2. Modular Forms.

2.0 In this chapter, I discuss what I need from the theory of modular forms. A general reference is [Ran], though I do things in a slightly different way.

If R is a commutative ring with identity, $SL_2(R)$ is the group of all 2×2 matrices with entries from R and determinant one. If S is also a commutative ring with identity, a homomorphism $f: R \to S$ (that preserves the identity) induces in the obvious way a homomorphism $SL_2(f): SL_2(R) \to SL_2(S)$. In the fashionable jargon, SL_2 is a functor between the category of commutative rings with identity and the category of groups. Moreover, it is plain that SL_2 preserves products:

$$SL_2(R \times S) \simeq SL_2(R) \times SL_2(S)$$
. 2.0.0

2.1 From now on, A will denote a matrix $\binom{a}{c}\binom{b}{d} \in SL_2(\mathbf{Z})$ and, throughout this and the remaining sections of this chapter, N will denote an integer greater than two.

Define

$$\Gamma(N) := \left\{ A \in SL_2(\mathbb{Z}) : A = \pm I \mod N \right\}$$

(which is $\overline{\Gamma}(N)$ in [Ran]), which is a normal subgroup of $SL_2(\mathbf{Z})$, and

$$\Gamma_{0}(N) := \left\{ A \in SL_{2}(\mathbb{Z}) : c \equiv 0 \mod N \right\},$$

$$\Gamma_{1}(N) := \left\{ A \in \Gamma_{0}(N) : a \equiv d \equiv \pm 1 \mod N \right\},$$

which are subgroups (not normal) of $SL_2(\mathbf{Z})$.

I shall need to know the value of

$$\mu(N) \coloneqq [\operatorname{SL}_2(\mathbf{Z}) \, : \, \Gamma_1(N)].$$

(Here, [:] denotes the index of a subgroup in a group.) Denote by $\hat{\Gamma}_1(N)$ the image of $\Gamma_1(N)$ in $\mathrm{SL}_2(\mathbf{Z}_N)$. Then

$$\mu(N) = [SL_2(\mathbf{Z}_N) : \hat{\Gamma}_1(N)].$$
 2.1.0

Now the order of $\hat{\Gamma}_1(N)$ is easy to find. It is

$$\#\hat{\Gamma}_1(N) = 2N$$
 2.1.1

(since N > 2) and it remains for us to calculate $\#SL_2(\mathbb{Z}_N)$. For $n \in \mathbb{N}$, let

$$\alpha(n) := \#SL_2(\mathbf{Z}_n).$$

Lemma

$$\alpha(mn) = \alpha(m)\alpha(n)$$
, if m and n are coprime, 2.1.2

$$\alpha(p^{k+1}) = p^3 \alpha(p^k), \text{ if } k > 0,$$
 2.1.3

 $\alpha(n) = n^3 \prod_{p \mid n} (1 - 1/p^2)$ (the product being over the primes

Proof 2.1.2 follows from **2.0.0** and the fact that $\mathbf{Z}_{mn} \simeq \mathbf{Z}_{m} \times \mathbf{Z}_{n}$ when m and n are coprime.

 $\textbf{2.1.3} \colon \mathsf{Let} \ \mathsf{K} \ \mathsf{be} \ \mathsf{the} \ \mathsf{kernel} \ \mathsf{of} \ \mathsf{the} \ \mathsf{map} \ \mathsf{SL}_2\big(\mathbf{Z}_{\mathbf{p}^{k+1}}\big) \to \mathsf{SL}_2\big(\mathbf{Z}_{\mathbf{p}^k}\big) \ \mathsf{induced} \ \mathsf{from}$ the projection $\mathbf{Z}_{\mathbf{p}^{k+1}} \to \mathbf{Z}_{\mathbf{p}^k}$. Then

$$K = \left\{ \begin{pmatrix} 1 + rp^k & sp^k \\ tp^k & 1 + up^k \end{pmatrix} : 0 \le r, s, t$$

Clearly, $\#K = p^3$, which gives us 2.1.3.

