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INTRODUCTION

The work in this thesis follows that done by Atkin and
Swinnerton-Dyer [ 3 ], and Atkin and Hussain [2 ]. Constant
reference 1s made to these papers, which'we therefore denote
by (ASD) and (AH) respectively. All unspecified notation is

that of (ASD) together with the following additions.

We write
w
f(z) = TT (1 - zr).
.r=1
Then
| (qz1)/2. o
f(y) = P(0) qTT) " P(a),’ SN
a=t

£(ys)3= P(0),

[0 0]
1/§(x) = £ p{a) x,
n=o

taking p(0) to be unity. {The above notation, with g = 11, is
used in (AH).] Occasionally we need the congruencer

faly) & £(ya) ' (mod.q),.
which follows from (1 - yr)t = 1 = yar, modulo q. The enclosure
of an ordered product of a number of variables in square brackets
denotes a summation over all the gljjgggni terms obtainable by

permuting the variablos-cyclicallf in a typical ‘term. In such a

‘\,m*’i\;\lgm
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product one or more of the vafi?ﬁles may have degree zero.
Square brackets, then, replace capital sigma (which is rather
an overworked symbol) as Used on page 186 of (AH). 1t should

be pointed out that. in such a c¢yclic sum the number of terms

Yl

is not'necessarily the same as the number of variables. For
example the‘following cyclic sum involving eight variables
contains only two‘termsl
[a, a8y 2y a,) .= a, a, a, a, + ag a, a, 84.

Tﬁe syméol <b, ¢, d> is used to denote the following relation,
proved in (ASD) (Lemma 4)3

Pn(bJP(e+d)p(c-d)-p-(c)P(b+d)P(b-d)+ye-apa(d)P(b+c)p(b-c) =0
if none of b, ¢, a, btcyctd, bzt d; is divisible by gq.
Similarly <b, ¢, d, e> denotes the relation
P(b+e)P(b-e)P(c+d)P(c—d)-P(b+d)Pb-d)P(c+e)P(c-e)+

+yo =t P(b+¢ )P(b-c)P(d+e)P(d=e) = O

(none of b + ¢, b i.d, btey,ctd, cte, d+e, divisible
by q). The latter'relation may barpfoved by the method used
in (ASD) for the former (which is in fact <b, ¢, d, 0>), but is
however given, in essence, in [14 ] {equation (LVII,), page 1604.
We note that elther relation 1is homogeneous in the P(;).

The thesis ie comprised of five Parts, which, are to a large

. . r,



-1ii-

.

extent independent of one another ana may in fact be read
Séparately. The contents of these Parts are as follows,

Part 1, throughout which q = 13, is divided into four
sections (8§ 1 to 4).. In 8 1 the Process employed in 8§ 119
of (AH) to express g) P(11n + 6)}yr 1n terms of simple
functions of y ié u2e3 to evaluate 2 P(13n + 6)ys in 4
form analogous tq Ramanujan's resul::Ofor 9 =5 and q = 73
more elegance of method s possiblie in the case of qg=13. A
secondary consequence of this process is the determination of
what is in fact the simplest, non-homogeneous relation between
the P{a) for q = 13 {equation (1.17)}.* § 2 contains the
evaluation of t; p(13n + s)y», for all Qalues of s(s = 0 to 12)

n=o
éxcept s = 6, in a form which, while more complicated than for

s = 6, involves only simple functions. In actual fact two

such forms are given but these are eéssentjally equivalent.

Simple congruences for (§ p(13n + s)yl s =0, 1, 2, seey 12,
n=o

such as are given in (ASD) for q = 5, q = 7y, and g = 11, are

derived iw 8 3 from the results of 8 2. A complete account

*Neither of the two results of 8§ 1 1g new (see text),
although such an elementary, algebraic method has no't, Previously

been employed, This section is due in its entirety to Dr. Atkin,
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j'c>f Dyson's rank functions for the cases q = 5%, q= 7, and g = 11,
is given in (ASD) and (AH)}. In particular the values of the
Ty, (d) are obtained for each of these q. We find the values of the
r, . (d) for g = 13 in § 4, by a method akin to that used for q = 11.
They are of a somewhat different form than for g = 11 and rather
more complicated, but are, on the other hénd, all of the same nature,
similar to that of tﬁe expressions given by Theorem 2.2 for
Iﬁ p(13n + s)y*» (s # 6). In the case of q = 11, the r,,(6) and
:;: remaining r,,(d) have values not of the same nature. We note
here that in Theorem 4.1, which gives the r, (d) for q = 13, p(0)
must be taken to be zero {see (ASD), page 86} . It.is of interest
to observe that there is a set of linear-congruencé relations,
(4.41), between the r o(d) for a given value of d when q = 13,
corresponding to (AH), equations (9.16), for g = 11.

Parts 2 (8 5) and 3(§ 6) contain.the evaluations of

(E p(17n + 5)y*» and ‘% p(19n + 4)y» respectively, again by the
:;:hod used in (AH), e § 11, for tﬁ p(11n + 6)y». In each case
both the process and the result aren;gre elegant than for § = 11,
but less so than for g = 13. Simple congruences for
% p(17n + 5)y® and ‘E p{19n + 4)y» are derived from these results.

n=o n=o
The apparently simplest, non~homogeneous relation

T PR ————a -
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 between the P(a) for q = 17 and q = 19 is embodied in
- Theozem 5.1 (third equation) and Theorem 6.1 (fifth equation)
re;pectively. .
In part 4 (8§ 7) an alternative expression for

® p(11n + 6)ys 15 derived from that given in (AH)

n=o

iequation (11.9)}, and we then conjecture similar expressiéns
for g’p(11n + s)y» (s = 0 to 10) when s # 6. {Such similarity
doesn;zt obviously exist in the case of g = 13.) We make no
attempt to prove our conjecture, which is almost certainly valld,
in this thesis, The form of the expressions concerned is
quite different froﬁ either of the forms obtﬁined for q = 13 in
§ 2.% It is worthwhile to note that equation (7.1) is, in

) effect, what appears to be the simplest, non~homogeneous

relation between the P(a) fof'q = 11, and to pause at this point

in order to state together'the simplest relations for all prime

.q as far as g = 19. The relations for q = 5 and § = 7 follow

immediately from [7] (KXolberg), equations (4.15) and (5.20)

- respectively, if, for both q = 5 and g = 7, the g, of this paper

' m
* Kolberg has obtained certaln expressions for § p(Sn+s)ys,
' n=o

s=0, 1, 2, 3, {[7], equations (4.17) to (4.20)}, and

© - :

L p(7n+s)yn, 8=0, 1, 2, 3, 4,.6, {[7]) equations (5.23) to (%.27),
n=o '

and (5.29)}. The former decomposition is due originally to

Ramanujan Ez].

t This relation appears in [12] (Ramanujan).




q=1 '
{defined by f(x) = ¢ 9, x*y 9, = g,(y)} are expressed in terms

‘ s=o0
of the P(a) by menns of/(ASD), Lemma 6. We have, remembering
that f(y)/f{ye) = 11‘ P(a),

1

a=
5t f8(y}/f8(ys) = P8(2)/P8(1) ~ 11y = yoPe(1)/pPs(2),

'q

q=
= 7s £ (y)/f¢(y?) + By = PR(2)P(3)/Pa(1) + yPa(3)P(1)/P3(2)-
- yoP*(1)P(2)/P3(3),
9= 111 f9(y)/f3(y11) = Pa(5)P(4) ~ y2pP2(1)P(3) - yP® (2)p(5)-

- yP2(4)P(1) =~ yP*(3)P(2),

P(2)P(5)P(6)/P(1)P(3)P(4) - 3y -
-y®*P(1)P(3)P(4)/P(2)P(5)P(6),
P(2)P(B)P(6)P(7) - yP(6)P(7)P{1)P(4) -
- yRP(1)P(4)P(3)P(5) - yP(3)P(3)P(2)P(8), ,

g = 131 f2{y)/fe(yra)

L
#

17 fe(y)/fa (y17)

L
]

191 £{y)/(yr®) = 1/P(2)P(3)P(3) - y/P(1)P(7)P(8) =
| -ya/P(4)P{6)P(9).
The results for g = 11.‘q = 17, and q = 19, seem to be new.
Parts 1 to 4 involve only eiementary algebra, In Part 5
(§ 8) recourse is made to the theory of the elliptic modular
functions. We show tha;lkhoro exists, for g = 13, a polynomial
relation botweanfxf'(y)/f*(x) and x’f(ylﬁ)/f(x). of degrees at

‘u
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most 7 and at most 13 in these variables respectively,*

Then, workiné for convenience in terms of y“ifa(y)/fa(y1a)

and x“7£(x)/f(y1%) as new varlables, we show by elementary
algébra that the relation (of degrees at most 7 and at most

13 in the new variables respectively™ 1g irreducible and that
the coefficients involved have, 1n-pairs. a certain symmetry,
The relation is evaluated (in terms of the new variables) by
comparing coefficients of powérs of x in the expansions of

the quantities involved, use being made of the symmetry
mentioned above.to facilitate the calculation. The resultrcould
also be obt#ined by using the expressions for x=7£(x)/f(yr2)

and y=ife(y)/fa(y13) ip terme of the P(a) {equations (1.1) and
(1.17)}, and the homogeneous relations between thé.P(a) previously' fie

described in this Introduction, but thisg would be comparatively

tedious.¢

* It 1s in fact shown that there 1s a corresponding result or
'modular equation" for all prime q, in which the degree of the
function corresponding to x? f(y139/f(x) is at most g In the cases
qQ=25% q=17, and q = 13, and i{s at most a greater integral multiple
of q otherwise., We are indebted to Dr. Morris Newman of the
National Bureau of Standards, Washington, D.C., who communicated

the proof to us. The relations for q = 5 and q = 7 have been
obtained, in essence, by Watson {(5], page 105, formula (3.2), °

and page 118, (5.2)}, although the formér is due originally to

Weber fﬁe], page 256, formula (27)].

i

** The degrees are in fact 7 and 13,

t T hope to publish in the near future firstly a paper on the
work of Part 5 and secondly, in conjunction with Dr. Atkin, a
paper "Some properties of the coefficients of modular forms
modulo powers of 13", depending upon the first.
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We take this opportunity to observe that it would
probably be possible to use the theory of modular functidns

e
to obtain expressions for § p{17n + 5)y* and
n=o :

% p{19n + 4)y» more easily than in thie thesis, and indeed
Egoobtain corresponding results for still greater values of
q {this would otherwise be a very tedious matter), but that
a further development of the theory would be needed.

Tabulated values of p(n) (as far as n = 1000), needed at
various points in the thesis, ar§ to be found in [5 ]. The
table of the coefficients of powers of f(x) computed by
Newman [11] is also required.

Finally, we note that a table of notation {not including
that of (ASD) or (AH)} and a list of references are glven at
the end of the thesis. Some letters occur more than once in
the text in different senses (this is purposeful where analogous

proc&sses are carrlied out for differant values of q}, but the

contexts are so different as to give no danger of confusion;
. [ ’ .




PART 1
q = 13 throughout thls Part

1; We write
« = - x"2p(2)/P(1), B = - x"®p(6)/P(3), 7= x'2P(5)/P(4),
Ttz = x°P(3)/P(5), B'= x"'P(4)/P(2), #= x Op(1)/P(6)3
then by (ASD), Lemma 6 (with q = 13) we have

(1.1) x*”’f(x)/f(y‘:’) = a + P 4 THal + P+ A+ 1.

In (1.1) we replace x by w x where w_ (r 1 to 13) are the

thirteenth roots of unity, and multiply together the thirteen

reéulting equations, obtalning:
: 13
~7,.14 14, 13, _ -5 - -2
(1.2) y £ 7 (y)/f (y 7) = lil(uur HBlu T+ T,

5 -6
+a 'Nr"’BUr' +

- Now as w,. runs through the thirteenth roots of unity so does
u;a, $0 that the product on the right-hand side of (1.2) is

equal to

13
_ 15 =5, .. =7 -2 5, . -6
Jj;(uur Pl T4 Bu e tw SHPult Tlw T+l),
[} -

and is thus unchanged ifru,-ﬂ', ¥, a', B; and %', are inter-

changed cyclically. The product is thus a linear combination
11 12 13 14 15' 16

of terms [a B’ ¥° a p ¥' °] where i, to i, are non-

negative integers, and considering the left-hand side of (1}2)

such terms as occur can only involve x in terms of y = x13.
i i, 0 1 -1 i i .
Thus if a 1 p! 27 y3 404 B S e 6 (or any othér term of
i, 4, 4y i, 4. i, . ! . :
{a B ¥¥ o p ¥'.°]) occurs we must have .
(1.3) - -511 - 712 - 213 + 514 - 615 + 1516 = O g (mod. 13} °

15
rur +1l
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(interchanging 11, 12. 13. 14, 15, and ?6' crokic&bly-qtv;s the
same congruence).,

- Now, writing

a = y2P2(1)/P(4)P(5), 2t =y 'P2(5)/P(6}RET),
b = -y~ 1p2(3)/P(1)P(2), bY = ~yP2(2)/P(5)P(3),
¢ = -P2(4)/P(3)P(6), et =y B2(6)/P(2)P(4),
it ie easily verified that
' a13 2 pe12 (2 506 07 04 03 12 02 6 4,7 4
(ta) B3 = c12 52 56 o7 o, pi13 o (12 02 6 T 4
) 513 = a,12 b2 C'6 37 b'4, F,13 = 312-b'2 c6 a,7 b4.

It will be noticed that all of the equations (1l.4) may be
obtained from any one of them by interchanging a, b', ¢, &%,
b, ¢*, and a, B', ¥, o', Py ¥', cyclically.: By (1.4), since

ab' ca' be' = - ],
i i i i i i, 13
= ' ' B la N T2 93 ’6’4 N 70
(ab' ca' be')” a b ¢ a b Ve

where o= 21, + 41, + 124, + 181, + 161, + 81 , an even

2 3

integer, and

o, = AL +Ti 461,421 4121, O, = 4l 471,461 421 4121,
o4 = 414+715+6164211+1212, O, = 41 471 461, 421 4121,

= + : ‘ =
Ty 416 7i1+612+2i3+1214, 66‘ 4;1+7i2+613T214+j2155
moreoverd + o, to o+ o, are multiples of 13 by (1.3), hence

we arrive at the following:




-.3-'

. 1,1, '13 1, 1 {

LEMMA 1.1 ' Any expression of the form a 13'- ¥ a' B
' ' A J J J J

1-b' 2 c 3 al 4 5 6

for which (1c3)'holds is of the form a
where j1 to j6 are non-hegative integers.

By Lemma.1.1 every term occurring in the right-hand side
of (1.2) is of the form aj1 b'Jz cja-a'j4 bj5 c'jé, and such
terms occur in'cyclically symﬁetrical_sets of six terms each.

.Furthery‘ﬁbé) is thé\coefficient of x° in 1/f(x) regarded
as a p;lynomial of degree 12 in x with coefficients involving x
in terms of y = x1a, so ‘that y-6f14(y)§(6)/f13(y13) ig'the
coefficient of x° in y'7f14(y)/{f14(y13)(a+3'+-%+a'+p+-r'+1)j.
This is a cyclically symmetric polynomial of degree 12 in
a, 'y ¥, a', B, and ¥'3 and the terms which give the
coefficlent of x° occur only in symmetrical sets of six
expressible as [aj1 b':i2 cja a'j4 bjs c'je], as before. (This
1s not true for the coefficient of any powef of x other than
O3 the six terms of [a], for example, do not appertain to

the same power of x.)

