2. Modular Forms.

2.0 In this chapter, I discuss what I need from the theory of modular forms. A general reference is [Ran], though I do things in a slightly different way.

If R . is a commutative ring with identity, $\mathrm{SL}_{2}(\mathrm{R})$ is the group of all 2×2 matrices with entries from R and determinant one. If S is also a commutative ring with identity, a homomorphism $f: R \rightarrow S$ (that preserves the identity) induces in the obvious way a homomorphism $\mathrm{SL}_{2}(f): \mathrm{SL}_{2}(\mathrm{R}) \rightarrow \mathrm{SL}_{2}(\mathrm{~S})$. In the fashionable jargon, SL_{2} is a functor between the category of conmutative rings with identity and the category of groups. Moreover, it is plain that SL_{2} preserves products:

$$
\mathrm{SL}_{2}(\mathrm{R} \times \mathrm{S}) \simeq \mathrm{SL}_{2}(\mathrm{R}) \times \mathrm{SL}_{2}(\mathrm{~S}) .
$$

2.1 From now on, A will denote a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and, throughout this and the remaining sections of this chapter, N will denote an integer greater than two.

Define

$$
\Gamma(N):=\left\{A \in S L_{2}(Z): A \equiv \pm I \bmod N\right\}
$$

(which is $\bar{\Gamma}(N)$ in [Ram]), which is a normal subgroup of $\operatorname{SL}_{2}(\mathbb{Z})$, and

$$
\begin{aligned}
& \Gamma_{0}(N):=\left\{A \in S L_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} \\
& \Gamma_{1}(N):=\left\{A \in \Gamma_{0}(N): a=d \equiv \pm 1 \bmod N\right\}
\end{aligned}
$$

which are subgroups (not normal) of $\mathrm{SL}_{2}(\mathbb{Z})$.

I shall need to know the value of

$$
\mu(N):=\left[\operatorname{SL}_{2}(\mathbb{Z}): \Gamma_{1}(N)\right]
$$

(Here, [:] denotes the index of a subgroup in a group.) Denote by $\hat{\Gamma}_{1}(N)$ the image of $\Gamma_{1}(\mathbb{N})$ in $\mathrm{SL}_{2}\left(\mathbb{Z}_{N}\right)$. Then

$$
\mu(N)=\left[\operatorname{SL}_{2}\left(\mathbb{Z}_{N}\right): \hat{\Gamma}_{1}(N)\right]
$$

Now the order of $\hat{\Gamma}_{1}(N)$ is easy to find. It is

$$
\hat{\Gamma}_{1}(N)=2 N
$$

(since $N>2$) and it remains for us to calculate $\operatorname{mLL}_{2}\left(\mathbf{Z}_{N}\right)$. For $n \in \mathbb{N}$, let

$$
\alpha(\mathrm{n}):=\operatorname{SL}_{2}\left(\mathbb{Z}_{\mathrm{n}}\right) .
$$

Lemma

$$
\begin{aligned}
& \alpha(m n)=\alpha(m) \alpha(n) \text {, if } m \text { and } n \text { are coprime, } \\
& \alpha\left(p^{k+1}\right)=p^{3} \alpha\left(p^{k}\right) \text {, if } k>0, \\
& \alpha(n)=n^{3} \Pi\left(\mathbb{1}-1 / p^{2}\right) \text { (the product being over the primes } \\
& \text { dividing } n)
\end{aligned}
$$

2.1.2
2.1.3
2.1 .4

Proof 2.1 .2 follows from 2.0 .0 and the fact that $\mathbb{Z}_{m n} \simeq \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ when m and n are coprime.
2.1.3: Let K be the kernel of the map $\mathrm{SL}_{2}\left(\mathbb{Z}_{p^{k}+1}\right) \rightarrow \mathrm{SL}_{2}\left(\mathbb{Z}_{\mathrm{p}^{k}}\right)$ induced from the projection $\mathbb{Z}_{p^{k+1}} \rightarrow \mathbb{Z}_{p^{k \cdot}}$. Then

$$
K=\left\{\left(\begin{array}{cc}
1+r p^{k} & s p^{k} \\
\operatorname{tp}^{k} & 1+u p^{k}
\end{array}\right): 0 \leq r, s, t<p \text { and } u=0 \text {, if } r=0,=p-r \text {, otherwise. }\right\}
$$

Clearly, $\# K=p^{3}$, which gives us 2.1.3.
2.1.4: After 2.1.2 and 2.1.3, it remains to show that

$$
\alpha(p)=p^{3}-p .
$$

The matrices in $\mathrm{SL}_{2}\left(\mathcal{Z}_{\mathrm{P}}\right)$ can be divided into three sets:

$$
\begin{aligned}
& V_{1}:=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right): \beta \gamma \neq 0,-1\right\}, V_{2}:=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right): \beta \gamma=-1\right\} \\
& \text { and } V_{3}:=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right): \beta \gamma=0\right\} .
\end{aligned}
$$

It's easy to see that

$$
m V_{1}=(p-1)^{2}(p-2) \text { and } \# V_{2}=(p-1)(2 p-1)=m V_{3}
$$

so

$$
\alpha(p)=(p-1)^{2}(p-2)+2(p-1)(2 p-1)=p^{3}-p .
$$

It now follows from 2.1.0, 2.1.11 and 2.1.4 that

$$
\mu(N)=\frac{1}{2} N^{2} \prod_{p \mid N}\left(1-1 / p^{2}\right) .
$$

2.2 Set

$$
\mathbb{H}:=\{\tau \in \mathbb{C}: \lim \tau>0\}, \quad \mathbb{Q}^{*}:=\mathbb{Q} \cup\{\infty\} .
$$

Q* is the set of cusps.