2.1.4: After 2.1.2 and 2.1.3, it remains to show that

$$\alpha(p) = p^3 - p.$$

The matrices in $SL_2(\mathbb{Z}_p)$ can be divided into three sets:

$$\begin{split} & \boldsymbol{V}_1 \coloneqq \left\{ \left(\begin{matrix} \alpha & \beta \\ \gamma & \delta \end{matrix} \right) : \ \beta \boldsymbol{\gamma} \neq 0, \ -1 \right\}, \ \boldsymbol{V}_2 \coloneqq \left\{ \left(\begin{matrix} \alpha & \beta \\ \gamma & \delta \end{matrix} \right) : \ \beta \boldsymbol{\gamma} = -1 \right\} \\ & \text{and} \ \boldsymbol{V}_3 \coloneqq \left\{ \left(\begin{matrix} \alpha & \beta \\ \gamma & \delta \end{matrix} \right) : \ \beta \boldsymbol{\gamma} = 0 \right\}. \end{split}$$

It's easy to see that

$$\#V_1 = (p - 1)^2(p - 2)$$
 and $\#V_2 = (p - 1)(2p - 1) = \#V_3$

SO

$$\alpha(p) = (p-1)^2(p-2) + 2(p-1)(2p-1) = p^3 - p.$$

It now follows from 2.1.0, 2.1.1 and 2.1.4 that

$$\mu(N) = \frac{1}{2} N^2 \prod_{p \mid N} (1 - 1/p^2).$$
 2.1.5

2.2 Set

$$I\!H \, \coloneqq \, \{\tau \ \in \ \mathbb{C} \ : \ \operatorname{im} \tau \, > \, 0\}, \qquad \mathbb{Q}^* \coloneqq \, \mathbb{Q} \, \, \cup \, \, \{\omega\}.$$

Q* is the set of cusps.

If A \in SL₂(**Z**) and $\xi \in$ IH or \mathbb{Q}^* , it is easy to see that

$$A\xi := \frac{a\xi + b}{c\xi + d} \in IH \text{ (respectively, } \mathbb{Q}^*\text{)} \quad (A_\infty = a/c.),$$

and $\operatorname{SL}_2(\mathbf{Z})$ acts on IH and (transitively) on \mathbb{Q}^* in this way. A subgroup Γ of $\operatorname{SL}_2(\mathbf{Z})$ induces equivalence relations on IH and \mathbb{Q}^* , points ξ and ξ' being Γ -equivalent if $\xi' = A\xi$, for some $A \in \Gamma$. I denote the equivalence class of ξ by $[\xi]_{\Gamma}$. The cusps of Γ are the members of the set $\Gamma \setminus \mathbb{Q}^*$ (the Γ -orbits of \mathbb{Q}^*).

Note that, if x and y are coprime integers and $A \in SL_2(\mathbf{Z})$, then ax + by and cx + dy are also coprime. So we can identify \mathbb{Q}^* with the set

$$\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{Z}^2 : x \text{ and } y \text{ are coprime and } y \ge 0 \right\}$$

($_{\infty}$ corresponds to $\binom{1}{0}$) and the action of $\mathrm{SL}_2(\mathbf{Z})$ on \mathbf{Q}^* becomes matrix multiplication.

My aim in this section is to identify a complete set of distinct cusps of $\Gamma_1(N)$. For integers a, b and n, I write a m b for a m b mod n.

Lemma

If x, y and n are integers with gcd(x, y, n) = 1, there are coprime integers x' and y' with $x' \equiv_n x$ and $y' \equiv_n y$. 2.2.0

Proof Let p_1, \ldots, p_k be the primes that divide both y and one of x + m $(-\infty < r < \infty)$. In particular, suppose p_i divides both y and $x + r_i n$. The Chinese remainder theorem tells us that there's a number r such that $r = r_i + 1 \mod p_i$ for each $1 \le i \le k$. Take x' = x + m, y' = y.

Lemma

For
$$\binom{x}{y}$$
, $\binom{x'}{y'} \in \mathbb{Q}^*$ and $n \in \mathbb{Z}$,
$$\left[\binom{x}{y} \right]_{\Gamma(n)} = \left[\binom{x'}{y'} \right]_{\Gamma(n)} \iff \binom{x}{y} =_n \pm \binom{x'}{y'}$$
2.2.1

Proof \Longrightarrow is obvious. For \Longleftrightarrow , I'll only treat the case $\binom{x}{y} = \binom{x'}{y'}$ the other case being very similar. Suppose first that $\binom{x}{y} = \binom{1}{0}$. Since x' and y' are coprime, there are integers r and s such that

$$sx' - ry' = 1.$$

Since x' = 1 and y' = 0, it follows that s = 1 and t that the matrix

$$B = \begin{pmatrix} x' & r - rx' \\ y' & s - ry' \end{pmatrix}$$

lies in $\Gamma(n)$ and $B\binom{1}{0}=\binom{x'}{y'}$. Now, for any $\binom{x}{y}$, choose $T\in SL_2(\mathbf{Z})$ such that $T\binom{x}{y}=\binom{1}{0}$. If $T\binom{x'}{y'}=\binom{x''}{y''}$, x'' and y'' are coprime and $\binom{1}{0}\equiv_n\binom{x''}{y''}$. So there's a matrix $B\in\Gamma(n)$ with $B\binom{1}{0}=\binom{x''}{y''}$. Now $C=T^{-1}BT$ is in $\Gamma(n)$, since $\Gamma(n)$ is normal, and $C\binom{x}{y}=\binom{x'}{y'}$.