Thus v £ (y) /61y 73) and v 85 %(y)B(6) /£ 3 (y 13 are

_ ' : 3, i, A 3,
each equal to a linear combination of terms [a 'b'“c “ar %

We now write

-y"P(4)P(6)(P(1)P(5).
yP(1)P(3)P(4)/P(2)P(5)P(6).

A = yP(2)P(3)/P(4)P(6), B

=P(1)P(5)/P(2)P(3); | K-

:

H




-(1¢9) to (1.11) a!

Then

(1.9) ' ABC = 1,

<4, 2, 1>, <6, 3, 1>, <5, 4, 3>, <6, 5, 3>, <5, 4, 2>, and
<6, 2, 1>, give, respectively,

A-K, ©b=B-=K, c aC ~K,

(1.6) to (1.8) a

A+ 1/K b'= B + /K, c' = C + .1/K;

all of the equations (1.6) to (1.11) may be obtained from any
one of them by interchanging a,-b'; ¢y, a'y b, ¢', and A,B,C,
and 1/K = K, cyclically. Also, <%, 3, 2, 1> gives

(1.42) to (1.44) AB + A + 1 =0, BC+B+1 =0, CA+C+ 1=0,

. which equations are equivalent by virtue of (1.5), and <5, 2, 1>

gfves
a +-b' =CaA,

‘which using (1.6)y (1.10), and (1.12) to (9.14), becomes

(1.15) A+B+C==/K+K=~1,
- (1.16) AB + BC + CA = 1/K - K - 2.
We are now in a position to prove
.‘I.I J2 Ja 54 J5 j6
LEMMA 1.2 - Any expression of the form [a ‘b' “c “a' "b “c¢' "]

is equal to a polynomial in 1/K = K with integral coefficients.
J J, j, 3 J
» Using (1.6) to (1.%1), any [a Tpe 2 35074 30 6] can be

‘expressed as a polynomial im Ay By C, l/K, and -K, with integral
.coefficlents, cyclically symmetrib_in Ay B, C, and l[K, - K.

- This polynomial 'is a linear domBination of terms
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{(1/K)h +_(-K)h][Ah B* Cv] where hy A, p, and 9 , are non-
negative integers, for If a term (1/K)h[Ak B* c¥] occurs so
does the term (-K}h[Ak B* ¢¥], and vice versa. Further, by
Newton's formula for sums of powers of the roots of a
palynomial equation in one variable,'(1/K)h + (--I()h can be
expressed as a polynomial in the coefficients of the quadratic

"equation 22 - (1/K = K}z - 1 =20 having roots 1/K and -k,

i.e. as a polynomial in 1/K - K with integral coefficients.

- We now aﬁsert that any'[Ak B¥ C¥Y) is also equal to a polynomial
in 1/K = K with integral coeffibients.' Assume tﬁat this 1s
true for all values of A, pyand ¥ , with N + p + 9 where [ 21, .

: énd consider any [Ak gh CV] with M + p + v =T+ 1, If any '

, two'of.k, By and V¥ , are non-zero we can expreSS»[Ak B* V]
‘as a linear combination of similar sums with M +'p +V&T by
‘using (1.12) to (1.14)}; and so by the induction hypothesis it
is'equal to a polynomial in 1/K - K wifh integral coefficients.

- Also, using Newton's formula;-[A}]‘can be expressed as a
polynomial in 1/K - K with integral coefficlents, by
(1.5), (1.15), and {1.16).

- Thus if our assertion is true for A + B +Vg T it is true for
all M, p, and v, Qith A+ p+Vv =T+ 13 but 1t is clearly
true for % = 1, hence it is.true for all values of <T by

the strong form of mathematical inductien. This completes the
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proof of Lemma 1,2.
Writing
F ='v'1f2(y)/f2(y13)g
we have shown that F7 is equal to a linear combination of terms

3 i, 3 3 3
(a 1 bt 2 3 5074 b o ¢t 6], and hence, by Lemma 1.2, to a

LY

polynomial in 1)K = K with integral coefficients. - Further,
this polynomial is of degree 7 since the lowest powers of y
in the expansions of F7 and 1/K = k as ascending power series
in y are =7 and -1 respectively. ' By comparing coefficients
of powers of y as far as y° we find that .

CFl = (1K -k - 3)7
or, since F and K are real for real y,
(1.17) F=1/K~-K-~-3,+
- Similarly y“6514(Y) 0] (6)/f13( 13) is equal to a.polynomial of
degree 6in YK-K with integral coefficients, or by (1.47), in F.
Comparing coefficients as far as y we find that
{(1.18) yf(y13) d (6) = 11/F'+_36.13/r-2 + 38.132-/1=3 +

+ 20.13%/F% + 6.13%F% + 133786 4 138/57

on dfviding through by F. (1.18) was first found by
Zuckermann [17 ], using the theory of the elliptic modular

'
!

functions.

Dr. Atkin points out that this identity is given (in a

different notation) on.page 326 of DB];Ramanujan)f
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2. We shall now find expresz‘;ion-s‘ for all the Q(s)

(0 € s 12, s#6). Consider T(1). vy £ *(y)T+)/£*3(y")
is the coefficient of xa in
y—7f14(y)/{f14(y13)(a +B' +%+a' + B+ ¥ +1)}, a
cyclically symmetrlc polynomial in a, B', ¥, a', B, and ¥'.
Thus y-7f14(y)§(1)x8/ - a‘fia(yia) is the coefficlent of x°
in a polynomial in a, B', ¥, a', B, and ¥', which although
not cyclically symmetric, is a lineaf combination of terms

CRPR ST R PR TS P
I SR - ¥ ¥ oa B ¥ (the indices here may be presumed
non-negative because = 1/a = B'¥Y o' p ¥'), also, for any
sqch term which occurs in the coefficient of x%, {1.3) must
hold. Hence,by Lemma 1.1,y 28 %(y)P(1)8(1)/£'3(y"3)p(2) 1s

- Y132 33,34 35 36
equél to a linear combination of terms a 'b'’ c‘ a' b e .
We define @(s), the "normalised” form of J(s), in the following
six_casess : | H
(1) =p(1) T (1)/p(2),
- #(12)= -yP(2) § (12)/P(4),

#(4) = ~P(4) § (4)/P(5),

g(t1)=P(5) T (11)/P(3),

g(o) = P(3) & (0)/p(s),

g8) = -y“'r(e) T (8)/P(1). ]
Then we have shown that yf(y131¢(1)57 is equal to‘a linear

Jyo J ] b J ‘
combination of terms a 1 pe72 ¢ a‘a! 5% 1%  We can show,
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in'a similar manner, that this is true if @#(1) is replaced by
#g(s) for s = 12, 4|‘11f O, or 8, if we replace the multiplier
-v/a by =1/p', =1/¥ , -1fa', =1/p, or =1/¥ ', respectively.
=Eyrther. given an expression for any~¢(5) in the above 1ist,
we may obtain any other such #(s) by interchanging the @(s)
(in the above order) and a, b', c, a%, b, ¢', cyclically.
We define @F(s) in the remaining six cases as -followss
- C#(10) = P(3) T (10)/P(2), |
+ g(9) "= -P(e) § (9)/P(4),
#(5). = =yp(1) § (8)/P(5),
g(2) = -p(2) § (2)/P(3),
g(3) = P(a) § (3)/P(6),
) g(7) =y ip(s) B (7)/P(1).
We may show that the above result holds for these-ﬁ(s) by
considering y-T f14(y)/{f14(y13)(a + B + ¥+ a" + P Y+ 1)}
multiplied by Bf¥a', Fu\B,-a'ﬁ ¥'y p ¥'ay, ¥'a p', and af'7Y,
instead of =1/a, =1/8', =1/¥ , =1/a', =-1/B, and -1/ ¥",

i, 3, 3,35 4
2c 3 4 5c' 6, rather

- Thus we must now examine a 1b! a' b
3, 32 Ja 3,4 J5 Jg
than {a 'b* “c Ya' b Y¢' ¥]. To do thls we need certain
preliminary results. Using (1.17), (1.15) can be written as
- (2.1) A+B+C+F + 4=0, i

Multiplying this equation by A, substituting for AB and CA
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from (1.12) and (1.14), and transposing we obtain
(2.2) C = A2 + (F + 3)A - 2.
. SBubstituting this expression for C in (2+1), and transposing
we have
(2.3) B = =A% - (F + 4)A - F - 2.
- Also, (1;17) can be written in the form
(2.4) K = -1/K + F + 3.
Thus, by virtue of (2.2), (2.3), and (2.4), any polynomial in
1 . A, B, C, 1/K, and =K, with integral coefficlents, can be
expressed as a polynomial in A, 1/K. and F, also with integral
coefficientsﬂ' Further, multiplying (2.3) by A, substituting
for AB from (1.12), and transposing we obtain
' +{2.58) o 43 = =(F + 4)A% = (F + 1)A + 1,
and, multiplying (2.4) by 1/K, and transposing we have
(2.6) ' (1/|<)2 =(F + 3)/Kk + 1.
So, by virtue of (2.5) and (2.6), any polynomial in A, 1/K, and
F, with 1ntegral coefficients, can be expressed as a linear
combination Bf terms | |
c(247) Fh(e152/K + e2A2 + eaA/K +‘e4A + 95/K + e6)
where h is a non-negétive integer and e, to e, are positive,
negative. oY zZero,- integers.- We conclude that any polynomial

in A, B, C, 1/K, and -K, with integral coefficients, 15 equal

to a linear comblnation of terma (2. 7)
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| - We note here that by (1.9), (1.15), (1.16), and (1.17),
Ay By and C, ire the roots of.the cublc equatlon

(2.8) 2 b (F 4+ 42?4 (F 1)z -1 =0y

that by (1.17), 4/K and =K are the roots of the quadratic
;quation . '

(2.9) z® - (F + 3)z - 1.= 03

and that {2.5) and (2.6) follow.f;om (2.8) and (2.9)
respectively. :

Now, using (1.6) to (1.11) ;ﬁy aj-"b'J2 Jsa'j4 J5 '36
be expreésed as a polynomial in A, By C, 1/K, and -K, with
1nt?gral coefficients. Thus we arrive at ‘

~ LEMMA 2,1 ' Any expression of the form
11 52 g 34 15 jé
a b' %¢ Ya' b Te¢! is egual to a linear combination of terms
(2:7). This statement remalns valid if in (2.7):A {fs replaced
by any one of A, B, C, and 1/K ie replaced by either of 1/K, =K.

The latter sentence follows because of the cycllic properties
of our relations,

We note that Lf we define F by (1.17) then Lemma 1.2 is a
consequence of Lemma 2.1, for by Lemma 2.1 any
. [aJ1b'J2cjaa'j4bjﬁc'36] is expressible as a linear combination
of terms |

F"{ e, (1/K- K)[A2]+292[A2]+33(1/K K}[A]+294[A]+39 (+/K= K)+6e6},

and any such term. in view of (1 15). {(1.16}, and (1.17), 1is
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equal to a polynomial in 1/K = K with integral coefficients.
- Now, we have shown that yf(y13)¢(1)f-'7 is equal to a

J i, 3 i, J J
1,,72.73,,74, 78 .76

linear combination of terms a b’ and hence

o
by ‘Lemma 2.1, to a linear coﬁbinationﬂpf terms (2.7) where,

for a reason which will appear in §3. we choose to replace A
and 1/K by C and -K reespectively. Also, given #(1) in terms

of C and -k we obtain all the #(s) (s =1, 12, 4, 11, 0, 8)
‘immediately by interchanging #(s) (in the order given), and

. A, B, C, and 1/K, =K, cyclically. We have exactly the same
eituation for the other six g(s) (s = 10, 9, 5, 2, 3, 7) where,
again for a reason which will appear in §3, we choose to
express $(10) in terms of C and =K. Thus 1f for each of the

" twelve values of $¢ we choose varlables from A, B, C, and 1/K.

-K, according to the following tables

[ 0 1 4 8 11 12 s 2 3 5 7 9 10

aAlc|s | B c | a c |a |B B | A c

=K |=K [-K [1/K | 1/K| 1/K 1/K | =Kk | =K |[1/K|1/K | =K
Table 2.1 : Table 2.2

then yf(y13)¢(§)F7 15 equal to a linear combination of terms
(2.7) in each of which A and %/K are replaced by varlables

appropriate to the particular value of i, and for each value
of h the coefficients e1-to e in (2;7)'are the.same for all

the s of one group of six. We find the values of e, to e,
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- (for each value of h occurring) in the two distinct cases.by

comparing coefficlents, as before.

* Consider the case to which Table 2.1 applies. ' Let H be
the highest value of h occurring, i.e. the highest value of h
for which e, to ° are not -all zero, : Then«yf(y13)¢($2)F7 is
(without loss of generality) the sum of terms (2.7) with

+0 € h§ H. Now, since A and l/K (expanded as ascending power

1 + ... respectively, the

lowest power of y occurring in the:br&okéb of (2#7) is =%+, and’
it occurs in the term 05/K (and in none of the other five terms
as it happens).: Thus, writing E1 to E6 for the-,e1 to e,
appertaining to h = H, the lowest-power of y- in ﬁne aggregate

of tefms (2.7) is ~{H+ 1) (since F begins y_um% and it occurs
in the term FHES/K (only); but yf(y13)¢(12)1_=7 beging =77y J+...,
hence Eg = 0 if H + 1 > 5. Applying this argument to all of the
six #(s), using the variables indicated in Table 2.1 in each

0, 1, 4, 8, 11, and 12, respectively)

U,

case, we obtain (ffom s
if H> 6,
if H > 6,
if H > 4,
if H > 4,
1f H>5,

m
L
o O O O o o

if H > 4y




TN

when 8 = 1, or 11, yf(y13)¢(s)F7 is equal to an expression
in which the lowest power of y occurs in three terms of the
bracket prefixed by'FH. Thus if H > 6, E1'to Eb (found
ceriatim) are.all zero, but this contradicts the definition
of H, hence H { 6. We need only to notice that, from the case
# = O above, E, A0 if H =6, to conclude thatlin fact H = 6.

It may be shown, by similar reasoning, that for the
other group of P(s), H is again 6.