If $A \in \operatorname{SL}_{2}(\mathbb{Z})$ and $\xi \in \mathbb{H}$ or \mathbb{Q}^{*}, it is easy to see that

$$
\left.A \xi:=\frac{a \xi+b}{c \xi+d} \in \mathbb{H} \text { (respectively, } \mathbb{Q}^{*}\right) \quad\left(A_{\infty}=a / c .\right),
$$

and $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $\mathbb{I H}$ and (transitively) on \mathbb{Q}^{*} in this way. A subgroup Γ of $\mathrm{SL}_{2}(\mathbb{Z})$ induces equivalence relations on \mathbb{H} and \mathbb{Q}^{*}, points ξ and ξ^{\prime} being Γ-equivalent if $\xi^{\prime}=A \xi$, for some $A \in \Gamma$. I denote the equivalence class of ξ by $[\xi]$. The cusps of Γ are the members of the set $\Gamma \backslash \mathbb{Q}^{*}$ (the Γ-orbits of \mathbb{Q}^{*}).

Note that, if x and y are coprime integers and $A \in S L_{2}(Z)$, then $a x+b y$ and $c x+d y$ are also coprime. So we can identlify \mathbb{Q}^{*} with the set

$$
\left\{\binom{x}{y} \in \mathbb{Z}^{2}: x \text { and } y \text { are coprime and } y \geq 0\right\}
$$

(∞ corresponds to $\binom{1}{0}$) and the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathbb{Q}^{*} becomes matrix multiplication.

My aim in this section is to identify a complete set of distinct cusps of $\Gamma_{1}(\mathbb{N})$ For integers a, b and n , I write $\mathrm{a} \mathrm{ma}_{\mathrm{n}} \mathrm{b}$ for $\mathrm{a}=\mathrm{b} \bmod \mathrm{n}$.

Lemma

If x, y and n are integers with $\operatorname{gcd}(x, y, n)=1$, there are coprime integers x^{\prime} and y^{\prime} with $x^{\prime} \equiv_{n} x$ and $y^{\prime} \equiv \equiv_{n} y$.

Proof Let p_{1}, \ldots, p_{k} be the primes that divide both y and one of $x+m$ $(-\infty<r<\infty)$. In particular, suppose p_{i} divides both y and $x+r_{i} n$. The Chinese remainder theorem tells us that there's a number r such that $r \equiv r_{1}+1 \bmod p_{1}$ for each $1 \leq i \leq k$. Take $x^{\prime}=x+m, y^{\prime}=y$.

Lemma

For $\binom{x}{y},\binom{x^{\prime}}{y^{\prime}} \in \mathbb{Q}^{*}$ and $n \in \mathbb{Z}$,

$$
\left[\binom{x}{y}\right]_{\Gamma(n)}=\left[\binom{x^{\prime}}{y^{\prime}}\right]_{\Gamma(n)} \Longleftrightarrow\binom{x}{y}=_{n} \pm\binom{ x}{y^{\prime}}
$$

Proof \Longrightarrow is obvious. For \Longrightarrow, I'll only treat the case $\left.\binom{x}{y}=\begin{array}{l}n \\ x^{\prime} \\ y^{\prime}\end{array}\right)$ the other case being very similar. Suppose first that $\binom{x}{y}=\binom{1}{0}$. Since x^{\prime} and y^{\prime} are coprime, there are integers r and s such that

$$
s x^{\prime}-r y^{\prime}=1
$$

Since $x^{\prime}=1$ and $y^{\prime}={ }_{n} 0$, it follows that $s={ }_{n} 1$ and \therefore that the matrix

$$
B=\left(\begin{array}{ll}
x^{\prime} & r-r x^{\prime} \\
y^{\prime} & s-r y^{\prime}
\end{array}\right)
$$

lies in $\Gamma(n)$ and $B\binom{1}{0}=\binom{x^{\prime}}{y^{\prime}}$. Now, for any $\binom{x}{y}$, choose $T \in S L_{2}(\mathbb{Z})$ such that $T\binom{x}{y}=\binom{1}{0}$. If $T\binom{x^{\prime}}{y^{\prime}}=\binom{x^{\prime \prime}}{y^{\prime \prime}}$, $x^{\prime \prime \prime}$ and $y^{\prime \prime}$ are coprime and $\binom{1}{0} \equiv_{\mathrm{n}}\binom{x^{\prime \prime}}{y^{\prime \prime}}$. So there's a matrix $B \in \Gamma(n)$ with $B\binom{1}{0}=\binom{x^{\prime \prime}}{y^{\prime \prime}}$. Now $C=T^{-1} B T$ is in $\Gamma(n)$, since $\Gamma(n)$ is normal, and $C\binom{x}{y}=\binom{x^{\prime}}{y^{\prime}}$.
[ood

For $n \in \mathbb{Z}$, let \bar{m} denote the congruence class of $m \in \mathbb{Z}$ modulo n. Define

$$
\left.Q^{(n)}:=\left\{\left(\frac{\bar{x}}{\bar{y}}\right) \in \mathbb{Z}_{n}^{2}: \bar{x} \text { and } \bar{y} \text { are coprime (in } \mathbb{Z}_{n}\right)\right\}
$$