For n & Z, let m denote the congruence class of m & Z modulo n. Define

$$\mathbb{Q}^{(n)} := \left\{ \begin{pmatrix} \overline{x} \\ \overline{y} \end{pmatrix} \in \mathbb{Z}_n^2 : \overline{x} \text{ and } \overline{y} \text{ are coprime (in } \mathbb{Z}_n) \right\}$$

Lemma

Suppose $\Gamma(n) \subseteq \Gamma \subseteq SL_2(\mathbb{Z})$. Then $\Gamma \setminus \alpha$ is an isomorphism between the set of cusps of Γ and $\Gamma \setminus \mathbb{Q}^{(n)}$.

(This result appears in [S, p.11], though the author inadvertently fails to mention the "mod n" aspect.)

I now describe the set of cusps of $\Gamma_1(N)$.

Theorem

Suppose N > 2 and define

$$C^{(N)} = \bigcup_{d \mid N} C_d^{(N)}$$

where

$$C_d^{(N)} = \left\{ \begin{bmatrix} \left(\frac{x}{y} \right) \right]_{\Gamma_I(N)} \in \Gamma_I(N) \setminus \mathbb{Q}^{(N)} : \gcd(y, N) = d \\ \\ and \quad 0 < x < \frac{1}{2}d, \quad 0 \le y < N \\ \\ or \quad x = \frac{1}{2}d, \quad 0 \le y \le \frac{1}{2}N \\ \\ or \quad x = 0, \quad 0 < y < \frac{1}{2}N \right\}.$$

Then $C^{(N)}$ may be identified (via the map $\Gamma_1(N) \setminus \alpha$ of 2.2.2) with the set of cusps of $\Gamma_1(N)$.

Proof Suppose $\left(\frac{\overline{x}}{\overline{y}}\right) \in \mathbb{Q}^{(N)}$ and $\gcd(y,N) = d$. The subgroup of \mathbb{Z}_N generated by y has smallest generator $\gcd(N,y) = d$. This means that there are unique integers $x' = \epsilon x + ry + sN$ and $y' = \epsilon y + tN$ ($\epsilon = \pm 1$. r, s and t integers) such that

$$0 < x' < \frac{1}{2} d$$
 and $0 \le y' < N$
or $x' = 0$, $0 < y' < \frac{1}{2} N$
or $x' = \frac{1}{2} d$ and $0 \le y' \le \frac{1}{2} N$

Plainly $\gcd(y', N) = d$. Now the matrix $\binom{\varepsilon}{0} \cdot r$ lies in $\Gamma_1(N)$ and carries $(\frac{\overline{x}}{\overline{y}})$ to $(\frac{\overline{x}'}{\overline{y}'})$ and so each member of $\Gamma_1(N)\setminus \mathbb{Q}^{(N)}$ has a representative with the stated properties. The uniqueness of such a representative follows from the uniqueness of the integers x' and y' cited above.

2.3 Suppose G is a group acting on a set S. For $s \in S$, let G_s denote the subgroup of G of elements that fix s. Suppose H is a subgroup of G. If $s \in S$, define the width of s relative to H to be

$$w(s\,;H) \coloneqq [\mathsf{G}_{\mathtt{s}}\,:\,\mathsf{H}_{\mathtt{s}}].$$

Note that, if s and t are H-equivalent, w(s; H) = w(t; H). So we can talk about the width of an orbit of H.

Now suppose G acts transitively on S and let $T \subseteq S$ be a complete set of distinct representatives of H\S. While I don't actually need the next result, I have found it useful, for example in checking that I have found all the cusps of a subgroup of $SL_2(\mathbf{Z})$. In this lemma, [G:H] denotes ambiguously the set of right cosets of H in G and the number thereof.

Lemma

With the above hypothesis and notation, there is a bijection

$$\alpha: [G:H] \longrightarrow \bigcup_{t \in T} [G_t:H_t].$$

As a consequence, if [G:H] is finite, then each w(s;H) is finite and

$$\sum_{w(\zeta;H)} = [G:H].$$
 $\zeta \in H \setminus S$

Proof Pick $* \in S$ and, for each $s \in S$, pick $x_s \in G$ with $x_s * = s$ and so that $x_s x_s^{-1}$ lies in H whenever s and s' are in the same orbit of H. Such a choice is plainly always possible. I define α by

$$\alpha(\mathsf{Hg}) \coloneqq \mathsf{H}_\mathsf{t} \mathsf{x}_\mathsf{t} \mathsf{x}_\mathsf{s}^{-1} \mathsf{g} \mathsf{x}_\mathsf{t}^{-1},$$

where g*=s=ht with $t\in T$ and $h\in H.$ Then α is a well-defined bijection, with inverse

$$H_{t}g_{t} \longrightarrow Hg_{t}x_{t}$$

(where $g_t \in G_t$).