For each gfoUp of B(s) then we need to find the coefficients
e, to e, for each h in the range 0 {'h £ 6. Comparing
coefficients of powers of y for the first 7 powers of y occurring
in the expression for yf(y13)¢(s)F7 (for each & of the group in
question) we obtain 42 equations relating the 42 unknown
coefflclents, It turns out that these equations ar;'sufficient
to determine the coefficlents, in fact, in each of the two cases,
the coefficients appear seriatim, ' |

We state the results* in fhe forms

THEOREM 2.1 We have

* In actual fact we checked the values of the coefficients

found, in both cases, by comparing the coefficients of the

. N
eighth lowest power of y for ¢ = 8 and's = 7. ‘
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vi(y'2)g(12)=1/F +(=56A/K-33A=1/K +99)/F%4
| - : +13(-6A2/K-3ﬁ?-109A/K-31A-9/K4159)/F3+
+13%( <1142 /K-442 -85A/K-16A11/K+105) /F %4
C+133- 7A2/K-3A2 ~34A/K A -5/K +37)/F+
+13%(= 20%/K A% aafK -a -1/K. +7) /8%
\ +13%(= 342/k-242 - 8A/K -a -1/K- +8)/F,

yE(y'2)g(9)=(-39a+3)/F +(-392 +114/K-985A-33/K+264) /F2+
' +13( 2A%/k-674% +13a/K-786A-83/K+348)/F%+
+132( 4A2/K-46a2 +10A/K-334A-68/K+210)/F%4

+133( 3a2%/K-16a2 + 4a/k- 82A-28/K+ 68 )/F>+

413%0  A%/K- 382 4 A/ - 114- 6/K+ 12) /5%

+13%0 2a%/K- 3a% 4 a/K - . 8A- 8/K+ 12) /€7,

and these equations still hold if #(12) or @(9) is replaced
by #(s) for values of s occurring in Table 2.1 or Table 2.2

respectively pravided that A is replaced by A, By or C, and

1/ is replaced by-1/K or -K, according to these tables.

It 1s interesting to compare the powers of 13 occurring
in the equations of this theoram.with those occurring. in
the expression for yf(y13}§(6) given in (1.18),
We proceed to derive an alternative form of Theorem‘2.1;
Writing . .
L= y2R(3)/P(6)P(3), m = yP(4)/P(5)P(2), ne-y2P(1)/P(2)P(6),
1'= yP(2)/P(4)P(1), m'=P(6)/P(1)P(3), n's-yP(5)/P(3)P(a),



;'._.‘_. ._ . ' . . . _15-

‘n.we'have'immediately, from the definitions of A, B, C, and K,
“(2.10) 1/1' = m/m' = n/n' = K,

which equations‘will be used without explicit mention, and

(2.11) to (2.13) 1/m = A, m/n =B, n/l = C.

We note that equations (2.10) do not remain valid if 1/K, -k,

and 1, m', n, 1', m, n', are interchanged cyclically, but

~that (2.40) to (2.13) all remaln valid if A, B, C, and 1/, =K,
are Enterchanged cyclically qnd‘l, m'y n, 1, m; gnd n', are

interchanged according to either

m' n 1l m n')

' 1
(2.14) (m' “nl'" =m n' =]

or

( I m* n 1' m -n')
“-m''n =1'"m =~-n' ] ‘’°

(2.15)
+ Substituting for A, B, and C, from (2.11) to (2&$3), in'(1.12)
} to (1.14) we obtaln in each case |
(2.16) /1 + 1/m +1/n = 0.
+ Similarly {(2.1) becomeé
(2.17) - 1/m + m/n +;n/l +F + 4 =0,
" Now, (2.16) may be written a; |
{(2.18) | im/n = =1 =-m, |
and (2.17) as | _ .
12/m =-=Im/n -Fl - 41 = n
which using (2.15) becomes
(2;19) : 12/m'= -Fl = 31'+'m.-.n, .

and using (2.11) this equation may be written as
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- (2.20) a2 = <F1 - 3l +m=n
ory dividing through by ¥,
(2.21) nA%/K = ~F1' = 31% + @ - n',
Also we have trivially from (2.11) '
,,(2.25), and (2.23) mA = 1, mAJK =-1°'.
- S0, multiplying the first equation of.Theorem 2.1 by m, and
substituting for~mA2, mAg/K, mA, and mA/k, from (2.20) to
+ (2.23), we obtain yf(y13)m¢(12) as a sum of terms
 (2.24) - Fh(e; L+ eym +eln+eidt+elm+eln')
+ We chose to take m with #(12) for a reason which will appear

in 8 3. Now we have seen that the first equation of Theorem
2.1 still holds if we interchange B(1), #(12), #(4), Z(11),

- g(0), #(8), and A, B, C, and 1/K, -k, cyclically. Hence the
above equation for @(12) still holds if we interchange these
#(s) cyclically, and interchange 1, m', n, 1', m, and n',
accord{ng to (2.14) or (2.15). ' We obtain a similar result
for the other aiﬁ ﬁ(s) by multiplying the second equation of
Theorem 2.1 by m. Thus multiplyingzﬁésJ by ‘1'y m, n'y 1, m',

" and n, when s = 1, 12, 4, 41, O, and 8, or 10, 9, 5, 2, 3, and
7% respectively, and denoting the result by #'(s), so that |

#101) = yR(1)/P(4),  @1(10)=yP(3)E(10)/P(4)P(1),

o #2)=y B 02)/p(5), B1(9)=-yp(6)8(9)/p(5)p(2),
(229 g'(4) = yBl4a)/p(3), #48)=y2p(1)8(5)/P(3)P(4), "

B1(11)= y3R(11)/p(6)s @' (2)=-y2p(2)8(2)/P(6)P(5),

I}
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gr(o) = §(0)/P(1), g(3) = P(4)B(3)/P(1)P(3),
gr(8) = yb(8)/P(2), gr(7) = -yP(5)Y8(7)/P(2)P(6),

we may re-state Theorem 2.1 in the form:

‘THEOREM 2.2 We have
‘ 13,7, _ , , 2
yE(y 'P)g(42) =m/F. +( 6 1 -m' - 422 1" +99m  JF<+
 413(30 1-15m'+3n+52 ‘1 ' +156m+6n")/E o+
+132(35 1-22m'+4n+39 1'+101m+11n)}/F+
+133(47 1-12m'+3n+13 1'+ 34m+7n%)/F +
+134( 4 1- 3m" +n +2 1l'+._ 6m+2nt)/F6+

+134( 5 1= 4m'+2n - +l'+ 6m+3n*)/F7,

yf(y13)¢'¢9)=3m/F + « (3 1=33m'+39n=-15 1'+225m -)/F2+
. +13(13 1-81m'+67n=45 I'+281m-2n")/F 4
+132(12 1-64m'+46n=44 1'+164m=4n*)/F44+
+132( 8 1-25m'+16n=18 I'+ 52m-3n')/F +
#13%C  1- sm'+ 3n -4 1'+ 9m- n*)/F%
C+13% 1- em'+ 3n =51+ 9m-2n')/F,

and these equations still.hold if g'(12) or $'(9) is replaced
by #'(s) for values of s occurring-in the first or the
second row of the following table respectively provided

that 1, m*y, n, 1'y, m, and 'n', are integchanged according to

—this\table:
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5 1 12 4 LR O 8

s 10 9 5 2 3 7

n' 1 m' n 1! m

-1 m' | =n 1' [=m n'

m' n 1 m n' 1

) - w -n 1* | =m n' [=1 m'
1" | m n' 1 m' n

-m n* { -1 . m' |=-n 1!

We emphasise that for any particular value of s the equatipn
given in Thesrem 2.2 is simply the equation given in Theorem
2.1 multiplied by 1, m', n, 1', m, or n'; the former equation,
of degree O in the P(a), becomes an equation of degree -1 in
the P(a).. Although in Theoraml2;1 each i(s) is expressed in
terms of only two variables, such as A and 1/K, the two variables
are different for different values of s. 1In Theorem 2.2 six.
variables are needed, but they are the same for all the Q(s),
and moreover, unlike Theorem 2.1, the expressions are“
homogeneous‘in these variables.,'

3. In this paragraph all congruences are modulo 13.
We state ;nd provet )

| THEOREM 3.1 We have _
B(o) = 6p(6)R(6)/P(3)-5yP(0)/P(5),
S B(1) = 6p(2)§(6)/P(1)+2yP(0)/R(6),




S 1 12 4 11 0 8

s 10 9 5 2 3 7

n' 1 m' n Y m

=1 | m'|=-n 1* [~m | n°

m' n 1! m n' 1

. -n 1' [ =m n' | -1 m'
1* | m n' 1 m' n

-m n' |-l . m' | =n 1t

We emphasise that for any particular value of & the equation
given in Theﬁrem 2.2 1s simply the equation given in Theorem
2.1 multiplied by 1, m', n, 1', m, or n'; the former equation,
of degree O in the P(a), becomes an equation of degree -1 in
the P(a).. Although in Theorem;2.1 each ﬁ(s) is expressed in
terms of only two variébles,suéh as A and-1/K, the two variables
are different for different values of s. In Theorem 2.2 six.
variables are needed, but they are the same for all the-ﬁ(s).
and moreover, unlike Theorem 2.1, the expressions are“
homegeneous in these variables.,.

3. In this paragraph all congruences are modulo 13,
We state gnd provet )

| THEOREM 3.1 We have _
B(0) = 6P(6)R(6)/P(3)-5yP(0)/P(5),
CB(1) = 6p(2)8(6)/P(1)+2yP(0)/B(6),




&(25_: -5P(3)D(6)/P(2)+3P(0)P(5)/P(2)P(4),
C8(3) = 5P(6)B(6)/P(4)+ayP(0)P(3)/P(4)P(3),

T(4) = -6P(3)8(6)/P(a)+6P(0)/P(2),

8(5) 5 -5y"'P(5)B(6)/P(1)43y TP(0)P(4)/P(1)P(2),

§(6) = -2p(0)/¢2(y),

§(7) = syP(1)8(6)/P(5)+2P(0)P(6)/P(3)P(5),

§(8) = -6yP(1)T(6)/P(6)-4P(0)/P(3),

B(9) = -5p(4)F(6)/P(6)-6P(0)P(2)/P(1)P(6),

B(0) = 3P (2)8(6)/P(3)+yP(0)P(1)/P(3)P(6),

T = 6P(3)3(6)/P(5)+3P(0)/P(4),

Tt = -6y 'P(4)F(6)/P(2)+y " P(0)/P(1).

We note that the form of these congruences is analogous
to that of the corresponding results for q = 5, 7, and 11,
given as Theorems 1, 2, and 3, in (ASD). There is a basic
difference only in so far as ﬁ{a(é) £ 0.

Now, the congruence for 9(6) follows immediately from.

+ (1.18) {since f(y13)=P(O)}. Substituting for @'(12) from

(2.2%) in the first equation of Theorem 2.2 we obtain

-2y )8 (12)/P(8) = m/F + (6 1-m" + 22 L'+ 99m)/F2,

which may be written in the form

3
4oy = v~V P{4) P(O) _ _y  PO(0) 6 1-m'+22 1'+99m,
§(12) = -y 3%3%'?%%£ P(1) £%(y m 1"

. Thue, comparing the congruence for §{12) in the theorem with

this congruence {using the congruence for §(6)}, we see that
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the former 1s valid if _
vy~ 26%(y)/P%(0) 2 1/1 = 6/m' - 99/1' ~ 22/m

i

which equation may be written as
© (3.41) y'2f4(y)/p2(o) = =5/1 +:3/m" - 6/n + 1/1' = 2/m =4/n',
using (2.16) and (2.16) multiplied through by K. By a
-eimilar argument we may show that for each of the other five
s of the group containing s = 12 the validlty of the
cdngruence in the theorem depends only on the vaiidity of
(3.1) multiplied through by some constant. Further, for
. the remaining six s we find, using the preceding brocess, that
to_prbve the congruences in the theorem we need again only to
show that (3.1) holds. We prove (3.1) as follows.

Writing

X = -85/l = 6/n =-2/m

wé have, mﬁltiplying through by 1 and'using (2.11) and (2.12),

‘-

‘1X = =5 = 6AB -« 2A
| which using (1.12) becom;s

(3.2) 1X = 4A + 1,

Similarlf we may obtain

(3.3)  nx = - 3C - 4,

(3.4) mX = - B + 3,

- Multiplying together the last three equations we have

1nmx® z = ABC + 3[AB]+-4[A] + 1,
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and by (1.5), (1.15), (1.16), and (1.17), the right-hand side
of thls equation is congruent to =-F so that, squaring both
sides of the equation, |

12022 = 2%y ) /% 0)s
but from the definitions of 1; n, my, and kK,

120202 = y7R(0)K%/ £ (),
hence _

X8 = y P2 (y)/P% (008,
or since f13(y) sz P(0)

x2 = y 38 (y)/P2(0)K,
where the value of the coefficient of the lowest power of
y in the expansion of each side of thls equation is examined
to determine the approprlate foot. By wvirtue of {1.17) we.
may write the last equation in the form ‘

X2 2 y 254 (y) (1/k + 5),

"whence
(3.8) X =y e2(y)(1/K + 5),

.where the sign of the coefficient of the lowest power of y

on..each side of this equation is examlned to determine the
apérOpriate root. Now, the right-hand side of (3.1) 1s
congruent to (5K + 1)(=5/1 - -6/n = -2/m), i.e. to (3K + 1)X,
and by (3.5) this is congruent to y-1f2(y)(1/K - K = 3) which
equals y-254(y)/P2(Q) by (1.17){ Thus (3.1) holds. This
completes the proof of the theorem,

It would be possible to prove Theorem 3.1 by either of
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the methods used to prove Theorems 1 and 23 and Theorem 3, in
(ASD). 1Indeed the congruences of Theorem 3.4 were originally
derived from other more complicated congruences which were
found by Dr. Atkin using the method of Theorems 1 and 2. Itis
because the above congruences for the ﬁ(s) were discovered

before the identities given by Theorems 2.1 and 2.2 that I

‘was able to assign convenient variables to particular P(s)

for the purpose of these two theorems.

4, The values of the rbc(d) for q = 11 proved in (AH)
were actually found empiricdlly; for g = 13 we use a similar
method.

Putting b = 6, %, 4, 3, 2, 1, and O, in equation (6.2)
of (ASD) (with q = 13), and b = O and 3 in equation (6.3)

of (ASD), we obtailn respectively

s(6) = o, 5(7)
(4.1) $(9)

5(12)= ~5(0), 5(13)= =f(x}+S{0)+1, s(16)=x'2f(x)+59»1,

-s(5), - 5(8) =-5(4),

-5(2), s(11) =-s(1),

-5(3),  s(10)

and it is easily seen that there are essentially only six
distinct S(b), which we take to be S(0) to 5(5%).
- We. wrlte _
ot n
Nb =Nb(X) = EON(b’ 13, -n)x »
n= B

Nye® Ny = Ne» '_- - . ,

80 that by (6.10) of (ASD) *
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the methods used to prove Theorems 1 and 2, and Theorem 3, In
(ASD). 1Indeed the tongruences of Theorem 3.1 were originally
derived from other more complicated congruences which were
found by Dr. Atkin using the method of Theorems 4 and 2. Itis
because the above congruences for the §(s) were discovered
before the identities given by Theorems 2.1 and 2.2 that I
‘was able to assign convenient variables to particular f(s)
for the purpose of these two theorems.

4. The values of the rbc(d) for g = 11 proved in (AH)
were actually found empiricdlly; for q = 43 we use a similar
method.

Putting b = 6, 5, 4, 3, 2, 1, and O, in equation (6.2)
of (ASD) (with q = 13), and b = 0 and 3 in equation (6.3)
of (ASD), we obtain respectively

s(s) = o, §(7) = -s(5), - -:8(8) =-5(4),
(4.1) s(9) = =5(3), - §(10)= -s(2), s(11) =-s(1),
| S(12)= -5(0), $(13)= ~£(x)+5(0)+1, $(16)=x"2f (x)+5EM1,

and it is easily seen that there are essentially only six

distinct S(b), which we take to be S(0) to §5(5).

