2. Modular Forms.

2.0 In this chapter, I discuss what I need from the theory of modular forms. A

general reference is [Ran], though I do things in a slightly different way.

If R.is a commutative ring with identity, SLZ(R) is the group of all 2 x2 matrices
with entries from R and determinant one. If S is also a commutative ring with
identity, a homomorphism § : R — S (that preserves the identity) induces in

the obvious way a homomorphism SLz(ﬁ) ’ SLZ(R) -3 SLZ(S). In. the fashionable
jargon, SL2 is a functor between the category of commutative rings with identity

and the category of groups. Moreover, it is plain that SL2 preserves products:

SLQ(R xS) = SLZ(R) x SLZ(S). 2.0.0
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2.1 From now on, A will denote a matrix (2 3) € SLZ(Z) and, throughout this

and the remaining sections of this chapter, N will denote an integer greater than

two.

Define
I(N) = {A ¢ SL(Z) : A= +I mod N}
(which is T(N) in [Ranl), which is a normal subgroup of SLZ(Z), and

I (N) = {A ¢ SL(2) : c = 0 mod N},

FN) = {A ¢ T(N) :a=d=21mod N},



which are subgroups (not normal) of SLZ(Z).

I shall need to know the value of
w(N) = [SLZ(Z) : FI(N)].

(Here, [ : 1 denotes the index of a subgroup In a group.) Denote by l"l(N) the

image of FI(N) in SLZ(ZN). Then
WN) = [SL,(Z,) : T,(N)1. 2.1.0

Now the order of I',(N) Is easy to find. It Is

xf‘l(N) = 2N 211

(since N > 2) and it remains for us to calculate #SLZ(ZN). For n € IN, let

aln) = ”SLZ(Zn).

o

Lemma
gz a(mn) = a(m)(n), if m and n are coprime, 21.2
- alp® 1) = pBalp®), if k> 0, 2.1.3

sevi il

afn) = n3H (1 - 1/p2) (the product being over the primes
pln

dividing n) 2.1.4

Proof 2.1.2 follows from 2.0.0 and the fact that Z =~ Z x £ when m
mn m n

and n are coprime.

2.1.3: Let K be the kemel of the map SLZ(Zpk+1) —3 SLZ(Zpk) induced from

the projection me-l — Zpk. Then

1+ spk
K = tpk 1+upk :0<r,s,t<pandu=20, if r=0, = p-r, oth'erwise.}




Clearly, #K = p3, which gives us 2.1.3.

21.4: After 2.1.2 and 2.1.3, it remains to show that
olp) = p3 - p.

The matrices in SLZ(Z ) can be divided into three sets:

(e 8) ore0 b= (G 8) ere ol

B
and V= {( g).aY o}.

o
»
It’s easy to see that

#V_ = (p - D2(p - 2) and #V, = (p - D(2p - 1) =

1 3’
50
alp) = (p - D23(p - 2) +2(p - D(2p - 1) = p3 - p. ked
It now follows from 2.1.0, 2.1.1 and 2.1.4 that
uw(N)= %Nﬂ’ [T - 176°). 2.1.5

pl N

2.2 Set
={te C:imT > o}, Q*'= € v {o}.

Q" is the set of cusps.

If A e SLZ(Z) and £ ¢ IH or Q*, it is easy to see that

AL = at+b e H (respectively, Q*) (A = a/c.),
ct + d
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and SLZ(Z) acts on IH and (transitively) on Q* in this way. A subgroup T' of
SL2(Z) induces equivalence relations on IH and Q*, points £ and £’ being
I'-equivalent if £ = AE, for some A e T. I denote the equivalence class of § by

[E]r. The cusps of I' are the members of the set 1"\@*E (the TI'-orbits of Q*).

Note that, if x and y are coprime Integers and A e SL,(2), then ax + by and

' *
cx + dy are also coprime. So we can identify @ with the set

{C;) € sz-: %x and y are coprime and y 2 0}

(0o corresponds to (%))) and the action of SLZ(Z) on Q*E becomes matrix

multiplication.