 α is, of course, far from natural.

 $\operatorname{SL}_2(\mathbf{Z})$ acts transitively on \mathbb{Q}^* . If Γ is a subgroup of $\operatorname{SL}_2(\mathbf{Z})$ and $\zeta \in \Gamma \backslash \mathbb{Q}^*$ is a cusp of Γ , the width of ζ relative to Γ is $w(\zeta; \Gamma)$, as defined above. Now $\operatorname{SL}_2(\mathbf{Z})_{\infty}$ is the group $\langle U, -U \rangle \simeq \mathbb{Z}_2 \times \mathbb{Z}$, where $U \coloneqq \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, so, if $\zeta \in \mathbb{Q}^*$ and $\zeta = T_{\infty}$, with $T \in \operatorname{SL}_2(\mathbf{Z})$, $\operatorname{SL}_2(\mathbf{Z})_{\zeta} = \langle TUT^{-1}, -TUT^{-1} \rangle$. If Γ contains -I, it is plain that $w(\zeta; \Gamma) = \text{the smallest positive integer } k$ with $TU^kT^{-1} \in \Gamma$. 2.3.0

I now give the widths of the various cusps of $\Gamma_1(N)$. Recall 2.2.3, that the cusps of $\Gamma_1(N)$ lie in various sets $C_d^{(N)}$, where d|N.

L.emma

If $N \neq 4$, each cusp in $C_d^{(N)}$ has width N/d. The same is true when N = 4, except that the cusp 1/2 has width 1. 2.3.1

Proof Take $N \neq 4$. Suppose $\zeta = {X \choose y} \in \mathbb{Q}^*$ is (a representative of) a cusp of $\Gamma_1(N)$ lying in (identified with) a member of $C_d^{(N)}$. Then $\gcd(y,N)=d$. Choose a matrix $T={X \choose y} = SL_2(\mathbb{Z})$ carrying ∞ to ζ . Suppose

$$TU^{k}T^{-1} = \begin{pmatrix} \varepsilon - kxy & kx^{2} \\ -ky^{2} & \varepsilon + kxy \end{pmatrix}$$

 $(\epsilon = \pm 1)$ lies in $\Gamma_1(N)$. Then $N|ky^2$ and N|kxy, which means (since x and y are coprime) that N|ky. It follows that N/d|k. On the other hand, it is clear that $TU^{n/d}T^{-1} \in \Gamma_1(N).$ The exceptional case when N=4 is easily verified.

2.4 The Dedekind eta function, η, is defined on IH by

$$\eta(\tau) := \exp(\pi i \tau / 12) \prod_{n=1}^{\infty} (1 - \exp(2\pi i n \tau))$$
$$= q^{1/24}(q)_{\infty},$$

where $q = \exp(2\pi i \tau)$. If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(2)$, we have [Kno, thm 2.2, p. 51]

$$\eta(A\tau) = e(A;\tau)\eta(\tau) = \epsilon(A)\sqrt{c\tau+d} \eta(\tau),$$
 2.4.0

for $\tau \in IH$, where $\epsilon(A)$ is a certain 24th. root of unity (independent of τ). To give the value of $\epsilon(A)$, define the symbols

$$\left(\frac{c}{d}\right)^* := \left(\frac{c}{|d|}\right)$$

$$\left(\frac{c}{d}\right)_{*} = \left(\frac{c}{|d|}\right)$$
, if $c \ge 0$ or $d > 0$, $-\left(\frac{c}{|d|}\right)$ otherwise

for coprime integers c and d, with d odd, where $\left(\frac{\bullet}{\bullet}\right)$ is the **Legendre-Jacobi** symbol **[H+W. §6.5]**. Then

$$\varepsilon(A) = \begin{cases} \left(\frac{d}{c}\right)^* \exp(\pi i/12) \left((a+d)c + bd(1-c^2) - 3c\right), & c \text{ odd,} \\ \left(\frac{c}{d}\right)_* \exp(\pi i/12) \left((a+d)c + bd(1-c^2) + 3d(1-c) - 3\right), & d \text{ odd.} \end{cases}$$
2.4.1

(taking the value of the square root with $-\pi/2 \le \arg \sqrt{\cot + d} < \pi/2$).

$$(f|_{\mathbf{k}} A)(\tau) := e(A; \tau)^{-\mathbf{k}} f(A\tau).$$

It follows easily from 2.4.0 that, if B is also in $SL_2(\mathbf{Z})$,

$$(f|_{k}AB) = ((f|_{k}A)|_{k}B)$$
 2.4.2

2.4.0 also shows that, with $U := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,

$$e(U^h; \tau) = u$$
, a 24th root of unity. 2.4.3

(in fact, from **2.4.1**, $u = \exp(\pi i h/12)$).