© We write
w _ A
+ N =.N‘(X) = Z.N(b. 13.'")! »
b b - :
n-o N .
Npe= Ny = Ne» B - o

so0 that by (6.10) of (ASD) -
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12 4
(4.2) Nbc=d§0 r. (d)x".
Then by (2.13) and (6.1) of (ASD), and (4.1) above,
-f(x)No1 ='[S(O)+S(13)}-{S(1)+S(12)}=-f(x)+35(0)-501)+1,
(N, = {8(1)+5(12)}-{8(2)+5(11)} ==5(0)+25(1)~5(2),
F(xINyy = {s(z}+s(11)}-{s(a}+s(1o)}=-so1)+2stz}-s(3),
f{x)Ny, = {S(3)+5(10)}-{s(4)+s(9)} =-s(2)+25(3)}~5(4),
CE(xON,g = 5(4)+45(9)) -{S(5)+5(8)} =-5(3)+25(4)-5(5),
F(xINg, = {8(5)+8(8)} -{S(6)+5(7)} =-5(4)+25(5),

and putting m = 2, 6, 3, 1, 5, and 4, in (6.7) of (ASD) we

(a3)

obtain using (4.1) the following expressions for S{(0) to

8(5), respectively.

_ ) _B2(3iple)
s(o)-f(-x){y2 ;%%57)+1}~g(2) 14P (0){ p?1?p?2?p(5) x2 Z¥=r p(a),'

5’9(419(51 9 P(1)P(6) 12 (.L___
- “XP2(2)P(6) ~X Y Bl2)P(4)P(5) t ok
‘ . 5(1) f{x){x4 4_LQ19.1} g(-6)+P ('O){-x __PQ.LP_LQJ_

-~ P{0) P(1\P(2)P(Q
‘ 4 2 P(2) 5__y 6 3 P(1)P(2 9 _p(a)p(5) -
Y FT5YR(6) ~ X P4y XY _(_qup(wp (6) * X F(2)P(3)P(6)}"
12 2 3(3,0) 2 2 _P(1) 4 _P{a)P(5)
- 8(2)=£(x){x (o) J*a(3)+P (0)['*Y F(3)P(a] " P(1IP(3)P(6) "

8 11PL6 11 j
o Bty st TSRy

s(3)=f( ){_ 1 -1_ 11 _‘_(_1_)} '1)"1+P 0){ -3 ng(}s)TxJ .p(?‘s) -

P(0)
10_P(3)P(5) 11 -1'P(21P(4] 12 =1 P(a)P(e)
X P(1)P(a)P(e)tx Y (1)P(3)'x Y P(1)P( 2)P(4)}'

s(a)=f(x)fxy? —%%;‘l} ~g(5)+p2 (0){ xy 2 p(2)p(4) +

P(3)P(5)P(0)
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2 _P{3)P(6) 3.3 __P1)P(2) 6 _1 10 _P(6)
Y F2)p2(s) T XY Fla)p(s)p(6) X F(NX F(2)P(5)
S(b):f(x){-xays E%%s%l}+g(4)+P2(0){x4y P(gggggggg4) F%%%%%%%%-

B _y 9 _P(3 10 2 _ P(1)P(2)
= Fleytt B(1P(aTT* Y P(3)P(4)P(3))"

Now, as with g =11, it 1ls clearly convenient to avoid the
terms involving Z(m, 0) which occur in (4.4)., For example,

from (4.3) and (4.4) N,y contains a term
2'3!2,0! 4 4 (6,0)
-1 + 3{y Pt 1}=~x P(0)

2(2,0)
l.e., in view of (4.2), r,,(0) contains a term 3y? PGO))+ 2,

and r (4) contains a term -y4 Eé%g%). Also, the forms of

01
the :bc(d) for q = 5, 7, given in (ASD), and for g=11, together

with the congruences for the §13(b) given In Theorem 3.1,

suggest that the values of the rbc(o), for example, will involve

either a factor P(6)/P(3) or a factor y/P(5); it is found to

be preferable to consider the factors of the former type. We
accordingly (following the case of q = 11) define \

Rbe(d)(o £ d £ 12), the "normalised” form of rbc(d), for gq=13
és shown; clearly, from the definition of rb(d) and the
relation N{m, q, n) = N(qg - m, qy n) given in {ASD), we may

consider b and ¢.to lie between O and 6 inclusive,
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0) = P(3){r,,(0)-3y?5(2,0)/P(0)-2}/P(6),

0) = P(3){r,,(0)+y%5(2,0)/P(0)+1}/P(6),

Rga(1) = P(){r,,(1)-y*5(5,0)/P(0)}/P(2),
Ryg(1) = P(1){r, (1)+2y*2(5,0)/P(0)}/P(2),

= P(1){rg,(1)-y*2(5,0)/p(0)}/P(2),

Ry, (4) = =P(4){r,,(4)+y*5(6,0)/P(0)}/P(5),

R,,(4) = =P(a){r ,(4)-2y%5(6,0)/P(0)}/P(5),

Ryy(4) = -P(4){r,,(4)+y E(6,0)/P(0)}/P(5),

Ryq(8) = -y P(6){r, (8)-y35(4,0)/P(0)}/P(1),
Ryg(8) = =y 'P(6){ry,(8)+2y°2(4,0)/P(0)}/P(1),
Ryy(11)= P(5){15,(11)-2(1,0)/P(0)~y ™ '}/P(3),

Ry (11)= P(5){ry, (11)+25(1,0)/P(0)+2y ' }/P(3),

a5l11)= P(s){r45(11)-z(1.0)/P(o>-y‘1}/P(3),!

R ,(12)= —yP(2){r, ,(12)+y°2(3,0)/P(0)}/P(4),
Ryal12)= =yP(2){r,,(12)-2y°2(3,0)/(0)}/p(4),

Rg,(12)= -yP(2)£r34(12)+y25(3,0)/P(0)}/P(4},

R

and, for all other values of b and ¢ with ¢ = b + 1,

Ry (0) = P(3)r, (0)/P(6),
Ry (1) = P(1)r, (1)/P(2),
R, (2) = -P(2)r, (2)/P(3),

 Rpe(3) = Pla)r, (3)/P(6),
Ry (4) = 'P‘4’r5c(4?/?(5)’ ?
Ry (9) = =yP(1)r, _(3)/P(8),

Rpo(6) = r  (6),
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Ry (7) = ¥y 'R(5)r, (7)/P(1),
R,.(8) = -y™'p(6)r, (8)/P(1),
Rpc (90 = =Ple)r, (9)/P(4),
Ry (10)= P(3)r, (10)/P(2),

Ry (11)= P(5)r . (11)/P(3),

Rpc(12)= =yP(2)r  (12)/P(4),

be
and, for all remaining values of b and c, we use the relations.
Rbc(d)+nce(d) = R (d),
Rep(d) =-R5c(d)‘
_It will be notfced that in the above definitions the
--coefficient of any rbc(d) is preéisely the coefficiént of
9(d) in the definition of #(d), given in § 2.
| We might now proceed as for q = 11, and use (4.3) and
(4.4), together with the congruent form of 1/fﬂg) given by
Theorem 3.1, to obtain congruent forms of all the Rbc(d),'as
a first step in the attempt to obtain identical forms. Indeed,.
it would be possible to find identical forms &irectly, by
using the identical form of 1/f(k) given by Theorem 2.1 or
Theprem 2.2, However, either of these methods would be
extrehely tedious, and instead we proceed as follows.
Using {2.13) of (ASD) we determine* cach of N01 to Ng.»

as a power serles in x, as far aS‘x142.- In view of (4.2) this

{ L

*The divisions by f(x) were carrlied out by means of a single-
length programme on Durham University's Ferranti ‘"Pegasus"
computer; further details are given at the end of the Lhesis
page 90 ).



A -'-27- I

g?ves us every rbc(d), as a power series in y, as far as
y10, and it 1s a simple matter to find the corresponding
terminated power series for the Rbc(d)'

We now seek congruences for the Rbc(d)’ in the following

manner. - The factor P(O)/fz(y) occurring in the congruences

for the fi(b) given in Theorem 3.1, together with the factor

P2(0) occurring in the expressions for the S(b) given in

(4.4), suggest that each Rsc(d)-congruence will involve a

_ factor Pa(o)/fzﬂy). Also, the form of the Rbc(d)-congruenées

" for g = 11, given in [ 6], and the fact that in (4.4) the

terms in the brackets prefixed by P2(0) are of degree =1 in
the P(a), suggest that each Rbc(d)-congruence will involve a
linear combination of 1, m', n, 1*, m, n', and a further
variable, the further variable being different oply for
different values of d and being a multiplicative combination
of these gquantities, of degree 1. It is obvious that we may
consider this further variable to be linearly independent of
i, m', n, 1', m, and nt. |

We find, by comparing coefficients of powers of y in the

expansions of the appropriate quantities (the coefficients are

of course all integral), that in fact, each Rbc(d) appears

- to be congruent to the product of.P3(O)/f2(yJ and a linear

combination of 1, m'y, n, 1',' m, n', and up to two further

&ariables; the further variables found to suffice are given in
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the following table.

d ] o 1 2 3 4 % 6 7 ({8 9 10 11 12

KL | Kn|n| k1| Km| Km| - [m/K|m/Kk| 1/K [ Kn | n'/K|1'/K
Knfkm| - | = [K1]~ | =] -~ |1/ = | = [(m/k|n'/K

- Table 4.1

'l-WQ draw up a list of apparent congruences for all the Rﬁccd)
with ¢ =b + 1. fhe riumber of terms found in the expansion
of each RECCd) is sufficient to defermine and checklthe 8
i for le;s) coefficients involved in each such congruence.
‘tInspection of ‘this list reveals no sets of congruent-relations
. between the Rbc(d) for different values of d such as are

given for q = 11 1n,(9.1) to (9.14) of (AH), so that we

cannot hope to find identitieg for the Rbctd) in the way used_

for g = 11. Instead w;'adopt the following method. A

The form of the identitles for the ﬁ(b) given in Theorem

3.2 suggests that each Rbc(d) may be ggggi to the sum of fwo
linear combinations of the type alréady indicated, multiplied
by P2(0)/%(y) and 13yP3(0)/f%(y) respectively. A difficulty
now arisess we have not found a sufficient number of terms of
any Rbc(d) to enable us to determine fhe 16 {(or less)
coefficients involved in such an identity. We circumvent

ithis difficulty in a manner suffiélently well illustrated by

the following example.
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Writing

| =
1]

= p30)/82%ty), v = yR%0)/54 ),

so that

- (4.5) U = Fv,

and noting that for g = 11 the numerical values of the
coefficients involved in the Rbc(d)ﬁidentities are small,
we assume that there is an identity for Ro1(0) of the form

R;1(O) = U(-51-3m-3n-21'-2m{+3kn)+

-'+13v(f11+f2m+f3n+f41'+f5m'+f6n'+f7wl+fakn),
whgre the U-term on the right~hand side is our congruent fo:h
of R01(O) written so that its coefficients all lie between
16 inclusiven and f1 to f8 are integérs. The numbers of
terms found In the expansion of Ro1(0) is sufficient to
- determine fl to fs and check the resulting identity.

In obtaining apparent identities for all the Rbc(d) we
occasionally find that in the U-bracket a 4, for example, should
be a -9 this presents n§ serious difficulty.' Also, we
should nopg that for any particul;r Rbc(d) a certain amount
of transfer between U- and V- brackets is possible. For

example, in the case of R,;, (0O) we have the relations

)
O
(4.6) and (4.7) u(131) = L3V(-31+1!-Kj),-u(13n)=13J(-3n+n'—wn),
found by ‘multiplying (4.17) through by L and n, respectively and
0 I? Al A

[N

using (4.5). .
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b ) We state the result, a complete set of conjectural
vélues of the Rbc(d) for q = 13, in the form of a theorem,
and then prove that the values are in fact correct.

'THEOREM 4.1 - ﬂe have the following; for each Rﬁc(d)
given, both brackets on the right-hand side involve

l} m'y ny, i'ym, n', and the quantities indicated in Table

4,1, only.
Ro1(0) = U(~51-3m=3n=21"'=2m'+3Kn)+13V(-21=2m=2n+m'+n'-K1),
Ry (1) = U(-BLl+ém+n+l'+m'=2n'=8Kn)++3V(~1+2m+n+l'-m'-n’~

-Km-2¥kKn),

R .(2) = U(fim~61'"+4m'+4n'+3n"'/K)+13V(3m~21"+m'+n'+n"'/fk),
Ro1(3) = U(ol=9m+3n+m'+7n* =K1 )+43V(1-m+2n-1"'4+m'+n' +K1),
Ro‘(4) = U{31=-m+7n+l'+n'-K1+6km)++3V(3n+K1+2km),

b R 1(5)'= u(51—3m+3n+41'+n'-5km3+13v(21+m+n+n'-2Km);

| Rél(b) = U(—1+5m-5n+31'-mr+2nh)+13V(1+m—2ﬁ+2n'),

Rpy(7) = U(-1-3n+ém'=6n'+2m'/K)+13V(-2n+3m’=n"-m"'/K),
Ro1(8) = U(=2m=n+31'~5m'=n"+m'/K)+13V(-2m-n+1"'),
Ro,(9) = U(3m=10n-1"=2m " +1'/K)+13V(1-3n=1"=m"+n'+1 "' fK),
Ro1(10)=-U(81-8m—2n-m'+6kn)+13V(21-4m-n+m'+2Wn),

R, (11)= U(m+4n+41'-3m'-4n'=4n'/K}+13V(m+n+1'=2m'=2n"'=n"/JK),

Rpy(12)= u(m-n-61f+am'+4n'-31'/M)+13V(m—n-31'+m{+n');




1

It

1t

f

H

:_%f_

U(4l-m=2n-1'+m’+n'=~2K1=-Kn)+13V(1l+m-1'-kn),

U(7l+m-2n—n'+7Kn)+13v(21-m-n+wm+2kn),

U(=1=4m=51"+m'+n'+2n'/K)+13V(=1-m=1"4m'+n'),

U(=41+6m=4n-m'+n'+2K1)+13V(=-1+4m=2n+n"’),
U(6l+m—5n-m'-n'+2K1-3km)+T3V(l—2n+n'-Km),
U(-1—3m—7n+41'+nJ+Km)+T3V(—m—n+l'+n'+Km),

U(-l-3m+5n+r'+m'+n“)+13V(-1+2n+b'),

Y(-21+3n=-1"+6m'=n'~m'/k)++3V(=1+m+n-n"),
U(m+n+al ' +2m +n'-m*/K)+13V(mtn+l ' =m" ),

U(~m+9n=31"'=2m ' +2n ' +21 " /K)+13V(-1+3n-m'+1' fK),

U(=B1+7m=n+l'+2m ' =6Kn)+13V(-1+3m+n+l'=m'=2kn),

U(=3n+l'=2m'=6n"'=n'/K)+13V(-m=2n=-n"),

U(l-m+n=1'+3m*=3n'=2+'/K+ n'/K)+13V{ntm'=-n'~ 1'/K);

U(B1-m+dn+1*=n't=K1)+13V(2L-men-n'+Kn),

U{~6143m=n+3n'=6Kn)+13V{=-21+2m+nbn'-2Kn},

u(-2m+61'—4m--6n'-4nn/k)+13v(-m+21--2m‘-2n'-n-/k);
U(=41+3m+n+m~7n ' +KL)+13V{=14m+1 =m'=2n"),
U(=31-5m+m'=K1-Km}+13V{-m=n'~Km),
U(=21+10n=31*=2n'+3Km)+13V(-1-m+2n-2n"'),