(Note that \bar{x} and \bar{y} are coprime in \mathbb{Z}_{n} exactly when $\left.\operatorname{gcd}(x, y, n)=1.\right) S L_{2}(\mathbb{Z})$ acts on $\mathbb{Q}^{(n)}$, as on \mathbb{Q}^{*}, by matrix multiplication and there's a map $\mathbb{Q}^{*} \xrightarrow{\alpha} \mathbb{Q}^{(n)}$ (reduce components modulo n) which, by 2.2.0, is surjective. α commutes with the action of $\mathrm{SL}_{2}(\mathbb{Z})$ and so, for any subgroup $\Gamma \varsigma \mathrm{SL}_{2}(\mathbb{Z})$, induces a map $\Gamma \backslash \alpha: \Gamma \backslash \mathbb{Q}^{*} \rightarrow \Gamma \backslash \mathbb{Q}^{(n)}$. 2.2 .1 shows that $\Gamma \backslash \alpha$ is injective, when $\Gamma(n) \leq \Gamma$, and so we have

Lemma

Suppose $\Gamma(n) \leq \Gamma \subseteq \mathcal{S L}_{2}(\mathbb{Z})$. Then $\Gamma \backslash \alpha$ is an isomorphism between the set of cusps of Γ and $\Gamma \backslash Q^{(n)}$.
(This result appears in [.S, p.111], though the author inadvertently fails to mention the "mod n " aspect.)

I now describe the set of cusps of $\Gamma_{1}(N)$.

Theorem

Suppose $N>2$ and define

$$
C^{(N)}=\bigcup_{\left.d\right|_{N}} C_{d}^{(N)}
$$

where

$$
\begin{aligned}
C_{d}^{(N)}=\left\{\left[\left(\frac{x}{y}\right)\right]_{\Gamma_{1}(N)} \in \Gamma_{1}(N) \backslash Q^{(N)}: \operatorname{gcd}(y, N)\right. & =d \\
\text { and } 0<x & <\frac{1}{2} d, 0 \leq y<N \\
\text { or } x & =\frac{1}{2} d, 0 \leq y \leq \frac{1}{2} N \\
\text { or } \quad x & \left.=0,0<y<\frac{1}{2} N\right\} .
\end{aligned}
$$

Then $C^{(N)}$ may be identified (via the map $\Gamma_{1}(N) \backslash a$ of 2.2.2) with the set of cusps of $\Gamma_{\mathbb{I}}(\mathbb{N})$.

Proof Suppose $\left(\frac{\bar{x}}{\bar{y}}\right) \in \mathbb{Q}^{(\mathbb{N})}$ and $\operatorname{gcd}(y, N)=d$. The subgroup of \mathbb{Z}_{N} generated by y has smallest generator $\operatorname{gcd}(N, y)=d$. This means that there are unique integers $x^{\prime}=\varepsilon x+r y+s N$ and $y^{\prime}=\varepsilon y+\mathbb{N}(\varepsilon= \pm 1 . r, s$ and t integers $)$ such that

$$
\begin{aligned}
& 0<x^{\prime}<\frac{1}{2} d \quad \text { and } 0 \leq y^{\prime}<N \\
& \text { or } \quad x^{\prime}=0,0<y^{\prime}<\frac{1}{2} N \\
& \text { or } \quad x^{\prime}=\frac{1}{2} d \text { and } 0 \leq y^{\prime} \leq \frac{1}{2} N
\end{aligned}
$$

Plainly $\operatorname{gcd}\left(y^{\prime}, N\right)=d$. Now the matrix $\left(\begin{array}{ll}\varepsilon & r \\ 0 & \varepsilon\end{array}\right)$ lies in $\Gamma_{1}(N)$ and carries $\binom{\bar{x}}{\bar{y}}$ to $\binom{\bar{x}^{\prime}}{\bar{y}^{\prime}}$ and so each member of $\Gamma_{1}(N) \backslash \mathbb{Q}^{(N)}$ has a representative with the stated properties. The uniqueness of such a representative follows from the uniqueness of the integers x^{\prime} and y^{\prime} cited above.
god
2.3 Suppose G is a group acting on a set S. For $s \in S$, let G denote the subgroup of G of elements that fix s. Suppose H is a subgroup of G. If $s \in S$, define the width of s relative to H to be

$$
w(s ; H):=\left[G_{s}: H_{s}\right]
$$

Note that, if s and t are H-equivalent, $w(s ; H)=w(t ; H)$. So we can talk about the width of an orbit of H .

Now suppose G acts transitively on S and let $T \subseteq S$ be a complete set distinct representatives of H\S. While I don't actually need the next result, I have found it useful, for example in checking that I have found all the cusps of a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$. In this lemma, $[G: H]$ denotes ambiguously the set of right cosets of H in G and the number thereof.