Now suppose Γ is a subgroup of $SL_2(\mathbf{Z})$, of finite index and that f is a function meromorphic on IH that also satisfies

$$(f|_k A) = \chi_f(A)f$$
 2.4.4

for every $A \in \Gamma$, where each $\chi_f(A)$ is a root of unity. (If 2.4.4 holds, then, as the notation suggests, χ_f is a character on Γ . I leave the proof as an easy exercise for the reader.) Suppose ζ is a cusp of Γ of width h and take $T \in SL_2(\mathbf{Z})$ with $T_\infty = \zeta$. Then

If we now set $u^k \chi_{f}(V) = \exp(2\pi i r)$ (0 \le r < 1) and define the function g by $g(\tau) := \exp(-2\pi i r \tau/h)(f|_{k}T)(\tau),$

2.4.5 shows that g is invariant under $\tau \mapsto \tau + h$. Now suppose g is holomorphic in a region im $\tau > \delta > 0$ (equivalently, f is holomorphic inside a horocycle at ζ). Then g has a Fourier series expansion

$$g(\tau) = \sum_{n} a_n q_h^n$$
,

where $q_h = \exp(2\pi i \tau/h)$, and ::

$$(\mathbf{f}|_{\mathbf{k}}T)(\tau) = q_{\mathbf{h}}^{\mathbf{r}} \sum_{\mathbf{n}} a_{\mathbf{n}} q_{\mathbf{h}}^{\mathbf{n}}.$$
 2.4.6

f is meromorphic at the cusp ζ if f is holomorphic inside a horocycle at ζ and if the series in 2.4.6 is finite on the left. If this is so and if m is the smallest integer with $a_m \neq 0$, the order of f at ζ (with respect to Γ) is

$$\operatorname{ord}(f, \zeta, \Gamma) := r + m.$$

This number is independent of the choice of T with $T_{\infty} = \infty$ (a different choice merely multiplies 2.4.6 by a root of 1) and furthermore

$$\operatorname{ord}(\xi, \xi, \Gamma) = \operatorname{ord}(\xi, \zeta, \Gamma),$$

when ζ and ξ are Γ -equivalent. So we can speak of the order of f at a cusp of Γ .

I now define a modular form of weight k/2 on Γ to be a function that satisfies 2.4.4 and is meromorphic on IH and at the cusps. So η is a modular form of weight 1/2 on $SL_2(\mathbf{Z})$ ($SL_2(\mathbf{Z})$ has just one cusp at ∞ and η is visibly meromorphic there). The following result, a simple corollary of a theorem due to Rankin [Ran, thm. 4.1.4] is the linch-pin of my proofs of theorems D, E and H:

Suppose Γ is a subgroup of $SL_2(\mathbf{Z})$ of index μ and that Γ contains -I. If f is a modular form of weight r on Γ that is holomorphic on \mathbb{H} and not identically zero then,

$$\sum_{\alpha \in \Gamma \setminus \mathbb{Q}^*} \operatorname{ord}(f, \alpha, \Gamma) \leq \mu r/12.$$

2.5 For positive integers n, define functions $\eta(n) = \eta(n; \tau)$ on IH by:

$$\eta(n;\tau) := \eta(n\tau) = \eta(L_n\tau),$$

where $L_n := \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}$. For $A \in \Gamma_0(n)$, define

$$A^{(n)} := L_n A L_n^{-1} = \begin{pmatrix} a & nb \\ c/n & d \end{pmatrix} \in SL_2(\mathbf{Z}).$$

Now, for $A \in \Gamma_0(n)$,

$$\eta(n;A\tau) \ = \ \eta(L_nA\tau) \ = \ \eta(A^{(n)}L_n\tau) \ = \ \varepsilon(A^{(n)})\sqrt{c\tau+d} \ \eta(n;\tau),$$