W(=1=4n=1'=4n")+13V(-m-2n-n'),

U(-21-2n+1'=m'+5n'+m'/K)+13V{=n+m'+2n’),

U(=14+m=n-21"=4m*)+13V(=n=1'+n"),
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U(-m=-9n+4l ' =~m'+n" }+13V(1=m=2n+1'+m* +n'=1"'/K},

U(71-5m+3n-m'+5Kn)+13V(21-2m-1'+m'+2Kn),
U(-m+3n-6l'-3m'-5n'-m'/K+5n'/K)+T3V(-1+n-i'4
, —mt-n'+m'fk+2n"' fK),
U(l+m=n=41'<3m'=n'+1'/¥-2n'/K)+13V(-m-n=1"'=~
“m'=n'+1'/K);
U(-31=6n+1"')+13V(-1-n+1'+n"'=Kn),
U(61+m+6n=n'=Km+5Kn)+13V{21-1"'~n"+2kn),
U(8m+31'+m'-2n'+n'/K)+13V(1+2m-n+n‘/K),
U(=1=7m=n+3n'-K1)+13V(-2m+m'+n" ),
U(=51+3m+5n=1"'=m'+5Km)+13V(-214n+2Km),
U(5l+5m-11n—31'+n'—5km)+13V(21+2m-3n-2l'+n'-Km),
U(3m+4n=-21"+m'+2n"' ) +13V(2m+n=1"),
U(1+n+1'+3m'-3n")+13V(n+l'=n"),
U(1=-3m+n+61"+m'+n'=m'/K)+13V(=mtn+21'=n*=1"'/K),
U(2m+8n+61'+4m'=4n'=41"/K)+13V(2m+n-2n'=1'/K)},
U(-41+2m-4n-21'+m'-3gn)¥1av(~21+m—n-2zn),
U(=1+m=3n+41'+5m'+n"+2m"' /K =2n"/K)+13V{1+m-n+1''+
+2m'+n'-m*'/K-n*/K),

U(=1+n=2m'+4n'%31'/K+n'/K)+13V(m+n-m'+2n'+1'/K);




VU R,e(1)
B R45(2)

v R45(5)

- Rys(0)

| Ryp(3)

Rysn(4)

i it

Rys(6)
© R (7)
' Rysl®)
' R4n(9)
* R a(10)=
P Ryg(11)=
- Ryg(12)=

1

L]

g6 1)
J6(2)
56(3)
56(4)
56(3)
56 (6)
s6(7)
56(8)

n n ] 1] 1}

£ X W [ =

-3 3=

U{=51+2m+6n+n'+2K1) +13V (=1+m+n+Kn),
U(=51=m+4n=~1'=2n"'+2Km=3Kn)+13V(=21=m+n+l'=n'=kKn),
U(1=10m=51'+3m"+3n'/K)+13V(=1=2m+n-1"+2m ' +n*/K},
-U(-61+6m+2n+5n'-HI)+13V(~1+2m+n+n'fK1),
U(=31=2m=7n+1'+n'=7Km)+13V{(m=-n+n'=K1=-2km),
UEE1+10n+n'+5Km)+43V(~31+43n+1'+2Km),
U(21-95m=~3n=m'+3n) +13V(=2m+m'+n'),
U(l=n+1*=m'=5n"+m' /K)++aV(1-n=-n"),
U(4m+81'=2m'=n'=1"'/K)+13V{1l+m-n=m'),
IU(-2m-5n-21ﬂ-2m';2k'/K)+13V(-2m-n+l'),
-U(-2n+l'+m'+2Kn)f13V(l-n+Kn),
‘U(1-m+2n+31'+2n'fm'/k-4n'/k)+13V(-m+n+1'-m'-nf-n'/k);

U{=m=n+61'+5n ") +13V(=m+21 ' +m' +n ' =1"'/K)}

U(-61+m+2n=21'=n'+K1)+13v(-21-n'),
U(2142m+2n+)'+2n' =Km+Kn)+13V{ 1+m+n+n'+Kn),
U(Tm+1'=4m'=5n'=4n'/k)+13V(14m=-n=2m'=2n'=n"/K),’
_U(51-6m+n-6n'-kl)+13y(i-2m-2n'),. |
UEB1=2m+5n=n'+5Km)+43V(=1=2m+n+l'=n*+¥Km),
U(31+6m-6n+51t-2n'-3km)+13vt2l+m-2n+1'-m'-Hm),
U(Amen+31" +m" =4n ) +13V( L4m+l ' =m' =n' ),
U(3Ll+nz21 " +4m ' +7n ' ~m* /K)+13V(n=-1"+m"+n "),

U{=3m=n=1'=3m"'+2n"+21 ' /K)+13V{=m+n+1"'+n'),
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R56(9) = U(m+2n+21"'=3m'+4n"+21'/K)+13V{m+n-m'+2n'+1'/K),
6(10)- ‘U(~31+4n+1'-2Kn)+13V(=~1+42n+1"'),
re11)= U(m=n-51'+5m'+6n'+5n" JK)+13V(m=21"+2m" +2n ' +n /x),

R56(12)=»U(-1+m+n+31'+4m'+n'a4l'/K)+13V(m-l J¥-n'/K).

. The following relations will be required in the proof of
this theorem for systematic simplification of expressions
.involving 1y, m'y ny, -1y m, and n'.

(4.8) to (4.10) 1Im/n -l-my mn/l = -m=-n, nl/m = -n-1;

-‘(4.11) to (4.13) 12/m = =-Fl=31+m~n, m2/n=-Fm-3m+n~1,
. n2/1 = -Fn=-3n+l-m;
(4.14) to (4.16) 12/n = Fl1+21=-m+n, m2/1 = Em+2m-n+1,

n2/m = Fn+2n=1+m;

(4.17) to (4.19) K1 = =-F1=31+1', Km = -Fm-3m+m’', Kn =.-Fn-3n+n',

= F1'+31'+1, m'/K = Em'+3m'+m,

=
~
~
1]

- (4.20) to (4.22)

' n'/kk = Fn'+3n'+n;

2

.F(31-K1)4101=31%, K“m=F(3m~Km)+10m=3m’,.

L k%n = F(3n=Kn)+10n=3n',

Bt
1]

(4.23) to (4.25) ¥

- (4.26) to (4,28) 1'/k2=F(3r'+1'/k)+101'+31,

| m'/K2=F(3m'+m'/ﬁ)+10m'+3m,

n /K2=F(3n +n'/H)+10n +3n.

-\(4fa) to (4.16) follow from (2.15)-and (2.17)y (4 17) to
(4.22) from (1.47), and (4.235 to (4.28) from (4.17) to

- (4.22) respectively; (4.8) and (4.11) have already been glven
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- (4.29) to (4.31) a
\(4.3%) to (4.34) a' =.1"/m' + /K, b' = m'/nr+i/k,

—3 85—

as (2.18) and (2.19) respectively. We shall also need the

relations

1/m=¥, b =m/n-K, c¢ = n/1-K,

e' = n'/1'+1/K,

"arising from (1.6) to (1.%1) and (2.41) to (2.13). Of course
jall of the equations (4.8) to (4.34) remain valid when

.1y m'y n, 1'y, my, and n', are interchanged according to

(2.14) or (2.15) and a, b', ¢, a', b, and ¢', are interchanged

cyclically. Finally, the following will be reguired

2g(1)=-g{2)+1 = -P2(0)1'b = P2(0)(1+1'+m*),
2g(2)=g{4)+1 = P2(0)mc' = PEQO)(—m—n+m'),

~p2(0)m'c = P2(0)(m+m'+n'),

H

2g(3)-g(6)+1

(4.35) - i
2g(4)+g(5) = P“(0)n'a = P(0)(=n~-1'=n"'),
2g(5)+g(3) = P2(0)1b! = P2(0)(-1-m+l'},
2g(6)+g(1) = p2(0)na' = P2(0)(=1=n+n");

these relations arise from (ASD),y Lemma 8 (with q ='13), and

(4.29) to (4.34) above, using (4,8) to (4.10) (divided
through by K if necessary).
. The proof of Theorem 4,1 is similar to those of (ASD),

Theorems 4 and 5, and (AH}), Theorem 6. If we write

diih:



NO1+{-3y22(2 0)/P(0)=2}+x*{y*2(6,0)/P(0)},

Nb, o=
\ . o1
Nj, = N, H{v22(2,0)/P(0)+1}+x* -2y *E(6,0) /P (0) ]+ 2y25(3,0)/50),
N = Nygtx{y4z(6,0)/p(0)}4x ™ -2 (1, ©)/7(0)-y T
-5 +x12{ -2y 2%(a o)/P(O)}
N [}

it

sa = No tx{-y*5(5,0)/P(0)}+x " [22(1,0)/p(0)+2y T} +
+x'2{y%z(3,0)/P(0)},

N45+x{2y42(5,0)/P(0)}+k8(“Y33(4’0)/P(0)}+

Nis =
oM ez(,0)p00)y T,
Nig = N56+X{*Y43(5,O)/P(O)]+x8[2y32(4,0)/P(0)j,

then in view of (4.2) and the definitions of the Ry (d) we

have for any fixed values of b and ¢ with ¢ = b + 1 7
- (4.36) N'=P(6)RO/P(3)+xP(2)R4b(1)-xzp(a)n2/P(2)+x3P(e)RS/P(4)-
| -x4p(5)n4/P(4)-x5y‘1p(5)R5/P(1)+x°n6+x7yp(1)R7/P(5)-

j . -xayP(1)RB/P(é)-ng(4)Rg/P(6)+k1OP(2)R1O/Pfa)+
| YMe(a)r,,/p(8)=x"%y " p(4)R, /P (2)

where for convenience the suffix bc is dropped, anq‘R(d) is

written as Rd. Thus wri:;ng |

fF(x)N'/P(O) = & t
d=0

we can use (4.36) and the expresslion for f(x)/P(0) given by

xd
FEINE

- {1.1) to find each t, as a linear combination of Ry in which

d
each Rd occurring is multiplied by some multiplicative

combination of the ‘P{a); for example we find that
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1y = <P(2)P(6)(RG+R)/P(1)P(3)=P(3)P(4)R/P(2)-
“yP(3)P(6)R,/P(4)P(5)+y%P(1)(Rg-Ry)/P(6)+
+yP(2)P(5)R, ,/P(3}P(4).

If in this example we define T2, the "normalised® form of

t

2’ by

T, = -y-zp(ﬁ)tz/P(1)

then we find that
| T2=-B(R6+R1)/k-BCbR2—ABc'Rd-R6+RB—R1O/K,-
and the coefflcient of each Ry in this equation is equal to

a simple expression in l, m'y, n, 1', m, and n', as followss

-B/K = -m'/n | | by (2.12)3%
-BCb = =-m{m/n-K}1 by (2.12),(2.13), and (4.30),
= =m(=1/m-n/1-1/k-1)/1. by (1.17) and (2.47),
= m'/i-n/1+1 o by (2.10);
-~ABc'= =1"/n-1 by (2.11),(2.12), and (4.34).

+ By proceeding in the above manner for all.the ty suitably

normaliéing the td in each case, we arrive at the following:

To = Y-1to =m(R°+R12)/l+l(R1+R11)/n+n(R4+R8)ﬁ+Rﬁ,:
T, = y'2p(5)t1/9(1)=-m'ao/1 +(—1/n-m'/n}(R{+B12)+
-'%(-m/n+K)R2+(-l/m~l/H}(R5+R9)+R7,
T, = =y 2P(6)t,/P(1)=-m" (R +R,}/n+(n*/1-n/1+1)Ry+

| ~+(=1'/n=1)R4-R +Rg-R, /K,
-y‘1P(6)t3/P(4)=-L'Rﬁ/h+(-n/mab'/m}(R4+R1il+“
\ +(-l/m+K)R7+(-n/l-1/K}(R3+R2)+R9.

=
[




y'1p(3)t4/P(2)=nRa/mh+(~m'/L'+n/Lr)(n12+n4)+

T =
4

+(-n'/1'-1/w)a3+(-m'/n'+w)(Ré+n5)+n1b.
Ty = y-1P(5)t5/P(3)=-n“(R4+Ro)/l+(n'/m-l/m+1)R9+

--+(-m'/l-T)Rs-R6+R11-RS/k,
a450 Te = =P(2)t/P(4)==1" (R +R,)/m+ (1" /n-m/n+1)R +
--+(-n'/m-T)R1d-H6+R1é-R5/K,
2 = P(3)t,/P(6) =I(R11+R8)/m'+(-l/n'“m'/n'+1)Rs+
=‘+(n/m'—1)R2-R6+Ro+kR7,
P(1)tg/P(2) =n{Rg+R,,)/1 +{-n/m -1 /m' +4)R +
-+(m/1'-1)Rf*R6+H1+KR9,
9 -P(2)t9/P(3)=-n'R4/m+(-m/1-n'/l)(R°+R8)+(-n/1+K)R9f
'-+(-m/n-1/k)(R10+R7)+R2,
T, P(4)t,0/P(6)=1R, /n'+(=n"/m +1/m"} (R +R, )+
-+(-1‘/m'-1/w)n5+(—n-/1'+r)(ng+g1o)+ns,

|}

]
"

-3
n

—
il

c T, .= —P64)t11/P(5}=m(R{é+R1{)/nl+t-m/l“-n'/L'+1)Rio+
+(i/n'-1)Rg-R6+R4+kR2,
- T, = -yP(1)t12/P(5)émR{2/l'+(-LJ/n'4m/nL}(R{1+RO)+

+(-m'/n'¥1/1€)310+("1'/m'+i‘)(ﬁ-j+ﬂg)"‘ﬁ5-

+ We observe that, apart from Tot the-'I‘d falf'naturally into

two groups of six given by d = 1, 3, 4, 9, .10, 12, and d = 2,
2y 6, 7, 8, 11, respectively, and that with the'normalising'

factors as chosen, 1nterchanging'either Tyv Tgs Tyr T1é. Ty

and T10'7°r sz TS‘ T6; T11, Tb’ anq T7. cyclically
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}corresponds to interchanging Ro' R R R R and

8 R1v Ryor Rgr Ryps
Rys Ras Ry, Ryo* Rg» Rgy cyclically (leaving Rg unchanged)
if:we interchange 1, m', n, :1', m, and n', according to
(2.14) or (2.15); the two groups of six Rd occur.naturally
in Table 411.- TO is invariant under these interchanges. We
might have anticipated such a situation as an aid in finding
‘thé identities of (4.37) (cf. the proofs of Theorems 2.1 and
2.2).