Lemma

With the above hypothesis and notation, there is a bijection

$$
\alpha:[G: H] \longrightarrow \bigcup_{t \in T}\left[G_{t}: H_{t}\right] .
$$

As a consequence, if $[G: H]$ is finite, then each $w(s ; H)$ is
finite and

$$
\sum_{\zeta \in \mathbb{H} \backslash S} w(\zeta ; H)=[G: H] .
$$

Proof Pick $* \in S$ and, for each $s \in S$, pick $x_{s} \in G$ with $x_{s} *=s$ and so that $x_{s^{\prime}} x_{s^{\prime}}^{-1}$ lies in H whenever s and s^{\prime} are in the same orbit of H. Such a choice is plainly always possible. I define α by

$$
\alpha(H g):=H_{t} x_{t} x_{s}^{-1} g x_{t}^{-1},
$$

where $g^{*}=s=h t$ with $t \in T$ and $h \in H$. Then α is a well-defined bijection, with inverse

$$
\mathrm{H}_{\mathrm{t}} \mathrm{~g}_{\mathrm{t}} \longmapsto \mathrm{Hg}_{\mathrm{t}} \mathrm{x}_{\mathrm{t}}
$$

(where $g_{t} \in G_{\mathfrak{t}}$).
α is, of course, far from natural.
$\mathrm{SL}_{2}(\mathbb{Z})$ acts transitively on \mathbb{Q}^{*}. If Γ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ and $\zeta \in \Gamma \backslash \mathbb{Q}^{*}$ is a cusp of Γ, the width of ζ relative to Γ is $w\left(\zeta ; \Gamma\right.$, as defined above. Now $\mathrm{SL}_{2}(\mathbb{Z})_{\infty}$ is the group $\langle U,-U\rangle \approx \mathbb{Z}_{2} \times \mathbb{Z}$, where $U:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$, so, if $\zeta \in \mathbb{Q}^{*}$ and $\zeta=T_{\infty}$, with $T \in \mathrm{SL}_{2}(\mathbb{Z}), \mathrm{SL}_{2}(\mathbb{Z})_{\zeta}=\left\langle\mathrm{TUT}^{-1},-\mathrm{TUT}^{-1}\right\rangle$. If Γ contains $-I$, it is plain that $w(\zeta ; \Gamma)=$ the smallest positive integer k with $T U^{k} T^{-1} \in \Gamma$.

I now give the widths of the various cusps of $\Gamma_{1}(N)$. Recall 2.2.3, that the cusps of $\Gamma_{1}(N)$ lie in various sets $C_{d}^{(N)}$, where $\mathrm{d} \mid \mathrm{N}$.

Lemma

If $N \neq 4$, each cusp in $C_{d}^{(N)}$ has width N / d. The same is true when $N=4$, except that the cusp $1 / 2$ has width. 1.

Proof Take $N \neq 4$. Suppose $\zeta=\binom{x}{y} \in \mathbb{Q}^{*}$ is (a representative of) a cusp of $\Gamma_{1}(N)$ lying in (identified with) a member of $C_{d}^{(N)}$. Then $\operatorname{gcd}(y, N)=$ d. Choose a matrix $T=\left(\begin{array}{ll}x & u \\ y & v\end{array}\right) \in S L_{2}(\mathbb{Z})$ carrying ∞ to ζ. Suppose

$$
T U^{k} T^{-1}=\left(\begin{array}{cc}
\varepsilon-k x y & k x^{2} \\
-k y^{2} & \varepsilon+k x y
\end{array}\right)
$$

$(\varepsilon= \pm 1)$ lies in $\Gamma_{1}(N)$. Then $N \mid k y^{2}$ and $N \mid k x y$, which means (since x and y are coprime) that $\mathrm{N} \mid \mathrm{ky}$. It follows that $\mathrm{N} / \mathrm{d} \mid \mathrm{k}$. On the other hand, it is clear that $T U^{n / d} T^{-1} \in \Gamma_{1}(N)$. The exceptional case when $N=4$ is easily verified.
2.4 The Dedekind eta function, η, is defined on $\mathbb{I H}$ by

$$
\begin{aligned}
\eta(\tau) & ==\exp (\pi \mathrm{i} \tau / 12) \prod_{n=1}^{\infty}(1-\exp (2 \pi \mathrm{in} \tau)) \\
& =\mathrm{q}^{1 / 24}(\mathrm{q})_{\infty}
\end{aligned}
$$

where $q:=\exp (2 \pi i \tau)$. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(Z)$, we have [Kno, thm 2.2, p. 51]

$$
\eta(A \tau)=e(A ; \tau) \eta(\tau)=\varepsilon(A) \sqrt{c \tau+d} \eta(\tau)
$$

for $\tau \in \mathbb{H}$, where $\varepsilon(A)$ is a certain 24 th. root of unity (independent of τ). To give the value of $\varepsilon(A)$, define the symbols

$$
\begin{aligned}
& \left(\frac{c}{d}\right)^{*}:=\left(\frac{c}{|d|}\right) \\
& \left(\frac{c}{d}\right)_{*}=\left(\frac{c}{|d|}\right), \text { if } c \geq 0 \text { or } d>0,-\left(\frac{c}{|d|}\right) \text { otherwise }
\end{aligned}
$$

for coprime integers c and d, with d odd, where $\left(\frac{\bullet}{0}\right)$ is the Legendre-Jacobi symbol [$\mathbb{H}+\mathbf{W}$. 56.5]. Then

$$
\varepsilon(A)= \begin{cases}\left(\frac{d}{c}\right)^{*} \exp (\pi i / 12)\left((a+d) c+b d\left(1-c^{2}\right)-3 c\right), & c \text { odd } \\ \left(\frac{c}{d}\right)_{*} \exp (\pi 1 / 12)\left((a+d) c+b d\left(1-c^{2}\right)+3 d(1-c)-3\right), & d \text { odd. }\end{cases}
$$

(taking the value of the square root with $-\pi / 2 \leq \arg \sqrt{c \tau+d}<\pi / 2$).