SO

$$(\eta(n)|_{1}A) = o(\eta(n); A)\eta(n)$$

where

$$v(\eta(n); A) = \varepsilon(A^{(n)})\varepsilon(A)^{-1}$$
2.5.0

and $\eta(n)$ is a modular form of weight 1/2 on $\Gamma_0(n)$

Rademacher [Rad, 81.2, p.181] defines functions

$$\Theta_{\mu,\nu}(\nu \mid \tau) := \sum_{n=-\infty}^{\infty} (-)^{\nu n} \exp((n+\mu/2)^2 \pi i \tau) \exp(2\pi i (n+\mu/2) \nu)$$

and shows that

$$\Theta_{1,1}(v \mid A\tau) = \varepsilon(A)^{3} \exp\left(\pi i c v^{2}(c\tau+d)\right) \sqrt{c\tau+d} \Theta_{1,1}\left(v(c\tau+d) \mid \tau\right)$$

$$\Theta_{1,0}(v \mid A\tau) = i^{1-d} \exp(\pi i c d/4)\varepsilon(A)^{3} \exp\left(\pi i c v^{2}(c\tau+d)\right)$$

$$\times \sqrt{c\tau+d} \Theta_{1-c,1-d}\left(v(c\tau+d) \mid \tau\right)$$
2.5.2

(Here, Rademacher has $\sqrt{(c\tau+d)/i}$ where I have $\sqrt{c\tau+d}$, so his expressions look a little different.)

Note the obvious

$$\Theta_{\mu+2,\nu}(v\mid\tau) = (-)^{\nu}\Theta_{\mu,\nu}(v\mid\tau), \quad \Theta_{\mu,\nu+2}(v\mid\tau) = \Theta_{\mu,\nu}(v\mid\tau)$$

(so that really there are only four functions $\Theta_{\mu,\nu}$) and

$$\Theta_{1,1}(v+1 \mid \tau) = -\Theta_{1,1}(v \mid \tau), \qquad \Theta_{1,0}(v+1 \mid \tau) = -\Theta_{1,0}(v \mid \tau).$$
 2.5.3

For integers n > 0 and k, define functions $s_n(k)$ and $t_n(k)$ on IH by

$$s_{n}(k;\tau) \coloneqq -\exp(\pi i k^{2} \tau/n) \Theta_{1,1}(k\tau \mid n\tau) = q^{(n/2-k)^{2}/2n} [q^{k};q^{n}]_{\infty}(q^{n})_{\infty}$$

$$t_{n}(k;\tau) \coloneqq \exp(\pi i k^{2} \tau/n) \Theta_{1,0}(k\tau \mid n\tau) = q^{(n/2-k)^{2}/2n} [-q^{k};q^{n}]_{\infty}(q^{n})_{\infty}$$

These functions $s_n(k)$ and $t_n(k)$ and the fact that, as I shall soon show, they are modular forms on $\Gamma_1(n)$ and $\Gamma_1(2n)$ respectively must be well known, but I've found no reference to them in the published literature. I got the idea from [Gar2'], in which the author introduces certain special cases of these functions (see §0.5).

Note that

$$s_n(-k) = -s_n(k) = s_n(k+n)$$
 2.5.4

$$t_n(-k) = t_n(k) = t_n(k+n)$$
 2.5.5

and that

$$\exp(\pi i k^2 \tau/n) \Theta_{0,0}(k\tau \mid n\tau) = t_n(n/2 - k; \tau)$$
 2.5.6

For a function f of x of the form $f(x) = x^r(a_0 + a_1x + a_2x + ...)$ with $a_0 \neq 0$ and r rational, define: ord f = r. Now, writing $\lambda_n(k)$ for the least nonnegative residue of k modulo n, 2.5.4 and 2.5.5 and the definitions of these functions show that

ord s_n(k) =
$$(n/2 - \lambda_n(k))^2/2n$$
 = ord t_n(k) 2.5.7

Now, if A $\in \Gamma_0(n)$, we have, with the help of 2.5.1,

$$\begin{split} s_n(k;A\tau) &= -\exp(\pi i k^2 A \tau/n) \Theta_{1,1}(kA\tau \mid L_n A \tau) \\ &= -\exp(\pi i k^2 A \tau/n) \Theta_{1,1}(kA\tau \mid A^{(n)} L_n \tau) \\ &= -\epsilon (A_n)^3 \exp(\pi i k^2 A \tau/n) \exp(\pi i (kA\tau)^2 (c/n) (c\tau + d)) \sqrt{c\tau + d} \\ &\qquad \qquad \qquad \times \Theta_{1,1} \Big(kA\tau (c\tau + d) \mid L_n \tau\Big) \\ &= -\epsilon (A_n)^3 \exp\Big(\pi i (k^2 A \tau/n) (1 + c(a\tau + b)) \sqrt{c\tau + d} \Theta_{1,1} \Big(k(a\tau + b) \mid n\tau\Big) \\ &= -\epsilon (A_n)^3 \exp\Big(\pi i k^2 a (a\tau + b) / n\Big) \sqrt{c\tau + d} (-)^{kb} \Theta_{1,1}(ka\tau \mid n\tau) \end{split}$$