My aim in this section is to identify a complete set of distinct cusps of I‘l(N)

For integers a, b and n, I write a - b for a = b mod n.

Lemma
If x, v and n are integers with ged(x, y, n) = 1, there are

coprime integers x’ and y’ with x’ =_x and y’ =_v. 2.2.0

Proof Let Py - - Py be the primes that divide both y and one of x + m
(-0 < r < o). In particular, suppose p, divides both y and x + rn. The Chinese
remainder theorem tells us that there’s a number r such that r = r 4+ 1 mod P,

for each 1 <1 < k. Take x* = x + m, ¥y’ = y. E



Lemma

For (;‘), (;:) € Q”6 and n < &,

[(;)]r(n) = [(;::)]‘F(n) = (;) - T (;(') 2.2.1

, . . X x’
Proof —> is obvious. For <<=, I'll only treat the case (y) - (y,) the other
case being very similar. Suppose first that (’;) = (%)) Since x’ and y’ are
coprime, there are integers r and s such that

sx’ - ry’ = L

Since x’ - 1 and y’ - 0, it follows that s = 1 and % that the matrix

B = (5 1%

lies in I'(n) and B(%) = (;:) Now, for any (; ), choose T « SLz(Z) such that

T(;) = (%)) If T(;:) = (L‘::) x’/ and y’/ are coprime and (%)) = (’;::) So

there’s a matrix B ¢ I'(n) with B((l)) = (;,,,’) Now C = T"IBT is in I'(n), since

fed

\
.

I'(n) is normal, and C,(:) = (3:)

For n ¢ Z, let M denote the congruence class of m « Z modulo n. Define

Q™ = {(g) ¢ 22 ;. % and ¥ are coprime (in Zn)}

n

(Note that X and ¥ are coprime in Z_ exactly when ged (%, y, n) = 1) SLZ(Z)

(n) * . ! > * o (n)
acts on Q'™, as on @ , by matrix multiplication and there’s a map Q — Q
(reduce components modulo n) which, by 2.2.0, is surjective. « commutes with
the action of SLZ(Z) and so, for any subgroup ' € SLZ(Z), induces a map

Ma : 1"'\Qi'E — T\Q(n). 2.2.1 shows that '\« is injective, when I'(n) € T, and so

we have
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Lemma
I'c SL 2(]1 ). Then T'\a is an isomorphism between

Suppose I'(n) <
(n) = 2.2.2

the set of cusps of I' and '\NQ

though the author inadvertently fails to mention

(This result appears in (s, p.111,

the "mod n" aspect.)

I now describe the set of cusps of I".L(N).

1 Theorem
Suppose N > 2 and define
(N) _ (N)
C— = U Cd
dl~

where

) _ [ ‘ ~ )
AN [y TN godls, N) = d
and 0<X<—é—d,U“Sy<N

or x=-;—d, OSyS%N

or x = 0, 0<y<é—N}_

Then C™? may be identified (via the map I"I(N)\oz of 2.2.2)
2.2.3

with the set of cusps of I'I(N).

Proof Suppose (%) € Q(N]’ and ged(y,N) = d. The subgroup of Z, generated
by y has smallest generator gcd (N, y) = d. This means that there are unique

= +1. r, s and t integers) such

integers x’ = ex + ry + sN and y’ = ey + tN (e

that
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0<XI<T1‘2_d[ and 0 sy <N

-0,0<y’<%N

or x = %ciandosy’s—%—N

;N
H

or X

' . X
Plainly gcd (y”,N) = d. Now the matrix (?) ;) lies in 1"1(N) and carries (;.) to
(EI,) and so each member of FI(N)\Q(N) has a representative with the stated

properties. The uniqueness of such a representative follows from the uniqueness

of the integers x’ and y’ cited above. Q

2.3 Suppose G is a group acting on a set S. For s « S, let Gs denote the
subgroup of G of elements that fix s. Suppose H is a subgroup of G. If s € S,

define the width of s relative to H to be
w(s;H) =[G : HS].