Suppose that f is any complex valued function defined on \mathbb{H}. For k an integer and $A \in S L_{2}(\mathbb{Z})$, define the function $\left(\left.f\right|_{k} A\right)$ on \mathbb{H} by

$$
\left(\left.f\right|_{k} A\right)(\tau):=e(A ; \tau)^{-k} f(A \tau) .
$$

It follows easily from 2.4.0 that, if B is also in $\mathrm{SL}_{2}(\mathrm{Z})$,

$$
\left(\left.f\right|_{k} A B\right)=\left(\left.\left(\left.f\right|_{k} A\right)\right|_{k} B\right)
$$

2.4.0 also shows that, with $U:=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$,

$$
e\left(U^{h} ; \tau\right)=u, \text { a } 24 \text { th root of unity. }
$$

(in fact, from 2.4.1, $u=\exp (\pi \mathrm{ih} / 12)$).

Now suppose Γ is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$, of finite index and that f is a function meromorphic on \mathbb{H} that also satisfies

$$
\left(\left.f\right|_{k} A\right)=x_{f}(A) f
$$

for every $A \in \Gamma$, where each $\chi_{f}(A)$ is a root of unity. (If 2.4.4 holds, then, as the notation suggests, X_{6} is a character on Γ. I leave the proof as an easy exercise for the reader.) Suppose ζ is a cusp of Γ of width h and take $T \in \operatorname{SL}_{2}(\mathbb{Z})$ with $T_{\infty}=\zeta$. Then

$$
\begin{align*}
\left(\left.f\right|_{k} T\right)(\tau+h) & =\left(\left.f\right|_{k} T\right)\left(U^{h} \tau\right) \\
& =u^{k}\left(\left.\left(\left.f\right|_{k} T\right)\right|_{k} U^{h}\right) \\
& =u^{k}\left(\left.f\right|_{k} T U^{h}\right)(\tau) \tag{by2.4.2}\\
& =u^{k}\left(\left.f\right|_{k} V T\right)(\tau)
\end{align*}
$$

(with u as at 2.4.3)
(where $\mathrm{V}=\mathrm{TU}^{\mathrm{h}} \mathrm{T}^{-1} \in \Gamma$, by 2.3.0)

$$
\begin{align*}
& =u^{k}\left(\left.\left(\left.f\right|_{k} V\right)\right|_{k} T\right)(\tau) \\
& =u^{k} \chi_{f}(A)\left(\left.f\right|_{k} T\right)(\tau)
\end{align*}
$$

If we now set $u^{k} \chi_{f}(V)=\exp (2 \pi i r)(0 \leq r<1)$ and define the function g by

$$
g(\tau):=\exp (-2 \pi \operatorname{ir} \tau / h)\left(\left.f\right|_{k} T\right)(\tau)
$$

2.4.5 shows that g is invariant under $\tau \mapsto \tau+h$. Now suppose g is holomorphic in a region $\operatorname{im} \tau>\delta>0$ (equivalently, f is holomorphic inside a horocycle at ζ). Then g has a Fourier series expansion

$$
g(\tau)=\sum_{n} a_{n} q_{h}^{n} .
$$

where $q_{h}:=\exp (2 \pi i \tau / h)$, and \therefore

$$
\left(\left.f\right|_{k} T\right)(\tau)=a_{h}^{r} \sum_{n} a_{n} a_{h}^{n}
$$

f is meromorphic at the cusp ζ if f is holomorphic inside a horocycle at ζ and if the series in 2.4 .6 is finite on the left. If this is so and if m is the smallest integer with $a_{m} \neq 0$, the order of f at ζ (with respect to Γ) is

$$
\operatorname{ord}(f, \zeta, \Gamma):=r+m
$$

This number is independent of the choice of T with $T_{\infty}=\infty$ (a different choice merely multiplies 2.4.6 by a root of 1) and furthermore

$$
\operatorname{ord}(f, \xi, \Gamma)=\operatorname{ord}(f, \zeta, \Gamma),
$$

when ζ and ξ are Γ-equivalent. So we can speak of the order of f at a cusp of Γ.

I now define a modular form of weight $k / 2$ on Γ to be a function that satisfies 2.4.4 and is meromorphic on IH and at the cusps. So η is a modular form of weight $1 / 2$ on $\mathrm{SL}_{2}(\mathbb{Z})\left(\mathrm{SL}_{2}(\mathbb{Z})\right.$ has just one cusp at ∞ and η is visibly meromorphic there). The following result, a simple corollary of a theorem due to Rankin [Ran, thm. 4.1.4]I is the linch-pin of my proofs of theorems D, E and H :

Theorem

Suppose Γ is a subgroup of $S L_{2}(Z)$ of index μ and that Γ contains -I. If 6 is a modular form of weight r on Γ that is holomorphic on IH and not identically zero then,

$$
\sum_{\alpha \in \Gamma Q^{*}} \operatorname{ord}(f, \alpha, \Gamma) \leq \mu r / 12
$$

2.5 For positive integers n, define functions $\eta(n)=\eta(n ; \tau)$ on \mathbb{H} by:

$$
\eta(n ; \tau):=\eta(n \tau)=\eta\left(L_{n} \tau\right),
$$

where $L_{n}:=\left(\begin{array}{ll}n & 0 \\ 0 & 1\end{array}\right)$. For $A \in \Gamma_{0}(n)$, define

$$
A^{(n)}:=L_{n} A L_{n}^{-1}=\left(\begin{array}{ll}
a & n b \\
c / n & d
\end{array}\right) \in S L_{2}(Z) .
$$