We now find alternative expressions for the Td' This
time each palr of values of b and ¢ (with ¢ = b +:1) is
considered separately, so that we have 78 Tb;(d) (in the‘
obvious notation) to determine, viz. - T°1(d) to T56(d) for
d =0 tod= 12,  These expressions are found as in tﬁe

following examples.

to1(9) (again in the obviéus notatlon) is by definition
the coefficient of xg in {0x)N61/P(0), thus we have
, (4.38) to1(9)=P(o){-3yp(1)p(6)/P(Q)P(4)P(5)-P64}P(5)/P(2}P(3)P(ﬁn
from the definition of N61, the.exprgséion for f(x)No1 given
in (4.3), and the values of S(0) and S(1) given in (4.4); of
course4therterms.1$volving*Z(m,o) all disappear.  Multiplying
(4.38) by -yP(2)/P(3) we obtain - S

\ : ¥Tg,(9)
1

P(O)(amﬂa+ntc)f

P(0)(31'-3m+nn'/1=n) by (4.29) and"(4.31),

P(0)(-3m+4l'=m'=n"/K)




Since T61GO) =y

=40-

by (4.13) (divided through by K) and (1.17). Thé method of
this example applies when d # O.  When d = O the procedure
1 slightly different.
t,4(0) 1s the coefficient of x® in f(x)N},/P(0), and
proceeding as in the previous example we obtatin
ty,(0) = {-3g(2)+g(e)-2}/P(0).
| -1to1(b) this equatlion becémes
yTo1(03 = P(O)(-l+m+2n+l'-2m'+n')
by means of relations (4.35).
. A complete set of alternative values of yTbc(d)/P(O) is
given in Table 4.2 at the end of this Part (page 46).

By equating our two expressions for each Tbc(d) we now

-havé, for any fixed values of b and c, a set -of 13

simultaneous linear equations for Rbc(d)(d=0 to 12). Moreover
these equations have a unique solution; this may be seen by
proving that a determinant is non-zero, but it is easier to

observe that the equations are in fact the necessary and
12
z Rbc(d)xd-be the quotient of

sufflclent condltions that
‘ d=0

two glven power series. Accordingly to prove Theoxrem 4.1 all

that remains is to show that for (b, 9 =0, D to &, 9
respectively the values of the Rbc(d) given in the thecorem
satisfy these equations. ' In otherfwords we need to show that

for each of the 78 Tbc(d) the ‘value found by substituting for




}the Rbc(d) from the theorem in the appropriate equation of
(4.37) agrees with thé value given by Table 4.2, This is
tedious but straightforwird; we proceed as in the following
example.,
‘ Consider T°1(1) as given by substituting for the R°1Cd)
from the theorem in the second equation of (4.37). Each
Ro?(d).is expressed in the theorem as the sum of twe brackets,
one multiplied by U and the other by 13V. We write down and
simplify {by means of (4.8) to (4128)]3the total contribution
of the U-brackets and the total contributlon of the V-brackets
separately, and combine the resulting two expressions. . The
contribution of the-vhbrackets is
\-m'(-21-2m-2n+m'+n'-Kl)/}+(-1/n-m‘/n)(-l+3m-21'-Km-?Kn)+
c+{=-m/n+K) (3m=21"'+m ' +n'+n'/K}+(=-1/m=1/K){31+m-2n=1"=m'+2n ' -2Km+
+1/K)+(=2n+3m"'-n'-m ' fK)
= (-31+bm-n-21'+3m'+2n')+(4KI+3Km+1'/K—m'/K-Qn'/K)+(-l'/K2)+
+(2/K2+3/K-34K) 1/ n+(=1/K2+2/K)mn/ 1+ {=2/K+2) nl/m+
(=141 k=301 /me (4 K=2)m2 nw (24041 ) 12 /nt (=1 /K2 42/ )n2 /)
and this expression, on substituting for l'/Kz,,lm/n, mn/1,
n1/m, 12/m, m%/n, 1%/n, and m%/1, from (4.8) to (4,16) and
(4.23) to (4.28), reduces to
%F(41+2m-21'+6m'-m'/K)+(81+11m-nf6L‘+13m'-3nl)+

+(3K1+2Kkm+1"'/K=5m* /K+n' fK)



which expression, on substituting for each term in the third
bracket from (4.17) to (4.22), reduces to

(4.39) F(l=1"+m'+n’'=-m'/K),

only terms containing a factor F remain.  The contribution of
the U-brackets is

-m' (-51-3m=3n-21"'-2m"'+3Kn)/L+(=1/n=m'/n) (-B1+7m=-51"+4m'+2n " -

'.FBKn-SI'/K)+(-m/n+K)(7m-bl'+4m'+4n'+3n'/K)+(—1/m-1/K)(51-

~7n+31'=2m'+n'=5Km+1 ' /K)}+(-1-3n+6m'-6n'+2m' fK)

-=(-71+17m+n_51'+7m'+4n'}+(13M1+7kmL3L'/k+m'/K-n'/w)+(-L'/x2)+

+(3/K345/K%410/k=7) Lm/n+(3/K=3)mn/ 1+ (=1 /K+7 ) n1/m+
+(=1/K2=3/k=5)1%/m+( =4/ K2~ 11/¥=7)n? fn+(3/k% +5/k+8) 1 /n+
+(2/K%+3/k)m? /1
and this expression, on substituting for lVK2, m/n, mn/1,

nl/m, 12/m, mz/n, Lz/n, and m2/1, reduces to

F(13147m+51"+14m'+31 ' /K+6m' K }+(281+435m+3n+91'+25m ' -4n" )+

+{13K1+7Kn+71 ' /K+8m' /K-3n"' SR )+ (=31 /K°=3m" /K?)
which expression, on substituting for each term in the third
and fourth brackets from (4.47) to (4.22) and (4.23) to (4.28)
respectively, reduces to

(4.40) F(31'+13m'~3n'+3m'/K)}+13(-1+m+1'+2m"=n"),

only terms containipg either a factor F or a factor 13 remain.

Multiplying eipressions (4.39) and'(4.40) by 13V and U

s



) respectivel&, and adding, remembering that FV = U, we obtain
the following expression-for T01(1)
FU(31'+13m'=3n"+3m" /K)+130(m+3m ' =m" /K),
and thls expression, on substituting for m'/K in the second
bracket from (4.21), reduces to
| FU(31'=3n'4+3m'/K).

‘Since FUzy !

P(0)}, this is the same as the value of T¢1(1)
given by Table 4.2.
We perform the above verification for each of the 78 Tbc(d);
the working is always essentially the same as the above, and
is therefore omitted. - This completes the proof of Theorem 4.1.

As in the case of q = 11, there are certain linear

congruence relations (but no ldentities) between the rbc(d) for '

b'a given value of d when q = 13; if we write
s;(d) = r ,(d)-6r,, (d),
’ s,(d) = ry,(d)-51, (d),
s,(d) = r23(d)-4r56(d),
s,(d) = Taa(d)=3r,, (d),
s5(d) = r,.(d)-2r, (d),

we have, modulo 13,



—d4-

53(0)-654(0)+555(0) s 0,
52(1}+3sa(1)-5s4(1)-555(1) = 0,

54(2) = 0O,

84 (2)+s,(2)-55,(2) +s(2) = 0,
5,(3) -5,(3) = 0,
sé(3) +sa(3)-354(3)-655(3) s 0,

81(4)-452(4)+453(4)-554(4)"655(4) = 0,

5,(5) = 0,
8,(5)=25,(5)-45,(5)-25,(5) = O,
s,(6)+2s,(6) -5s.(6) & 0,
52(6)+553(6)+3s4ce)+395(6) = 0,
91(7)-352(7)+653(7): = 0,
5,(7) -53(7)-354(7) ~s5(7) = 0,
5,(8)+65,(8)-58,(8)-5s,(8)-3s4(8) = 0,
s,(9) -6s,(9) =

s,(9) =455(9)+2s,(9)~65.(9) = 0,
5,(10)+355(10) -5s,(10 = 0,
g 0,

s, (10+65, (10 +55 , (105, (10)
s1h1)+5s201)—35301)-35401)-3s5h1) = 0,
5, (120425, (129455, 19 =55, (12)+3s, (12) = O.
The above congruences with each rbc(d) replaced by the corresponding
Rbc(d) follow immediateﬁy fiom-Theorem 4,1, and for each value of
d we simply divide through by the normalising -factor contained in the

Rbc(d) (the coefficients of the rbc(d) in the congruences are such
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that the terms involvi

ng Z(m, 0) disappear)
}
We may note that since

o 12 n
@(d) z P{13n +d) =32 % N(b, 13, 13n +d)y
n=0 n=0 b=Q

w 6

=% N(O, 13, 13n+d)y 42 3. 2 N(b,s13,13n+d)y"
ns=0Q b=1-n=0
{using the relation N(m, 9» n) = N(g = m, qs n) given in (ASD)}
= ro(d) + 2b£1 rb(d)

1(d)+3r12(d)+5r23(d)+7r 6(d)(mod.13)
{using (6.8) and (6.9) of (asD)},

34(d)+9r45(d)+11r
Theorem 4.1 may be used in an
alternative proof of Theorem 3.1,




—d b
. Table 4.2
.Y.lbci_).u_d P O)
) |
b; 0,1 1,2 2,3 3,4 4,5 5,6
0| =-1+m+2n+ | 2l-mim'- “l4m=n+ -1=m+n- l4m+m*+n’ -n=1'-n" -
+1'-2m'+n'| -2n’ © +m'+2n’ -2m'-n' i
!
1] 31'-3n'+ | =1'=m'/K | 2n° 1-2n" -2142n" l-n' 2
+3m' /K - '
2| 3m ~m"' © 0O -m+1l'+m’ 2m=~21'=2m' -—m+l'4m*
3| n-m' -2n+2m’ n Lement=1'/K | =m*'+2n'+ |m'=n'-1'%K
\ | +21' /K
41/-1 3l+m’ -31-2m' “l4m! 1=-m+¥n -21+2m-~
' . -2Kn
5/3n—3m'—4n' -n+m'+3n"'| -n' 0 0 0] ;
, _ . ;
)
6y ~1l+l'+n' |21-21'-2n'} =14+1'+n' -1 21 -1
!
71 © - 0 -1 21 n+l' -21-2n-21"'
8| O -m=n~n' 2m+2n+2n' “m=n-n' “-n 2n
9{-3m+d4l'~ |m-31'+2m'+|1'-m'-n'/K} © 1! -21"
-m'-n'/K |+2n'/K
10| O : 0 m~n+K1 -3m+2n- 2m-n-n'+ ‘m+2n’
-2K1 +K1
!
110 m l-m4m*«  |=21-m=2m' |l+m+m' O
12| 3n ‘1=-2n-Km -21+n-1'+|14+n+21'~ -n-1"' ‘10
+2Km ~Km | !
|
] ,.
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CPART 2

q = 17 throughout this Part

5. We write

!

-x"Tp(2)/p(1),

-3
i
[}

1]

-x""2p(6)/P(3), o, = x°P(1)/P(8),

1 2
o, = -x""P(3)/P(7), oy = x""%(8)/P(4), o, = -x"OR(7)/P(3),
e, = x 1'P(a)/P(2), ay = x°P(3)/P(6);

then by (ASD), Lemma 6 (with q = 17) we have

' -12 17, _ | |
(5.1) X f{x)/f(y ') = 6, +a tagta tagta bato gt

In (5+1) we replace x by w_x where wr(r = 1 to t7) are the
seventeenth roots of unity, and multiply together the

seventeen resulting equations obtaining

)
17
-12.18 18,17, 12, 28, 14, =10,
(5.2) -y £ 0(y)/f Ty ) L] a W W +u3.r +u4wr togw

.. =5 -11 3
ta w THaow  dagw +1).

Now as W Tuns through the seventeenth roots of unity so does

w2 ,» 80 that the product on ‘the right-hand side of (5.2) is

r

equal to
17 .
3 7 “12 28 14 -10 =5 =11
11; (a1wr+o2wr G W +_4wr tagW THo W Udaw THagw +1),

and is thus unchanged if o1, o2, Gas G, us, “6’ Gy and Ggs

are interchanged cyclically.  The product is thus a linear

i i i i i U | i
1 "2 *a 'a 's ‘e 7 '8
combination of terms [u a,% a, o4- 4" @, @, ag ] where

£1 to i, are non- negative integers, and considering the left-

hand side of (5.2) such terms as occur can only involve x in




terms

(or a
oceour

(5.3)

(interchanging i, 1y g 140 1g) i

17
X .

of y Thus 1f

i
ny other term of [a,

1

s we must have

- 12i, + 281

-711 2

3

48—

i
%
i
82

+'14i4

gives the same congruence}. '

Now, writing _
a, = P(1)P(6)/P(2)P(4), a, = =yZP(3)P(1)/P(6)P(3),
a, = vy 2P(8)P(3)/P(1)P(2), a, = -y 'P(7)P(8)/P(3)P(6),
ag =y 'P(4)P(7)/P(8)P(1), a. = P(5)P(4)/P(7)P(3),
a, = =yP(2)P(5)/P(4)P(8), a5 = yP(6)P(2)/P(5)P(7),
it is easily verified that |
W17 2 g4 12 M W7 a5 g14 .15 u17'='a4 a12-311a9.a
g T 85 83 8, 35 94 8y dg 1 5 6 %7 % ¥ %2
17 _ 4 12 11 .9 .5 _14 _15 17 _ 4 12 _11 .9
GM:Z = a, 3, 8g a6 a; ag a, Gy = a7_a8 a, 32
17 _ 4 _12 11 9 5 14 15 17 _ .4 12 11 9
@y = a4 a5 a6 ag a8 a1 a2 ' o, = aB a1 a2 a3
W17 2 g% 12 119 5 14 15 W17 24 02 1 9
4 5 6 “7 " "1 "2 "3°7 8 172 "3 T4

51

6

6" 7

- 1117 + 3i

8

1., and ig, cyclically

0.
(mod.17)

It will be noticed that all of the equations (54) may be obtained

from-any one of them by interchanging 8,0 853 355 340 as) g9

a4 8gs and §1; Qo Gy G,98gy Qoo Gy Qg cyclically. By

(Pf4)

.«since.a1 a, a, a8, a

- a

6 7

5

a‘l = -1 [ N !

8



- ¢ 09 60 93 9 Iy T 97 Ig
= (aj8,858,85a,8,2,) 8,2 %878, e %8 Ce,

‘where o= 1011 + 2412 + 1413 +.26i4 + 3215 + 1816 +,2817 + 161B

an_even Integer, and

Oy = 15i, 4 141y + 51, + 91 + 111, + 120 + 41,
op = 1515 4 141, ¥ 51, 4 91, + 114, + 121, + 41,
o, 3 151, + 141, +'516 +91, + 111g ¥ 128 + 41,
Ty = 1545 4 185 4 S1o 4 91 4+ 111, + 125, + 4,
oy = 151 + 141, 4 51 + 91T'+ 11ié + 121, + 41,
Gp = 151, + 14ig + 51 4 91, + 114 + 121, + 44,
O = 151 + 141, 4 51, 4+ 94+ 111, + 121, + a1,
Sy = 1511 + 1412 + 513 + 914 + 1115 + 1216_+ 41,3

moreover O + T, to T+ Ty are multiples of 17 by (5.3), hence

i i i i i i i i
; . 1 2 3 4 5 6 7 8
any expression of the form a, a2 d3 a4, ay % ?7 q8 _for
which (5.3) holds is of the form
i, J j J J i, 3
1 3 4 5 6 7 -
2, a, 3 24 a5 a6 a aa where j1 to j8 are non
" negative integers, : Thus every term occurring in the right-
J J J b J .3
. 1 2 3 4 5 6 7
hand side of (5.2) is of the form a, a,% az" 4, a.” a, a

and such such terms. occur in cyclically symmetrical sets of

2 4

a

eight terms each.,
 Further, D (5) is the coefficient of x> in 1/f(x)

regarded as a polynomial of degree 16 in x with coefficients

involving x in terms of y = x17, 80 that y-11f18(y)§(5)/f17(¥T5

I8
8

]



is the coefficient of xo in

~12.18 18, 17 . ‘
Y f (Y)/{f (y )(01+32+03+a4+a5+06+a7+q8+1)}. This is a

cyclically symmetric polynomial of degree 16 in

G a2, 40 n4, g uﬁ, Qo and agi and the terms which.give

the coefficient of x° occur only in symmetrical sets of eight
Je Iy 3y 3, dg dg Iy J

expressible as [a1 8," a," a ag" 8, 8, ag

4 aJ. as before.