Note that, if s and t are H-equivalent, w(s;H) = wi(t: H). So we can talk about

the width of an orbit of H.

Now suppose G acts transitively on S and let T € S be a complete set of distinct
representatives of H\S. While I don’t actually need the next result, I have found
it useful, for example in checking that I h?ve found all the cusps of a subgroup
of SLZ(Z). In this lemma, [G : H] denotes ambiguously the set of right cosets of

H in G and the number thereof.
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Lemma

With the above hypothesis and notation, there is a bijection
«:[G: Hl —> UG, :H]J
teT !

As a consequence, if [G:H] is finite, then each w(s; H) is
finite and

};w(ﬂ;ﬂ) = [G:H].
Ce H\S

Proof Pick * ¢ S and, for each s ¢ S, pick X_ € G with X_% = s and so that
x.sx;} lies in H whenever s and s’ are In the same orbit of H. Such a choice is

plainly always possible. I define « by
— -1 -1
a(Hg) = Hx x_"gx
where g* = s = ht with te T and he H. Then « is a well-defined bijection, with

inverse
Htgt Hgtxt
- (where g« Gt). fed

o is, of course, far from natural.

SL,(2) acts transitively on Q*. If T is a subgroup of SL,(2) and T « N is a

cusp of T, the width of C relative to [ is w(l; I), as defined above. Now SLZ(Z)oo
' o ; 6 T A N . * -

is the group <U, -U> = szZ, where U = (0 1), so, if L « @ and ( = T,

with T € SLz(Z), SLZ(E)C = <'3L'UT'_1,-TU']['_1>. If T contains -1, it is plain that

w(Z;T) = the smallest positive integer k with TU*T™! ¢ T. 2.3.0




I now give the widths of the various cusps of Fi(N)' Recall 2.2.3, that the cusps

of FI(N) lie in various sets Cg\n, where dIN.

Lemma

2” ) has width N/d. The same is true

If N = 4, each cusp in C
2.31

when N = 4, except that the cusp 1/2 has width 1.

Proof Take N # 4. Suppose [ = (;) € Q*E is (a representative of) a cusp of
1.“1(N) lying in (identified with) a member of C(dN). Then gcd(y,N) = d. Choose a

matrix T = (}; 3) € SI_Z(Z) carrylng « to [. Suppose

okl = (e-kxy kx? )

- ky:2 g+kxy

+ 1) lies in l"l(N). Then NI ky2 and N | kxy, which means (since x and y are

follows that N/d | k. On the other hand, it is clear that

bed

(e =
coprime) that N | ky. It

TU™ 91! € I“l(N). The exceptional case when N = 4 is easily verified

2.4 The Dedekind eta function, 1, is defined on [H by

i

exp(mr/l2)H(l - exp(ihtim))
n=1

1/24
‘llq)oo

nlt)

=q

(2 ®) ¢ SL,(@), we have [Kno, thm2.2, p.51]

where q = exp(2xit). If A

n(A1) = e(A;nl1) = e(A)fct+d n(%), 2.4.0

for 1 ¢ IH, where £(A) is a certain 24th. root of unity (independent of 1). To

give the value of €(A), define the symbols




)= )

(%)* = (T-Cd-l), fcz2z0ord>0, - (E%T) otherwise

®
for coprime integers ¢ and d, with d odd, where (-.-)

is the Legendre-Jacobi

symbol [H+W. §6.51. Then

(9)*exp(m/12)((a+d)c +bd(1-c?) - 3c), c odd,
E(A) = { © 24.1
(%)*exp(‘n'i/]ﬂ)((a‘bd)c + bd(1~c2) + 3d(1-c) - 3)’ 4 odd.

lct+d < m/2).

(taking the value of the square root with -n/2 < arg1

Suppose that § is any complex valued function defined on IH. For k an integer

and A € SLZ(Z), define the function (ﬁlkA) on H by

(1, AND) = e(A; D7 H(AD).

