1Hq*1 2T (-¢®™, -1, ¢*B),

4m 4873 48,2
Z(m) = Z(m;q) = la""q sloo(q 8)oo '
[®™ ; *8 12 5™ ¢*

o)

K (m) = A(-q%>™; q*9).

We have

Splu,12) = TH(-q*¥722, q*8) . q**2T (g'2, -q?¥710, ¢%8)

+ qzu-le(qzm ,-qtu*2 g 48) _ q:3u+15—[-1(q36, -qtutia 48
- ([_qzz-qm;qq;z;]m - QUTE[-qlOmAn 98] 4 2utT[ g 24y, a8y
(Butis[ g 1a-du, q4'3]m)(q48)mW(11 - 2u)
- K(11-2u) + i(u)“q““"’“*”’ Z*+¥nC(11- 2u, n) 1.7.0

n=l

Suppose m is odd (or at least not a multiple of 4). Then 1.2.18 gives
3h’(m) - A’(3m) = Z(m),
‘3A°(3m) - A’(9m) = Z(3m),

'3A’(9m) - A°(27m) = Z(9m) 1.71



and 1.2.15 gives
K (27m) = A’(3m) + m. 1.7.2
1.7.1 and 1.7.2 show that

24k’(m) = 8Z(m) + 3Z(3m) + Z(9m) + m 1.7.3

and 1.7.3 gives

h7(11-2u) = 11/24 - u/12 - C(11-2u,0) 174

where

Clm, 0) = - = (82(m) + 32(3m) + Z(5m)).

Now 1.7.0, 1.7.4 and 1.4.10 show that

Sn(u.12) = u/i2 - 11/24 + o (q) W11 - u)

3

+ Z(_)nqn(3n+1)/2 *un (1194 n) 1.7.5
n=0

A
At
2
=
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and 1.7.5 with 1.3.4 gives
N,(0) = P/12 + 2W(11) + 2P) (-)7q™3*D/2¢(yy )

and
le(k) = Pr12 + otkW(ll-k) - otk_IW(IZ-k)

3
4 P) (Pq{#n+ D2+ 0eDa( ooy gk, n)| - C13-2k,n))  1.7.6

n=0Q

for 1 <k < 6.