(where I've used 2.5.3 and the fact that 1 + bc = ad)

=
$$(-)^{kb} \epsilon(A^{(n)})^3 \exp(\pi i k^2 ab/n) \sqrt{c\tau + d} s_n(ak; \tau)$$
. 2.5.8

Thus, for $A \in \Gamma_0(n)$,

$$\left(s_{n}(k) \mid_{1} A\right) = o\left(s_{n}(k); A\right) s_{n}(ak), \qquad 2.5.9$$

where

$$v(s_n(k); A) = (-)^{kb} exp(\pi i k^2 ab/n) \epsilon (A^{(n)})^3 \epsilon (A)^{-1}$$
. 2.5.10

Working in the same way with 2.5.2, we have, for A $\in \Gamma_0(n)$, that

$$\begin{aligned} \left(t_{n}(k) \mid_{1} A\right) &= o(t_{n}(k); A)t_{n}(ak), & \text{if } A \in \Gamma_{0}(2n) \\ &= o(t_{n}(k); A)t_{n}(n/2 - ak), & \text{if } A \in \Gamma_{0}(2n) \text{ and } n \text{ is even.} \end{aligned}$$
2.5.11

where

$$v(t_n(k); A) = (-)^{kb} i^{1-d} \exp(\pi i c d/4n) \exp(\pi i k^2 a b/n) \epsilon(A^{(n)})^3 \epsilon(A)^{-1}$$
 2.5.12

2.5.4, 2.5.5, 2.5.9 and 2.5.11 show that $s_n(k)$ and $t_n(k)$ are modular forms of weight 1/2 on $\Gamma_1(n)$, respectively $\Gamma_1(2n)$ (that these functions are meromorphic at the cusps will be shown in the next section).

For an α -tuple $i = (i_0, ..., i_{\alpha-1})$ with integral entries, set len $i = \alpha$ and define

$$s_n(i) = \prod_{r=0}^{\alpha-1} s_n(i_r).$$

Define $t_n(i)$ and $\eta(i)$ in the same way and, for even n, define

$$t'_n(i) = \prod_{r=0}^{\alpha-1} t_n(n/2 - i_r).$$

In sections 3.1-3 I shall be dealing with functions of the form

$$\mathcal{K}(\mathbf{m}) = \frac{s_n(\mathbf{u})t_n(\mathbf{v})\eta(\mathbf{b})}{s_n(\mathbf{x})t_n(\mathbf{y})\eta(\mathbf{c})}$$
 2.5.13

in which \mathbf{u} , \mathbf{v} , \mathbf{x} and \mathbf{y} are linearly dependent on the parameters \mathbf{m} and in which entries of \mathbf{b} and of \mathbf{c} (which will be independent of \mathbf{m}) are positive integers dividing \mathbf{n} . Set

$$w = len u + len v + len b - len x - len y - len c.$$
 2.5.14

Then, for $A \in \Gamma_0(n)$ (n even), we have, by 2.5.9 and 2.5.11

$$(\mathcal{X}(\mathbf{m}) \mid_{\mathbf{w}} \mathbf{A}) = \mathbf{v}(\mathcal{X}(\mathbf{m}); \mathbf{A}) \mathcal{X}(\mathbf{am}), \text{ if } \mathbf{A} \in \Gamma_{\mathbf{0}}(2\mathbf{n}),$$
$$= \mathbf{v}(\mathcal{X}(\mathbf{m}); \mathbf{A}) \mathcal{X}(\mathbf{am}), \text{ if } \mathbf{A} \in \Gamma_{\mathbf{0}}(2\mathbf{n}),$$
$$\mathbf{2.5.15}$$

where

$$o(\mathcal{X}(\mathbf{m}); A)) = o(s_n(\mathbf{u}); A)o(t_n(\mathbf{v}); A)o(\eta(\mathbf{b}); A)$$

$$\times o(s_n(\mathbf{x}); A)^{-1}o(t_n(\mathbf{y}); A)^{-1}o(\eta(\mathbf{b}); A)^{-1}$$

and X' (am) is X(am), with t'_n for t_n .