It follows easily from 2.4.0 that, if B is also in SLZ(,Z),

(§1_AB) = ((§1, A1, B) 2.4.2
P 2.4.0 also shows that, with U = (:(l], %),
2.4.3

e(UM;1) = u, a 24th root of unity.

(ln fact, from 2.4.1, u = exp(?tifh/l?.)).

Now suppose T is a subgroup of ‘SLZ(Z),of finite index and that § is a function

meromorphic on [H that also satisfies

(§1,8) = X (R 2.4.4
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for every A e T, where each xf(A') is a root of unity. (If 2.4.4 holds, then, as the
notation suggests, X y is a character on I. I leave the proof as an easy exercise
for the reader.) Suppose ( is a cusp of T of width h and take T e SLZ(Z) with

To = C 'I'han

(!, D+h) = (§] kT)(Uhr)

- (g1, D UM (with u as at 2.4.3)
= uf(§1, TUMND (by 2.4.2)
= u(§ 1 VD) (where V = TUPT ' T,
by 2.3.0)
s = u*((f 1 W, T (2.4.2 again)
= ukxs(A)({ilkT)('r) 2.4.5

If 'we now set ukxé(\/) = exp(2mir) (0 s 1 < 1) and define the function g by
g(j:) = expl-2mirt/h)($ 1, TH),

2.4.5 shows that g is invariant under T — 1+h. Now suppose g is holomorphic
in-a region imt > & > 0 (equivalently, § is holomorphic inside a horocycle at 0).

Then g has a Fourier series expansion

40 = To

n

where q, = exp(2mit/h), and

_.r n
($1, Tix) = q,nzanclh . 2.4.6
6 is meromorphic at the cusp Cif §is holomorphic inside a horocycle at { and
if the series in 2.4.6 is finite on the left. If this is so and if m is the smallest

integer with a_ # 0, the order of § at T (with respect to T) is
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ord(§,C,T) =1r + m.

This number is independent of the choice of T with To = « (a different choice

merely multiplies 2.4.6 by a root of 1) and furthermore
ord(§.E,T) = ord(§,C, 1),

when { and £ are I'-equivalent. So we can speak of the order of § at a cusp of I.

I now define a modular form of weight k/2 on T' to be a function that satisfies
2.4.4 and is meromorphic on [H and at the cusps. So 7 is a modular form of
weight 172 on ‘SLZ(Z) (Sle(Zi) has just one cusp at o and 7 Is visibly
meromorphic there). The following result, a simple corollary of a theorem due to

Rankin [Ran, thm.4.1.4] is the linch-pin of my proofs of theorems D, E and H:

Theorem
Suppose I is a subgroup of SL 2(2 ) of index ¢ and that T
contains -1. If § is a modular form of weight r on T that is

holomorphic on IH and not identically zero then,

> ord(f, «. T) < pr/12. B 247
a e MNQ™

2.5 For positive integers n, define functions 1(n) = n(n;1) on H by:
n(n; ) = nlnt) = Yl(LnT),,
01

where Ln = (n 0) . For A « I"O(n), define

(n) __ -1 _ fa nb ’
A™ =L ALY = (2, 77) ¢ SL,(@).




Now, for A € Fo(n),

nln; AD) = n(L_Ad = f(A™L_0 = e(A"™)/cted nin; o),

sQ

(T](nu) 11 A) = o(n(n) ; A) n(n)

where

o(n(n); A) = (A™)e(a)?

2.5.0
and 7(n) is a modular form of weight 1/2 on T (n)
Rademacher [Rad, 81.2, p.181]1 defines functions
@u'v(v 1) = Z (-)"“exp((nﬂl/Z)2 nir)exp(27ti(n+u/2)v)
n = =co
and shows that
@1,1(" | A1) = s(A)sexp(vtiicvz(cr+d)) Yct+d @1’1(\1(6‘{ +d) | T) 2.5.1
@1’0(\1 | AT)A =

ghT dexp(Trlcd/4)E(A)sexp(mcvz(cﬁwi))

xyct+d ®1 . d(v(c‘t-l-d) | 1.') 2.5.2

(Here, Rademacher has (ct+d)/i where I have Jct+d , so his expressions look a

little different.)