‘(This 1s not true for the coefficient of any power of x other

than O; the eight-terms of [a4], for example, do not
appertain to the same power of x.)
- Thus writing
' -2.3 3, 17
F=y 2e3y)/e3y )
we have the followings
6 17, .6
LEMMA 5.1 F~ and yf(y -")F* §(5) are each equal to a
iy 3, 35 4, Jg 3¢ 37 JB]

linear combination of terms [a, a,“ a,” a, ag” 8 a, ag

We now wrife

(5.5) to (5.8) b1 = 8,8, b2'= 853, b3 = 2,23, b4 = a3,

sb that

(5.9) b1b2b3b4 + 1 = 0.

<7, 6, 5, 3> and <8, 4, 2, 1> give, respectively,

1 3

(5.11) b2 + b4 + 1

While <8’ 5’ 4’ 3>, (8’ 7, 5_’ 2), <7, 6, 4,.‘2>' <6’ 5’ 4’ '1)‘

(5.10) b, + b, + 1 = 0, ' A .

O,

<5, 3, 2, 1>, <8, 6, 3, 2>, <8, 7, 6, 1>,and <7, 4, 3, 1>,

give, respectively,

e 18
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(5.12) to (5.15) a, =b,a,; + 1, a, =bya;+ 1,

a, = baa4 + 1, a, = b4a5 + 1,
(5.16) to (5.19) a, = bya, + 1, a, = bya., + 1,
a7 = b3 8 + 1, ag = b4a1 + 1.

It will be observed that each of the equations (5.5) to (5.19)
remains valld when b1, b2, b3, b4. and a, ags 8,9 3,40 8o a0

agy 35, arve interchgnged cyclically. We are now in a_position.
to prove : ' o
LEMMA 5.2 « Any expression of the form [aj'| a22 aia ai4 ags aib
ai7 338] is equal to a linear combination of terms

k1 k k k

‘ [b1 522 b 3 b44]. where k1 to k, are non-negative integers.

3 4

Eliminating a and a from equations (5.12) to

2! aa! 4!
(5315), and using (5.9), we have

(5.20) a; + ag = b, b h3 + b, b + b, 1.

Muliiplyihg this equation through by 3,y and substituﬁing

for a, ag from (5+5), we have
2

(5.21) aj = (b1b2b3+b 2+b +1)a - hﬁ'

. Now, by means of (5.13) to (5.?9). each of the a, to ag can be

expressed in the form

(5.22) Pa1 + Q,

where-P and Q are polynomialé in b}.tb b4 with integral

coefficients. - (We gould of course have uséd anyfother of the
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) a, to a, here instead of a,.) It follows that any expression

RS PR PR D S PR DA PR
of the form a, ay" az" a8, ag 3,7 3, ag  may be expressed
as a polynomial in 3. the coefficients being polynomials in
‘b, to (with integral coefficients). In view of (5.21)

1 :
j1 32 33 34 J5 16 ?7 g

this means that any a, a, _a3 a, ag" 8, ay ag is equal
to an expression of the form (5.22).
J J 3 J J oo 3 J '
. 1 2 3 4 5 6 7 B
Now in [a1 a,” ay” a,” 8y 6 a,’ ag ] the term

J, 3, 34 3, 3 I, 4 )
1 2 3 4 5 6 7
ag 8" a,” agt a,” 3, ay a s

(24,ag), (al,ab), (33,ay), and (a4, ‘ae), also occurs. Further b, to

obtalined under the interchanges

b, are not affected bf these interchanges; so that the sum of
¢ 3, 3, 35 34 g g 37 Jg
the two terms of [a1 a,% a," a2, agT ag ay aB_] under

discussion 1s equal to an expression of the form

P(a, + a5) + 2Q,

1 :
using the cyclic properties of our relations. But by (5.20)

this expression is equal to a linear combination of terms
bka bkz bka Ska
1 2 %
(again using the oyclic properties of our relations) the

b I, h] 3 3 i, J b

3092 Y3 Ja . Js Je Y7 ‘8]
other three palrs of terms of [a1 a," ag" a, ag” a, a, 3g
k k k

correspond t¢ the other three terms of each [b11 b22 b33 b44].

Hence Lemma 5.2 follows, since clearly

+ We further write

— . . \ !
| N = by by + D, by
| _ .2 2 2 2
i b= by b2b3+b2 b3b4+b3 b b1+b bybys

and prove the following:
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k1 k k k
LEMMA 5.3 Any expression of the form [b1 b

ié equal‘to

“S(N) + pT(N),
where S(N) and T(N) are polynomials in A with integral
coefficlients.

- By (%.10) and (5.,%1) any expression of the form
K k
' 2

b

4 2 b33 b44 can be expressed as a linear combination of

1l 1

terms b11 b 2

2 where 11 and';2 are non-negative integers.

aClearly then, performing a cyclic summation, any

k k k '

3
3

1

k :
b22 b b44] is equal to a lingér comblnation of terms

1 1 S .
(b 1 b 2], and we need only . consider the latter expression,
3 2 .

- rather thanlthe formerz.

Writing
¢4 = Pybgy oy = byby,
we have by multiplying (5.10) and (S.%11) through by b, and b,

respectiveiy

(5-23) b1 = - b1- c1.’
2 el L] -
(5.24) b2 = b2 ch X .
In view of (5,23) and (5.24) any b11 b22 may be expressed

in the form

A + Bb1 + Cb2 + Db1b2,

where Ay By C, and D, are polynomials in c1 and c2 with

integral coefficlents. - Then, since ¢, and c, are not affected

1

-
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1 *1

1 2 :

by the interchanges (b1, ba) and (b2, b4),'b3 b, is equal to
A + Bbg + Cb, + Dbgb,.
Hence, using (5.10) and (5.11), we have
1 1 1 1
(5.25) 1 2.3 ,°4
b, b, +b3 b4 = E + D(b1b2 + b3b4),

where E = 2A - B - C.
. Now, using the definitions of 4y and'c2, the daefinition -

of A\, and (5.9), may be written as

(5026) . C1' + C2 = k,
(5!27) C1C2 = -1" .
respectively. - From these two equations we derive
(5.28) 2 = ne, + 1,
(5.29) c2 a hc, + 1.

2 2
In view of (5.27)y (5.28), and (5.29), ‘any polynomial in ¢,

and ¢.,with integral coefficients, méy be expressed in the form

2!
-G + Hc{ + 102,

where Gy H, and I, are polynomials in A with integral coefficients.

. Hence we may write (5.25) in the form
) 1 1, 1

1 2 1

1 1’2"+ by by
where -G', ‘H', and 'I', are also polynomials in M with integral

2 _ , ) .
b = (G + He, + 102}+(G' + ch1 + I'cz)(b1b2+b3b4),

coefficients.'AFurther since 1nterchanging,b1. b2, 53, and bd’
cyclically corresponds to interc-hanging,c1 and Cos and leaving

A ﬁ'unchénged, we also have )
1 1 1 1 « - -
b.1 2 1 2 _ : ' .
b = (G + He, + Ic4)+(Gl + H'c, + I‘c1)(b2b3+b4b1).

2 b3- + b4 1
. Thus, adding the last two equations, and using (5.26) and the



definitions of <y and Coo we ocbtain

1, 1 :
1 2 = 1 2 .l 2 "
(5.30) [b, b,“] =26 + HN + IN + q-[p1p2]+ﬂ [b1b2b3]+; [b,b,b5]

+

But R - PR |

= 1

[b1b2] = (b1 +_b3-)(b2 + b4)

by (5.10) and (5.%1), and _
(3.31) b + [b1b2b§] = [bfb2b3]+[b1b2b§] = (b,by+byb,)[b bylah.1.
- Hence (5.30) becomes ‘

[b:1 b;2] ='026+Hx+1x+ci+r'x) + p(H'=1"),
and since both brackets on thg right-hand side of thls equation
are polynomials in A with integfal coefficientsy Lemma 5.3
follows. |

We have the followlng relation beiween N and ‘pi

(5.32)  p2 = ap + A+ % 4 an 4 15 = 0,
) ky k, kg k,
- 8ince p“ is certainly of the form [b1 b,“ by by, ] we know

. by Lemma 5.3 that a relation.of the above form exsts, and the
coefficients in the equation are found by'comparing

coefficients of powers of y in the expansionﬁ of the app:opfiate
quantities as power series in y3{cf. the proof of (AH),

equation (8.13).}} We give a direct proof alsos we have

2 e re2 K 2
w€ = Au = [b1b2b3][b1b2b3],

using (5.31),

‘f--[01(b1b2+b3b4)+c2(b2b3+b4b1}}{cé(b1b2+b3b4)+o1(b2b3+p4b1)}

w2 W2 2 2yry 42
= c1c2([b1 b2]+4b1b2b3b4) (e§ + 02)[b1b2 ba].

~

Corw2 127 o4 2 2,
= [b] byl - 4 - (2% + 2)[b,b7 b,]

Pl

wink
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j by.(5.9). (5.26) and (5.27).  But

2 .2 2 2y 2 2
(5.33) [b1 b2] = (b + ba)(b2 + b4).
| = (1 - 2b,bg)(1 - 2b2b4)
using (5.10) and (5.%1),
= w2h = 3

using (5.9); and

2 2 2 2y
(5.34) - [byb ] b, (b7 + b3+ b bg(by + by

b (1 - 2b1b -
4 | 3)+b1b3(1 2b2b4)
=N + 4.

Equaﬂon (5.32) follows.

”

. Now, by Lemmas 5.1, 5.2, and 5.3, FQ and yf(§17)F6Q(5)
are each equal-to an expression of the fofm S(h) #+ pT(X).
Since the lowest powers of y in the expansions of}Fég N, and
‘w, as power serles in y, are -12, =2, and -3, respectively, we
assume a form for Fo thh S(N) of degree 6 and G( ) of degree

4, We find the 12 coefficients involved in these two
polynomials by comparing coefficients of y~12. y-11,...,y—2,
and yo, (they appear seriatim), and check the values obtained

1 by comparing coefflcients of y-1. The resulting expression

for £® i1s found, using (5.32), to be a perfect cube, and in
ifact we have . ' ' . ' : .

(5.35) CF% = A% - 200 - 56 + B,
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since Fy Ny and p, are real for real y. Similarly,
in the case of yf(y17)F6 §(5), s(A) and T(M) are of degrees 5

and 4 respectively, and we find the 11 coefficieénts involved

by comparing coefficlents of y—11, yd1o, ...,.y’z, and y°,

L]

- {again they appear seriatim), and check the values obtained by

. (5.36)

1
comparing coefficlents of y 1; we obtain

yE(y Tyg® E(s)-—834h5+31236k -34498N +126757k2-14022h-

-112984+p (~TNY+5756M -69280h2+162020k 164885) .

. The equations (5.32)y (5.35), and (5.36), for q = 17, are of

course analagous to (AH), equations (8.13), (11;7), and_(11.9).

for q = 11,

- We now write

¥ = b1b2 - b2bj + b3b4 - b4b1

Then

o
il

2 [bf-bg] - 2[b1b§b3]+4b1 2b3b4

(537) = - 4 - 15 - |

by (5.9), (5.33}, and (5. 34).> Also, by (5.33) and (5.37),
F252 (- 4k -15)(2\2 - 20N 5@ + 8u 1},

and, using (9.32), it 1is easily verified that the right-hand

side of this equation is equal to .

(-2u + 9% + 30)%;
hgnce we have | o .
(5.38) ' ~ F = -ép-+ gn + 30, .-.f _ ‘\

where the sign of the coefficient of the lowesti power of vy in

\
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the expansion of each side of this equation is examined to
determine the appropriate root. Thus, instead of A and p, we
‘may take & and F, as new variables; in fact from (5.37) and

(5.38) we have

~(52 + 15)/4,
2

(5.39) S

-(4Fs + 95° + 15)/8.

(5.40) "
- Substituting for A and p from (5.39) and (5.40) in

(5.35) we obtain the following relation between anﬂ'F:

(5.41) -(b2 - 17)2 = 16F(F + 4b).

- Also, substiiuging for M and p in (5.36) we obtain

ff(y17)F6;§(5) as a polynomial in » and F.  Further since

'(5.41) is a quartic in &, this polynomial is equal to

another polynomial in & and F of degree 3 in &; in fact we

‘have
syf(y  )F® B(5) = »3(84.17%F% + 20.17°F) +
+52(115.17F%+316.17%F%4177) +
(5.42) 43 (28F +2476.17°F +32.17%F) +
+(6677.1726% + 124.17%F2 - 9.177)

{it is of course obvious from the form of (5.39), (5.40), and
(5.41), that the right-hand side of this equation must be a
fqnction of 52, F&, and F2, only}.

\ We further write

my= - yP(z)P(s)P(s)P(s)—vP(1)9(4)#(6)P(7), n,=-y2P(1)P(4)P(2)P(8),

1 _
m2=P(6)P(7)P(2)P(8)-Y2P(3)P(5)P(1)P(4), n2=p(3)P(5)p(o)p(7).
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Then

(5.43) and (5.44) m1/n1 b, - ba, m2/n2 = b, = b,y
7
~y2E ey ) /ey )

bybys n1/n2 = ~b,b,.

(5.45) n,n,

(5.46) and (5.47) n2/n1
Also, '

2, 2 2 2 .
using (5.10), (5.43), and (5.46), i.e,

2 -2
(5.48) my = nj 4n,n,,

and correspondingly we may obtain

2 _ 2
(5.,49) my = nj + 4n1n2.

In terms of these new functions we have

- . =2 7 Pt
(5.50) & = (by = bg)(by = by) ==y “fly Imymp/Ely)
by (5.43), (5.44), and (5.45), and also

2

(5.51) 8% = - .ax = 15 = - 4(b,b b2b4)f15 = -4(n2/n1-n1/n2)-15s

| 3"
by (5.37), (5.46) and (5.47).  Now (5.41) may be written In the

form .
16(F +-2b)2 =32 + 3052 + 289,

but by (5.51) the right—hand side of this equafion is equal to
2

16(n1/n2 + n2h1)_,
hence we have

- F +:25 = -(n1/nﬁ +_n2/n1),
where the sign of the coefficient of the lowest power of y on
each side of this equation is examined to determine the
abpropriate root. * Now the right-hand side of this equation is

equal to
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“2e(y V)2 + n3)/E(y)

by (5.4%), (5.48), and (5.49). Thus using (5.50) we have

(s.52) y2e(n)E/ety V=gt (/600 = (g 4 m?,
whence _
(5.53) 20y )62y ") = m, 4 my,

where again care is taken to select the appropriate root..