Now, for $A \in \Gamma_{0}(n)$,

$$
\eta(n ; A \tau)=\eta\left(L_{n} A \tau\right)=\eta\left(A^{(n)} L_{n} \tau\right)=\varepsilon\left(A^{(n)}\right) \sqrt{c \tau+d} \eta(n ; \tau),
$$

so

$$
\left(\left.\eta(n)\right|_{1} A\right)=o(\eta(n) ; A) \eta(n)
$$

where

$$
v(\eta(n) ; A)=\varepsilon\left(A^{(n)}\right) \varepsilon(A)^{-1}
$$

and $\eta(n)$ is a modular form of weight $1 / 2$ on $\Gamma_{o}(n)$

Rademacher [Rad, 81.2, p.181] defines functions

$$
\Theta_{\mu, v}(v \mid \tau):=\sum_{n=-\infty}^{\infty}(-)^{v n} \exp \left((n+\mu / 2)^{2} \pi i \tau\right) \exp (2 \pi i(n+\mu / 2) v)
$$

and shows that

$$
\begin{align*}
& \Theta_{1,1}(v \mid A \tau)=s(A)^{3} \exp \left(\pi i c v^{2}(c \tau+d)\right) \sqrt{c \tau+d} \Theta_{1,1}(v(c \tau+d) \mid \tau) \\
& \Theta_{1,0}(v \mid A \tau)=1^{1-d} \exp (\pi i c d / 4) \varepsilon(A)^{3} \exp \left(\pi i c v^{2}(c \tau+d)\right) \\
& \quad x \sqrt{c \tau+d} \Theta_{1-c, \pi-d}(v(c \tau+d) \mid \tau)
\end{align*}
$$

(Here, Rademacher has $\sqrt{(c \tau+d) / i}$ where I have $\sqrt{c \tau+d}$, so his expressions look a little different.)

Note the obvious

$$
\Theta_{\mu+2, v}(v \mid \tau)=(-)^{v} \Theta_{\mu, v}(v \mid \tau), \quad \Theta_{\mu, v+2}(v \mid \tau)=\Theta_{\mu, v}(v \mid \tau)
$$

(so that really there are only four functions $\Theta_{\mu, v}$) and

$$
\Theta_{1,1}(v+1 \mid \tau)=-\Theta_{1,1}(v \mid \tau), \quad \Theta_{1,0}(v+1 \mid \tau)=-\Theta_{1,0}(v \mid \tau) .
$$

For integers $n>0$ and k, define functions $s_{n}(k)$ and $t_{n}(k)$ on \mathbb{H} by

$$
\begin{aligned}
& s_{n}(k ; \tau):=-\exp \left(\pi i k^{2} \tau / n\right) \Theta_{1,1}(k \tau \mid n \tau)=q^{(n / 2-k)^{2} / 2 n}\left[q^{k} ; q^{n}\right]_{\infty}\left(q^{n}\right)_{\infty} \\
& t_{n}(k ; \tau):=\exp \left(\pi i k^{2} \tau / n\right) \Theta_{1,0}(k \tau \mid n \tau)=q^{(n / 2-k)^{2} / 2 n}\left[-q^{k} ; q^{n}\right]_{\infty}\left(q^{n}\right)_{\infty}
\end{aligned}
$$

These functions $s_{n}(k)$ and $t_{n}(k)$ and the fact that, as I shall soon show, they are modular forms on $\Gamma_{1}(n)$ and $\Gamma_{1}(2 n)$ respectively must be well known, but l've found no reference to them in the published literature. I got the idea from $\left[G a r 2^{\circ}\right]$, in which the author introduces certain special cases of these functions (see §0.5).

Note that

$$
\begin{align*}
& s_{n}(-k)=-s_{n}(k)=s_{n}(k+n) \\
& t_{n}(-k)=t_{n}(k)=t_{n}(k+n)
\end{align*}
$$

and that

$$
\exp \left(\pi i k^{2} \tau / n\right) \Theta_{0,0}(k \tau \mid n \tau)=t_{n}(n / 2-k ; \tau)
$$

For a function f of x of the form $f(x)=x^{r}\left(a_{0}+a_{1} x+a_{2} x+\ldots\right)$ with $a_{0} \neq 0$ and r rational, define : ord $f:=r$. Now, writing $\lambda_{n}(k)$ for the least nonnegative residue of k modulo $n, 2.5 .4$ and 2.5 .5 and the definitions of these functions show that

$$
\text { ord } s_{n}(k)=\left(n / 2-\lambda_{n}(k)\right)^{2} / 2 n=\operatorname{ord} t_{n}(k)
$$