I shall call a function like $\mathcal{X}(m)$ at 2.5.13 or $\mathcal{X}(m)$ a theta product of index n, whose weight is w/2 (w as defined at 2.5.14). If $\mathcal{X}(m)$ and $\mathcal{Y}(m)$ are theta products of the same weight and same index (n, say), and if $v(\mathcal{X}(m); A) =$

 $v(\mathcal{Y}(m); A)$ for all $A \in \Gamma_0(2n)$, I shall say that $\mathcal{X}(m)$ and $\mathcal{Y}(m)$ are compatible. Suppose $\mathcal{X}(m)$ and $\mathcal{Y}(m)$ are compatible. Then $\mathcal{Z}(m) = \mathcal{X}(m) + \mathcal{Y}(m)$ transforms according to

$$(2(m)|_{W}A) = v(2(m);A)2(am),$$

for every $A \in \Gamma_0(2n)$, where $v(\mathcal{A}(m); A) = v(\mathcal{K}(m); A)$.

Define the sign of the theta product $\chi(m)$ to be (-)lenu+lenx and, for numbers $a = \pm 1 \mod n$, define $\chi_n(a) = \pm 1$ by:

$$\chi_{n}(a) = a \mod n.$$
 2.5.16

Then I say that that theta products $\mathcal{K}(m)$ and $\mathcal{Y}(m)$ are coherent if they are compatible, when they have the same sign, and otherwise

$$v(X(m);A) = \chi_{2n}(a)v(Y(m);A).$$

for every $A \in \Gamma_1(2n)$. It is plain that a sum of mutually coherent theta products of index n and weight w/2 is a modular form of weight w/2 on $\Gamma_1(2n)$.

2.6 In this section, I calculate the orders of the forms $\eta(r)$, for $r \mid n$, $s_n(k)$ and $t_n(k)$ at the various cusps of $\Gamma_1(2n)$.

Suppose that $\zeta = x/y \in \mathbb{Q}^*$ with $\gcd(y, 2n) = \delta$, so ζ represents a cusp in $C_{\delta}^{(2n)}$. Take a matrix $T = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in SL_2(\mathbb{Z})$ that carries ∞ to ζ . Suppose rin and set $\delta' = \gcd(r, y)$, $r' = r/\delta'$, $y' = y/\delta'$. Let $T^* \coloneqq \begin{pmatrix} r'x \\ y' \end{pmatrix} \in SL_2(\mathbb{Z})$. Then $T^{*-1}L_T = V \coloneqq \begin{pmatrix} \delta' \\ 0 \end{pmatrix},$

where $\delta' = gcd(y, r)$, and ...

$$\eta(r; T\tau) = \eta(T^*V\tau) = \varepsilon(T^*)\sqrt{(y\tau+z)/r'} \eta(V\tau)$$

and (since, by 2.3.1, cusps in $C_{\delta}^{(2n)}$ have width $2n/\delta$) it follows that

$$\operatorname{ord}(\eta(r), \zeta, \Gamma_1(n)) = n\delta^2/12r\delta.$$
 2.6.0

Now calculations similar to those preceding 2.5.8 show that

$$s_{n}(k; T\tau) = u\sqrt{(y\tau+z)/n'} \exp\left(\pi i k^{2} x(x\tau+*)/n\right) \Theta_{1,1}\left(k(x\tau+*)/n' |(\delta'^{2}\tau+*)/n\right)$$

where $u \in \mathcal{U}$, the *'s are (unimportant) integers and δ' , n' (and y' below) are as above, with n for r. It follows from 2.5.7 and 2.3.1 that

$$\operatorname{ord}(s_{n}(k), \zeta, \Gamma_{1}(2n)) = \operatorname{ord} s_{\delta'2/n}(kx/n') \times (2n/\delta)$$
$$= (\delta'/2 - \lambda)^{2}/\delta,$$
2.6.1

where $\lambda = \lambda_{\delta}$ (kx) is the least nonnegative residue of kx mod δ .

In the same way, we have

$$t_n(k;T\tau) = u\sqrt{(y\tau+z)/n'}\exp\Big(\pi i k^2 x(x\tau+z)/r\Big)\Theta_{1-y',1-z'}\Big(k(x\tau+z)/n'|(\delta'^2\tau+*)/n\Big),$$

We can suppose z' is odd and then

ord(
$$t_n(k)$$
, ζ , $\Gamma_1(2n) = \text{ord } t_{\delta'2/n}(kx/n')$
= $(\delta'/2 - \lambda)^2/\delta$ if y' is even,
= $\text{ord } t_{\delta'2/n}(\delta'^2/2n - kx/n')$
= μ^2/δ , if y' is odd, 2.6.2

where λ is as above and μ satisfies $kx \equiv \mu \mod \delta'$ and $-\delta'/2 < \mu \le \delta'/2$.