Note the obvious

®u+2’v(v | 1) = (-)"@“N(v It), @u,w_z(v | 1) = @u’v(v [ ©)

(so that really there are only four functions Gu Y and

@1'1(\”1 l1) = -@1’1(v | 1), @1,0(v+1 [1) = -®1,o(v | ). 2.5.3




For integers n > 0O and k, define functions sn(k) and tn(l«a) on [H by

-Kk)2 /¢

sn(k;r) = -ex;:»(ni):(z'r/n)f-).1 Lkt lnt) = q(“/2 K720 1k g1 (@™ )
2

t (k1) = exp(nlk?"t/n)(')1 olkt |ng = goBk A -q%; "1 (q™ )

These functions s_(k) and t o(k) and the fact that, as I shall soon show, they

are modular forms on I',(n) and F1(2n) respectively must be well known, but I've
found no reference to them in the published literature. I got the idea from

[Gar2‘], in which the author introduces certain special cases of these functions

(see 80.5).
Note that
s (-k) = -s (k) = s_(k+n) 254
n n n ,
t (-k) = t_(k) = t_(k+n) 2.5.5
n n n
and that
. - e
exp(mik ’t/n)@o'o(]k'r | n1) tn(n/2 k;1) 2.5.6
For a function § of x of the form §(x) = x"(aj + ax + a,x +...)with a, =0

and r rational, define: ord § = r. Now, writing )\n(k) for the least nonnegative
residue of k modulo n, 2.5.4 and 2.5.5 and the definitions of these functions

show that

ord sn(k) = (n/2-1\n(k))2/2n = ord tn(k) 2.5.7

Now, if A ¢ Fo(n), we have, with the help of 2.5.1,
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it

s_(k; A7) —exp(nikZAt/n)@_ (KATIL A7)
= -exp(rtlkzﬁs.t/n)@1 (kAT | A(“)Ln‘r)
= -E(An)sexp(nlk2At/n)exp(nl(kAt)z(c/n)(c1:+-d))-/€‘?:a

x @1’1(k‘ﬁxt(cr+dl) | Lnt)

= -E(An)se}(p('n’l(sz‘r/n)(l + c(ar+b))7/c‘r+d ial.l(k(aﬂb) | nt)

= -E(An)gexp(n1k2a;(a‘r+b)/n)#c‘t+d (--)kb@1 ]L(kar | n1)

(where I've used 2.5.3 and the fact that 1+bc = ad)

= (-)kbE(A(n))sexpi[mkzab/n)4ct+d sn(ak;t). 2.5.8

Thus, for A € ['O(n),

(st 1, A) = ofs, (0 A)s (2, 2.5.9

where

o(sn(k) - A) . (--)kbexp(mkzab/n)s(A(“)):BE(A)'I. 2.5.10

Working In the same way with 2.5.2, we have, for A « ]i.“‘o(n), that

(t 001, A)

1}

o(tn(k) ; A)tn(ak), if Ae I‘O(Zn)

o(tn(k) ; A)tn(n/z -ak), if Ae I‘O(Zn) and n is even. 2.5.11

where

o(tn(k);A) = (-)kb11_dexp(7riccl/4n)exp(7rik2ab/n)‘E(A(n))3£(A)-1 2.5.12

254, 2.5.5, 2.5.9 and 2.5.11 show that sn(k) and tn(k‘) are modular forms of

weight 1/2 on I'l(n), respectively F1(2n) (that these functions are meromorphic at

the cusps will be shown in the next section).
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For an «-tuple 1 = (10, - la_l) with integral entries, set leni = « and define

o-1
s (0 = [[s ).
" r=0

Define t_(1) and 7(1) in the same way and, for even n, define

o1
t;(!) = th(n/Q-ir).
r=0

In sections 3.1-3 I shall be dealing with functions of the form

| ) s (wt(v)y(b) ,
1 X,(m) =_n n 2.513
,.: sn(x)t n(5;1) nlc)
é in which u, v, x and y are linearly dependent on the parameters m and in which
& '
@ entries of b and of ¢ (which will be independent of m) are positive integers
; dividing n. Set

w=lenu + lenv + lenb -lenx - leny - lenc. 2.5.14
Then, for Ae['o(n) (n even), we have, by 2.5.9 and 2.5.11