Now, if $A \in \Gamma_{0}(n)$, we have, with the help of 2.5.1,

$$
\begin{aligned}
s_{n}(k ; A \tau)= & -\exp \left(\pi i k^{2} A \tau / n\right) \Theta_{1,1}\left(k A \tau \mid L_{n} A \tau\right) \\
= & -\exp \left(\pi i k^{2} A \tau / n\right) \Theta_{1,1}\left(k A \tau \mid A^{(n)} L_{n} \tau\right) \\
= & -\varepsilon\left(A_{n}\right)^{3} \exp \left(\pi i k^{2} A \tau / n\right) \exp \left(\pi i(k A \tau)^{2}(c / n)(c \tau+d)\right) \sqrt{c \tau+d} \\
& \times \Theta_{1,1}\left(k A \tau(c \tau+d) \mid L_{n} \tau\right) \\
= & -\varepsilon\left(A_{n}\right)^{3} \exp \left(\pi i\left(k^{2} A \tau / n\right)(1+c(a \tau+b)) \sqrt{c \tau+d} \Theta_{1,1}(k(a \tau+b) \mid n \tau)\right. \\
= & -\varepsilon\left(A_{n}\right)^{3} \exp \left(\pi i k^{2} a(a \tau+b) / n\right) \sqrt{c \tau+d}(-)^{k b} \Theta_{1,1}(k a \tau \mid n \tau)
\end{aligned}
$$

(where I've used 2.5.3 and the fact that $1+b c=a d$)

$$
=(-)^{k b} \varepsilon\left(A^{(n)}\right)^{3} \exp \left(\pi i k^{2} a b / n\right) \sqrt{c \tau+d} s_{n}(a k ; \tau) .
$$

Thus, for $A \in \Gamma_{o}(n)$,

$$
\left(\left.s_{n}(k)\right|_{1} A\right)=0\left(s_{n}(k) ; A\right) s_{n}(a k)
$$

where

$$
o\left(s_{n}(k) ; A\right)=(-)^{k b} \exp \left(\pi i k^{2} a b / n\right) \varepsilon\left(A^{(n)}\right)^{3} \varepsilon(A)^{-1}
$$

Working in the same way with 2.5.2, we have, for $A \in \Gamma_{0}(n)$, that

$$
\begin{align*}
\left(\left.t_{n}(k)\right|_{1} A\right) & =o\left(t_{n}(k) ; A\right) t_{n}(a k), \text { if } A \in \Gamma_{0}(2 n) \\
& =o\left(t_{n}(k) ; A\right) t_{n}(n / 2-a k), \text { if } A \in \Gamma_{o}(2 n) \text { and } n \text { is even. }
\end{align*}
$$

where

$$
v\left(t_{n}(k) ; A\right)=(-)^{k b} 1^{1-d} \exp (\pi i c d / 4 n) \exp \left(\pi i k^{2} a b / n\right) \varepsilon\left(A^{(n)}\right)^{3} \varepsilon(A)^{-1}
$$

2.5.4, 2.5.5, 2.5 .9 and 2.5 .11 show that $s_{n}(k)$ and $t_{n}(k)$ are modular forms of weight $1 / 2$ on $\Gamma_{1}(n)$, respectively $\Gamma_{1}(2 n)$ (that these functions are meromorphic at the cusps will be shown in the next section).

For an α-tuple $\mathbb{1}=\left(i_{0}, \ldots, i_{\alpha-1}\right)$ with integral entries, set len $1=\alpha$ and define

$$
s_{n}(1)=\prod_{r=0}^{\alpha-1} s_{n}\left(i_{r}\right)
$$

Define $t_{n}(1)$ and $\eta(1)$ in the same way and, for even n, define

$$
\mathfrak{t}_{n}^{\prime}(1)=\prod_{r=0}^{\alpha-1} i_{n}\left(n / 2-1_{r}\right)
$$

In sections 3.1-3 I shall be dealing with functions of the form

$$
X_{(m)}(m) \frac{s_{n}(u) t_{n}(v) \eta(b)}{s_{n}(x) t_{n}(y) \eta(c)}
$$

in which u, v, x and y are linearly dependent on the parameters m and in which entries of b and of c (which will be independent of m) are positive integers dividing n . Set

$$
w:=\operatorname{len} u+\operatorname{len} v+\operatorname{len} b-\operatorname{len} x-\operatorname{len} y-\operatorname{len} c .
$$

Then, for $A \in \Gamma_{0}(n)$ (n even), we have, by 2.5.9 and 2.5.11

$$
\begin{align*}
\left(\left.\chi(m)\right|_{w} A\right) & =o(\chi(m) ; A)) \chi(a m), \text { if } A \in \Gamma_{o}(2 n), \\
& =o(\chi(m) ; A)) \chi^{\prime}(a m), \text { if } A \in \Gamma_{o}(2 n),
\end{align*}
$$

where

$$
\begin{aligned}
v(\chi(m) ; A))=v\left(s_{n}(u) ; A\right) v(& \left.t_{n}(v) ; A\right) v(\eta(b) ; A) \\
& \times o\left(s_{n}(x) ; A\right)^{-1} v\left(t_{n}(y) ; A\right)^{-1} v(\eta(b) ; A)^{-1}
\end{aligned}
$$

and $\chi^{\prime}(a m)$ is $\chi(a m)$, with t_{n}^{\prime} for t_{n}.

I shall call a function like $\chi(\mathrm{m})$ at 2.5 .13 or $\chi^{\prime}(\mathrm{m})$ a theta product of index n, whose weight is $w / 2$ (w as defined at 2.5.14). If $\chi(\mathrm{ma})$ and $Y(m)$ are theta products of the same weight and same index $(n$, say $)$, and if $o(\chi(m) ; A)=$
$0(Y(m) ; A)$ for all $A \in \Gamma_{0}(2 n), I$ shall say that $\chi(m)$ and $\mathscr{(m)}$ are compatible. Suppose $\chi(\mathrm{m})$ and $り(\mathrm{~m})$ are compatible. Then $2(\mathrm{~m})=\chi(\mathrm{m})+Y(\mathrm{~m})$ transforms according to

$$
\left(\left.2(m)\right|_{w} A\right)=o(2(m) ; A) 2(a m)
$$

for every $A \in \Gamma_{0}(2 n)$, where $o(2(m) ; A)=v\left(\chi_{0}(m) ; A\right)$.

