# # Chapter 19. Glossary of Commands # # # # MAPLE SESSION 1 # > (sin@cos)(x); # # # MAPLE SESSION 2 # > int(1/(1+x^3),x); diff(%,x); # # # MAPLE SESSION 3 # > with(plots): animate(sin(x*t),x=-10..10,t=1..2); # # # MAPLE SESSION 4 # > with(plots): animate3d(cos(x+t*y),x=0..Pi,y=-Pi..Pi,t=1..2); # # # MAPLE SESSION 5 # > S:={y=-1,x=2}: assign(%); x,y; # # # MAPLE SESSION 6 # > asympt(GAMMA(x)^2/GAMMA(2*x)*4^x/sqrt(Pi),x,3); # # # MAPLE SESSION 7 # > with(codegen): F:=exp((1+x+x^2)^3); C(F); # # # MAPLE SESSION 8 # > with(student): Int(x^2/sqrt(1-x^6),x): > changevar(u=x^3,%,u); # # # MAPLE SESSION 9 # > expand((1+x+x^2)^10): coeff(%,x,10); # # # MAPLE SESSION 10 # > (x+1)^3*y-(y+1)^3*x: collect(%,x); # # # MAPLE SESSION 11 # > combine(exp(2*x)^3*exp(y)); # # # MAPLE SESSION 12 # > with(plots): contourplot(sin(x*y),x=0..Pi, y=0..Pi); # # # MAPLE SESSION 13 # > series(sqrt(1-x),x,4): convert(%,polynom); # # # MAPLE SESSION 14 # > degree((x+y)^6*(y-x^2)^10,x); # # # MAPLE SESSION 15 # > denom((x*sin(x)-cos(x))/x^2); # # # MAPLE SESSION 16 # > with(linalg): A:=matrix(4,4,(i,j)->x^(i*j)); > det(A); factor(%); # # # MAPLE SESSION 17 # > diff(sin(x^2*y),x); # # # MAPLE SESSION 18 # > with(plots): P1:=plot(sin(x),x=0..Pi,style=POINT): > P2:=plot(x,x=0..Pi): display([P1,P2]); # # # MAPLE SESSION 19 # > dsolve(diff(y(x),x$2)-y(x)=sin(x), y(x)); # # # MAPLE SESSION 20 # > evalf(exp(-Pi),20); # # # MAPLE SESSION 21 # > expand((2*x+1)*(3*x-5)); # # # MAPLE SESSION 22 # > factor(x^3+x^2*y-x*y^2-y^3); # # # MAPLE SESSION 23 # > floor(-11/3); # # # MAPLE SESSION 24 # > with(codegen): F:=exp((1+x+x^2)^3); fortran(F); # # # MAPLE SESSION 25 # > fsolve(cos(x)=x/2,x); # # # MAPLE SESSION 26 # > with(linalg): A:=matrix([[1,2,3,4],[2,3,4,5],[5,6,7,8]]); > gausselim(A); # # # MAPLE SESSION 27 # > ifactor(999); # # # MAPLE SESSION 28 # > with(plots): > implicitplot((x^2)^(1/3)+(y^2)^(1/3)=1, x=-1..1, y=-1..1); # # # MAPLE SESSION 29 # > with(plots): > implicitplot3d(x^2+y^2+z^2=1,x=-1..1,y=-1..1,z=-1..1); # # # MAPLE SESSION 30 # > int(x^2/sqrt(1+x^2),x=1..sqrt(3)); # # # MAPLE SESSION 31 # > with(linalg): A:=matrix(3,3,(i,j)->1/2^(i*j)); inverse(A); # # # MAPLE SESSION 32 # > isolve({x^3+x*y=2,x^2+y^2=2},{x,y}); # # # MAPLE SESSION 33 # > with(linalg): A:=matrix(5,5,(i,j)->7^(i+j)); kernel(A); # # # MAPLE SESSION 34 # > latex(Int(1/x,x)); # # # MAPLE SESSION 35 # > e:=x^2+y^2=r^2: lhs(e); # # # MAPLE SESSION 36 # > limit((cos(x)-1)/x^2,x=0); # # # MAPLE SESSION 37 # > L := [seq(10^i-1,i=1..6)]; map(ifactor,L); # # # MAPLE SESSION 38 # > A:=matrix(4,4,(i,j)->x^(i+j)); # # # MAPLE SESSION 39 # > modp(13*19^5,34); # # # MAPLE SESSION 40 # > normal((1-q^7)*(1-q^6)/(1-q^2)/(1-q)); # # # MAPLE SESSION 41 # > numer((x*sin(x)-cos(x))/x^2); # # # MAPLE SESSION 42 # > w:=x^3+x*y+y: op(w); op(2,w); # # # MAPLE SESSION 43 # > plot(x*sin(x),x=0..Pi); # # # MAPLE SESSION 44 # > plot3d(sin(x*y),x=0..Pi,y=0..Pi); # # # MAPLE SESSION 45 # > with(plots): polarplot(sin(t),t=0..2*Pi); # # # MAPLE SESSION 46 # > product((a+i-1),i=1..6); # # # MAPLE SESSION 47 # > radsimp(sqrt(3)*sqrt(15)); # # # MAPLE SESSION 48 # > R9 := rand(0..9); R9(); R9(); R9(); # # # MAPLE SESSION 49 # > (1+sqrt(2))/(sqrt(2)-sqrt(3)): rationalize(%); # # # MAPLE SESSION 50 # > e:=x^2+y^2=r^2: rhs(e); # # # MAPLE SESSION 51 # > seq(x+(y-x)*i/4,i=0..4); # # # MAPLE SESSION 52 # > simplify((sin(x)+cos(x))^2); # # # MAPLE SESSION 53 # > solve({x^2+x*y-y=17,y^2-x-y=9},{x,y}); # # # MAPLE SESSION 54 # > with(plots): spacecurve([sin(t),cos(t),t,t=0..2*Pi]); # # # MAPLE SESSION 55 # > t^2+t+1: subs(t=1+sqrt(5),%); # # # MAPLE SESSION 56 # > sum(i^2,i=1..100); # # # MAPLE SESSION 57 # > taylor(tan(x),x=0,10); # # # MAPLE SESSION 58 # > R := (1-q^6)*(1-q^5)*(1-q^4)/(1-q)/(1-q^2)/(1-q^3); > P := normal(R); type(P, polynom); # # # MAPLE SESSION 59 # > Int(1/x,x): value(%); # # # MAPLE SESSION 60 # > F:=expand((1+x+x^2)^10): f:=unapply(F,x); f(x); # # # MAPLE SESSION 61 # > L := [seq(i,i=1..10)]; whattype(L);