(ctm) | A) = o X(m); M) X(am), 1f A < T(2n),

o( X(m); M) X (am), if A ¢ T (2n), 2.5.15
where

o(X(m) - A)) = o(sn(u) ; A)ol(tn(v) ; A)o(n(b) ; A)
x c»(sn(x) : A)'lo(tn(!v) . A)'lo(n(b) ; A)'1

and X (am) is X(am), with t/ fort .

I shall call a function like X(m) at 2.5.13 or X'(m) a theta product of index n,
whose weight is w/2 (w as defined at 2.5.14). If X(m) and Ufm) are theta

products of the same welght and same index (n, say), and if v(X(m);A) =




e

O(y(m) ; A) for all AeTj(2n), I shall say that JX(m) and Y(m) are compatible.

Suppose X(m) and {(m) are compatible. Then S(m) = X(m) + Yim) transforms

according to

(Rm) 1 A) = o(2m) ; A)RAam),

for every A ¢ I (2n), where ao(él(m);A) = v(}C(m);A}I.

Define the sign of the theta product X(m) to be (-)lenuvlen® .14, for numbers

a = +1 mod n, define xn(a) =+ 1by:
)(n(all ‘= a mod n. 2.5.16

Then I say that that theta products X(m) and Y{m) are coherent if they are

compatible, when they have the same sign, and otherwise

o(}C(m) ;A) = xzn(a)o(g(m) ; A).
for every A e F1(2r1). It is plain that a sum of mutually coherent theta products of

index n and weight w/2 is a modular form of weight w/2 on F1(2n).

2.6 In this section, I calculate the orders of the forms n(r), for rln, sn(k) and

tn(k) at the various cusps of 1"1(2n).

Suppose that [ = x/y « Q*_witht ged(y, 2n) = §, so [ represents a cusp In C(s.zn)

Take a matrix T = (; :) ¢ SL_(2) that carries o to [. Suppose rln and set

§ = gedlr,y), = /8, y* = y/s’. Let T = (;" /)« SL(2). Then

LT v- ()



where & = gcd(y,r), and %
nlr; Tt) = n(T‘*Vr) = o(T*)yt+2)/r n(V1)
and (since, by 2.3.1, cusps in C:;zn) have width 2n/9) it follows that

ord(n(e), T, T (n)) = n3'2/1215. 2.6.0

Now calculations similar to those preceding 2.5.8 show that
Sn(k ; T1) = uv(yt+z)/n’ exp(Trikzx(XT + *)/n)@l 1(k(xt +%)/n’ [(8%1+ *)/n)

where u ¢ U, the *’s are (unimportant). integers and &, n’ (and y” below) are as

above,with n for r. It follows from 2.5.7 and 2.3.1 that

ord(s_(k), T, T,(2n))

ord 55“’2/n(kX/n’) x{(2n/3)

(5278 = K¥*25, 2.6.1

where A\ = )\az(kx) is the least nonnegative residue of kx mod .

In the same way, we have
t_(k;T1 = uvlyt+z)/n’ exp(mkzx(m+z)/r)@1_y, 1_?,(k(xt+z)/n’l(8’zt+ *)/n),
We can suppose z’ is odd and then

ord(tn(k) . C, F1(2n) = ord t (kx/n")

5°2/n

= (5272 - W2/8 if v’ is even,
= ord t5"2/n(8,2/2n - kx/n’)

= u2/s, if v/ is odd, 2.6.2

where \ is as above and p satisfies kx = ¢ mod § and -8/2 < u < 3/2.
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