Define the sign of the theta product $\chi(\mathrm{m})$ to be $(-)^{\text {len } u+l e n *}$ and, for numbers $a \equiv \pm 1 \bmod n$, define $\chi_{n}(a)= \pm 1$ by:

$$
\chi_{n}(a) \equiv a \bmod n .
$$

Then I say that that theta products $\chi(\mathrm{m})$ and $\mathscr{Y}(\mathrm{m})$ are coherent if they are compatible, when they have the same sign, and otherwise

$$
o(\chi(m) ; A)=\chi_{2 n}(a) \sigma(y(m) ; A) .
$$

for every $A \in \Gamma_{1}(2 n)$. It is plain that a sum of mutually coherent theta products of index n and weight $w / 2$ is a modular form of weight $w / 2$ on $\Gamma_{1}(2 n)$.
2.6 In this section, I calculate the orders of the forms $\eta(r)$, for $r \mid n, s_{n}(k)$ and $t_{n}(k)$ at the various cusps of $\Gamma_{1}(2 n)$.

Suppose that $\zeta=x / y \in \mathbb{Q}^{*}$ with $\operatorname{gcd}(y, 2 n)=\delta$, so ζ represents a cusp in $\mathbb{C}_{\delta^{*}}^{(2 n)}$
Take a matrix $T=\left(\begin{array}{ll}x & * \\ y & z\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$ that carries ∞ to ζ. Suppose $r \ln$ and set $\delta^{\prime}=\operatorname{gcd}(r, y), r^{\prime}=r / \delta^{\prime}, y^{\prime}=y / \delta^{\prime}$. Let $T^{*}:=\left(\begin{array}{ll}r^{\prime} x & { }^{*} \\ y^{\prime} & z^{\prime}\end{array}\right) \in \operatorname{SL}_{2}(z)$. Then

$$
T^{*-1} L_{r} T=V:=\left(\begin{array}{ll}
\delta^{\prime} & * \\
0 & r^{\prime}
\end{array}\right),
$$

where $\delta^{\prime}=\operatorname{gcd}(\mathrm{y}, \mathrm{r})$, and \therefore°

$$
\eta(r ; T \tau)=\eta\left(T^{*} V \tau\right)=\varepsilon\left(T^{*}\right) \sqrt{(y \tau+z) / r^{\prime}} n(V \tau)
$$

and (since, by 2.3.1, cusps in $C_{\delta}^{(2 n)}$ have width $2 n / \delta$) it follows that

$$
\operatorname{ord}\left(\eta(x), \zeta, \Gamma_{1}(n)\right)=n \delta^{\prime 2} / 12 r \delta .
$$

Now calculations similar to those preceding 2.5 .8 show that

$$
s_{n}(k ; T \tau)=u \sqrt{(y \tau+z) / n^{\prime}} \exp \left(\pi \mathrm{ik}^{2} x(x \tau+*) / n\right) \Theta_{1,1}\left(k(x \tau+*) / n^{\prime} \mid\left(\delta^{\prime 2} \tau+*\right) / n\right)
$$

where $u \in U$, the *'s are (unimportant) integers and $\delta^{\prime}, n^{\prime}$ (and y^{\prime} below) are as above, with n for r . It follows from 2.5.7 and 2.3.1 that

$$
\begin{align*}
\operatorname{ord}\left(s_{n}(k), \zeta, \Gamma_{1}(2 n)\right) & =\operatorname{ord} s_{\delta^{\prime} 2 / n}\left(k x / n^{\prime}\right) \times(2 \mathrm{n} / \delta) \\
& =\left(\delta^{\prime} / 2-\lambda\right)^{2} / \delta,
\end{align*}
$$

where $\lambda=\lambda_{\delta^{\prime}}(k x)$ is the least nonnegative residue of $k x \bmod \delta^{\prime}$.

In the same way, we have

$$
t_{n}(k ; T \tau)=u \sqrt{(y \tau+z) / n^{\prime}} \exp \left(\pi i k^{2} x(x \tau+z) / r\right) \Theta_{1-y^{\prime}, 1-z^{\prime}}\left(k(x \tau+z) / n^{\prime} \mid\left(\delta^{\prime 2} \tau+*\right) / n\right)
$$

We can suppose z^{\prime} is odd and then

$$
\begin{align*}
\operatorname{ord}\left(t_{n}(k), \zeta, \Gamma_{1}(2 n)\right. & =\operatorname{ord} t_{\delta^{\prime} 2 / n}\left(k x / n^{\prime}\right) \\
& =\left(\delta^{\prime} / 2-\lambda\right)^{2} / \delta \quad \text { if } y^{\prime} \text { is even, } \\
& =\operatorname{ordt}_{\delta^{\prime} 2 / n}\left(\delta^{\prime 2} / 2 n-\mathrm{kx} / \mathrm{n}^{\prime}\right) \\
& =\mu^{2} / \delta, \quad \text { if } y^{\prime} \text { is odd, }
\end{align*}
$$

where λ is as above and μ satisfies $k x \equiv \mu \bmod \delta^{\prime}$ and $-\delta^{\prime} / 2<\mu \leq \delta^{\prime} / 2$.