Fhrthér, in view of (5,50) and (5.52) the right-hand side of

(5.41) is equal to 7 |

16y 462 (y) (m -my )2/ 62 (v 7,

whence, taking the appropriate square root of this expression,

(5.54) b 2eq7=ay "2 (y) (~m 4m) /£ 0y ).

We note‘that elimination of & frdm equations {%5.50) énd

(5.%4) gives

(5.55) n2 n2 + ay253(y) (m =my)/e2(y ) -ary 62y /6%y
Making a slight change in notation for convenlience, we

7y=0.

now re-state (5.53)y (5.55),(5.50)y (5.42),Iand (5.41), in

order, as follows. | |
THEOREM 5.1 1f we write

= £2(y1T){-yP(2)P(8)P(3)P(5)=yP(1)P(4)P(6)P(T)}/E%(y),

= 20y ) P(6)P(7)P(2)P(8)-y2P(3)P(5)P(1)P(4)}/E%(¥),

=
|

=
1

then we have l

\ Mo+ M, =1,
: ' 2 2 ‘ 2 . A~
t S MY M o+ a(My - M2}/F'- 17/F< = 0,
_ ,m2.3 3, .17 .
where F = y <f (y)/t°(y"'"); and if we further write
e-.= -M1M2’
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thénlwé have
syf(y'7) B(s) = ¢3(84.172 + 20.17%/8%) +

C 4e2(115.17.4316. 17 /F2417 7 /EY) 4

ve(2842476.17°/F2432.178/F%) +

+(6677.1?2/F2+124.175/F4-9.177/F6),‘ 1

. . ) l
where, from the last three equations but one, there is the

following relation between € and F ' . |
(e2 = 17/F%)% = 16(4e +1)/F2, |
8we conclude this Part by deriving the following simple

congruence

A(5.56)-E(5)sf2(y17)fb(y){7P(3)P(5)P(6)P(7)+6y2P(1)P(é}P(4)P(3)f
i - (mod.17).

'}  Since the only term on the right?hand side of (5.42) without

a factor 17 1is 2&6F5, we have ' ' [
(5.57) vE(y'T)F §(5) = =88 ' L (mod.17).
But from {5.51) o

a2 _ . 2. o o ‘

b = 4(n2 + 4n1} /n.‘n2 | (m°df17)o

and using (5145) . “
-1/“1"2=Y“2f(y17)/f(v)E¥'2f16(v) (mod.17) Y

since £ (y) = £(y'7) (mod. 17), so that, taking the

. appropriate sguare’ root, o ' . i

¥(5.58) - b 2y-1f8(y)(n2+4n{)' | ’ ‘ ﬂ\(moq.17).'

(5.56) follows immediately, from (5.57), (5.98), and the

definitions of Ny h2, and F.
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PART 3

Q@ = 19 throughout this'Part.

6. We write

0y = =x7%R(2)/p(1), o, = x"3p(a)/p(2), ay = x""p(8)/p(a),

o, = x%%p(3)/p(8), o4 = -x"p(6)/p(3), sg = x"3p(7)/p(6),
-x>%p(1)/p(9),

“xP(8)/P(7), ag = ~x""%(0)/p(s),

t

-3
~
it

then by (ASD), Lemma 6 (with q = +9) we have

(6.1) wx~ f( )/f(y )—u +c2+a3+a4+a5+u6+a7+a8+09+1.

In (6.1) we replace x by w.X where wr(r =1 to 19) are the
nineteenth roots of unity, and multiply together the nineteen

Tesulting equations, obtiining

19
_,=15.20 20, 19, 1 “ha w134, 14, 20
p2} -y 55y )/f (y 7)= E(a1wr Taow, Tta 3%r o 4wr=+

w15, =3 7 e w-10,. 36
+a g Wy LPL R T tagw +a oW +1J.7

© Now as W. Tuns through the nineteenth roots of unity so does

wf, 50 that the product en the right= hand 51de of (6 2) is

equal to

36 0 w8y W13, 14 20 -15, -3 7 -10
B:(“ﬂ"r O oW ta W] Taw, Tt ws tagw Vtaow tagw tagw_ +1).

and is thus unchanged {f G,y a2, c3, Gur @ 5 aé, 77 8’ and

Ggs are interchanged cyclically. The product is thus a linear

1 i i i i i i i
2 3 4 5 6 7 8 9
comblnation of terms [u1 8% 637 a, 65" a.” a, ]

where 1 to i9 are non-negative integers, and considerlng the

left~hand side of {6.2) such terms 8s occur can only involve

Y
LI

. N i
B e T S ———
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‘ ‘ i, i, i, i, i, i, i, i
- .19 1 2 3 4 pa & 7 8
x in terms of vy = x'°, Thus if a, a," 6,7 0, 0.l a " a, ag

‘ i i i i i i i i i
(or any other term of [u11 a22 a33 344 u55 “66 a77 a88 agg])

occurs we must have
(6.3) -81,-131,-141,+420i,-151,3% +7i,=10,436iy = O - (mod.19)
(interchanging i1’12’13’i4’15’16’17’i8' and 19, cyclically

gives the same congruence),

Now, writing

a,=y 'P(6)P(7)/P(2)P(9),  a,=y 2R(7)P(5)/P(4)P(1),
ag==y  P(3)P(9)/P(8)P(2), a,==P(9)P(1)/P(3)P(4),
ag=y P(1)P(2)/P(6)P(8), 2 =-yP(2)P(4)/P(7)P(3),
a7=-P(4}P 8)/P(5)P(6), . ae=yP(a)P(3)/P(9)P(?),
ag=-y " 'P(3)P(6)/p( 1)P(5), |
it is easlly verified that \
19 16 2.7 13.5.3_12 19__16 2 7 13.5. 3 12
§1 -a2 §334a5a6 a7a8a9 ’ §2 =a, a4a5 68 35 agdgd,
19__16, ,2:7 .13 5 3_12 ! 19_ 2 7.13.5.3_12
a, =8, a5a6 73g 893,357 u.4.—a5 6 d,8gag a1a2a3 ’
(.4
19__16 2 7 13.5,.3 12 19_ 16 als’ 18 6_3_12
(15 36 6738 9 4 a2a3a4 N 0.6 —37 8 93132 838435 ’
19__16 2.7.13_5_3 12 19__16 2.7.13_5_3_12
Q7 —88 69313283 8435&5 5 GB —39 31323334 358637 y
19_.16 2.7.13_5 3 12
%9 T34 232%3%4%5 6%7%g

It will be noticed that all of the equations (6.4) may be

obtalned from any one of them by interchanging




81’ 82! 33! 34! 35’ 363 a»—,_, 38, 39, and 0-1, ﬂ2, uag 04, 0'5-,
Qes Gop gy Gg cyclically. By (6.4), since

a 8 9 ' 31 az 33 34 35 ab ‘37 aa 39

= (a 23,252

wher o= i i_: i :
e 30 1+32i2+213+34i4+1015+2816+2417+818+2019,

even integer, and

an

G = 12i.+3i,+51 ,+131i +71 +21_+1 +1619,

1 2 773 4 5 6 7 78
o, = 1213+314+515+13i6+717+218+19+1611
o, = 121 +315+51 +13i +718+219+i +1612,
g, = 1215+316+51 +1318+719+2i1+12+1613-
Gy = 12i.+31 +518+1319+7i +212+13+1614
Sy = 121 +318+519+131 +7i2+213+i +161
a =_1218+319+51 +1312+7i +21 +15+1616
Gé = 1219+311+5r2+1313+714+215+16+1617,
o ~ 1211+312+513+1314+7;5+216+i7+1618;

moreover O + O, to o + &, are multiples of 19 by (6.3), hence
i i i i i i i. i i

1 9
2 3 4 5 Y6 7 8 9
any expression of the form a1 a2 o, o, O L] §7 Gg Sg

. J J J J h

for which (6.3) holds is of tne form a 1, 2, 3 a4 5 a
s 1 2 3 4 5 6
7 %8 %9 |
every term occurring in the right=hand side of (6.2) is of

a where j1 to jg'are non-negative integers. - Thus



'I(6.11)to(6.13) d1

~b65~— |

J J ] J J J J J J
1 2 3 4 5 6 7 8 9
the form a, a, ap" a, 3, a, 7 8 a9 s and such terms

occur in cylically symmetrical sets of nine terms each.,

Further, §(4) is the coefficient of x? in 1/f(x)
regarded as a polynomial of degree 18 in x with coefficients
involving x in terms of y =‘xj9, so that y-14f20(y)§(4)/f19(y19)
is the coefficient of x° in

-15_20 20, 19 |
y T (y 3y )(u1+a2+u3+u4+u5+a6+a7+u8+a9f1)}. This

is a cyclically'symmetfic polynomial of degree 18 in

01: u2’ Gas Qy 65, ué, 67, 08’ and “95 and the terms which

give the coefficient of x® occur only in symmetrical sets of
: Jao 3 Jj J J . 3 J b
. . 1 2 3 4 5 6 7 8 9
nine expressible as [a1 a,” a,” 8,7 a v a .t ay ag” ag 1,
as before. (This is not true for the coefficient of any
power of x other than O; the nine terms of [31], for example,

do not appertain to the same power of x.)

+ Thus writing ‘
~3.4 4, 19
F=y “f(y)/f(y’)
we have the followlng:

LEMMA 6.1+ F° and yf(yig)F5 $(4) are each equal to a
by 3, 3, 3, de 3, G4 3 '
. 1 2 3 4 5 6 7 8 :
linear combination of terms [a1 a,” 8, @, a " a " A, ag ajﬁ
We now write

a1a4a7, b2 = azasaa, b

a,a,%a a taqa,,

3 aaa6+a6a9+agaa;

. = — +
a1+aﬂ+a7, d2 a2+a5+aa, d3 a3+a6 a4

(6.5) to (6.+7) b, = 3 = 3,243

= a235+35a8+aea',

(6.8) to (6.10) c,

c

§0 that \



N

(6.14) b1b2b3 + 1 = 0,

<9, 6, 5, 3>, <9, 7, 6, 1>, <7, 5, 2, 1>, <9, 5, 4, 2>,
<9’ B,t 4’ 1), <B’ 3’ 2, 1), <6, 4’ 3, 2>’<8| 7. 6, 4>’

and <8, 7, 5, 3>, give, respectively,

(6.15) to (§.17) 8,8, = as+1, a,a, = a,+1, aja, = a+1,
(6.18) to (6.20) a,a.,.2 2,41, aga, = a_t1, a a, = agti,
(6-21) to (6.23) a7a1 = 39"'1’ a832 = a1+1’ 3933 = 32+1o

It will be observed that. each of the eguations (6.5} to

(6.23) remains valid when bys by, by, and c,, Cos Cqs and

are

d

d and 31’ 32, 33, 34! 35’ 36’ a.?’ 38, 39,

10 Gpr d3»
interchanged cyclically. - We are now in a position to prove

LEMMA 6.2 ' Any expression of the form

_ 3 h] J J 3 J ig 3 b .
101 72 Ja Ja Js . dg 7 Jg g | -
[31 3,7 357 8, agT a8, ag ag ] is equal to a 1linear

k k k k k k k k k

. . ‘ 1 2 3 4 5 6 -, 7 8 g
combination of terms [b,  b,” by~ o,” o, °q d, " 4,7 4, 1s

where the square bracket in 'this case denotes a summation of

the three different terms obtained by interchanging b1, b2. b3,

and c1. c2, Cqs and d1, d2, da, separately, and k1 to k9 are

non-negative integers,.

- By eliminating ay and ag from equations (6.15), (6.21),

and (6.23), we obtain
I _— 2’ - ¢ »
(6.24) a, = a1+(?1l d1)a1,

and cieérly this equation remains valid when 3. a2. aa. 8,0

ags a1 8, a5y 24y and b{, bZ’ bys and d,» d,, dg, are
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interchanged cyclically. - Thus, by means of (6.24) and the

‘elght similar equations, each of the a, to ag can be

expressed as a polynomial in b,, b,, bas dys dys dg and

a1,with integral coefficients; and hence any expression of
J J J h Je g 3 jg
1 2 3 4 5 6 7 8 9
the form a, a,” a," a, a5 ag. a, ag ag is equal to

‘such a polynomial. <(We could of course have used any other of

_the a1 to a9

definitians of b1, Cyo and d1) a

here instead of,a1.) But (in view of the

, {and 3, apdAav) satisfies

a cubic equation with coefficients in terms of b,, ¢,» and
3, 3p 33 34 dg g 3, g g |

1° Hence any a3, 85, a5 &, ag- 3, a, ag" 234 mayrbe

expressed in the form

d

2
Pa1 + Qa1 + R,

where P, Q, énd R, are polynomials in b,, b,, baf‘°1’ Chs Cqo

d and d with integral coefficients.

d ,
1 T2? 3 : . . . . : s .
J J J J J J J., Jg 3
. Now in [a11 a2 503 74 78 76 77 378 5 9] the terms

2 33' 34 35 a6 37 aB -8_9
P VAR SAR S S I DU DR
1 i 2 a 3 a 4 a 5 6 a 7 a 8733?

4 % % 37 % %9 %y T and

a
3, G, 34 3, dg Fg 3, g3

1 J2 J3' Ja4 5 Je 7 J8 - ‘9
7 2. 3% 3y 3y 3z 3,4 35 Fg.»
cyclic interchanges (a1, a, 37)"(32’ ags aB), and (aa, ag9 ag),

a obtained under the

also OQCUI’.' FUI‘thEI‘ b1| b2, b3, C." 02' 63, d1' dz’ and dal .

are not affected by these interchanges; so that the sum of
: J J Jy 3 3 J J J J
1 2 3 .74 5 6 7 8 9
the three terms of [a1 a, 23 a, ag” a, 8, ag g J under.

BN

discussion is equal to an éxpression of the form

Tt




'_d1, d

- ‘,-,,_——-"w“j I

2 2 2
P(a1 + a, + a7)+Q(a1 + a

using the cyclic properties of our relations. - Slnce fromlthe

s 7t a7)+3R,

definitions of c1 and d1
a, + a, f‘a7 = d1'
2 2 2 _ 2 _
al + 8, + a, = d1 2q1,

this expression is egual to a linear combination of terms

k k k, k k K k k k
1 2 3 4 5 6 7 8 9
b_,l 7b2 bam ey €57 €4 d, d, dy”. Hence Lemma 6.2 follows,

since clearly (again using the cyclic properties of our

relations) the other two triplets of terms of

Je 3, 34 3, 3 i, g J
! 2 403 a4 g% 0 7 o8 égg] correspond to the other

clay 8" ey " agT a2, 8y
two terms of each .
_ [bk1 bk2 bk3 ck4 lck5 ck6 dk7 dk8 dkg] .
1 2 3 1., 2 3 1 2 3 4

- We now prove

LEMMA 6.3 Any expression of the form

k k2 k k k k k

k k '
: [b1 o b 349 %a. 7484 9] is equal to a linear

3 1 2 3 1 2 3

ki k) ki . ' ,
combination of terms [b11 b2 b33]’ where k1 te ks.are.non

negative integers.
Clearly it will be sufficient to show that c ., Coy Cg»

and d can all be expressed as polynomials in b1, b2,

2° 3!
and b,, with integral coefficients. For then any
k. B. k. k., k. k., k K

k
1 2 3 4 5 € 7 8 9
b-1 b2 b3 Cy o7 ©4 d1 dQ d3 ‘ﬁﬁy :? e:Pressed as a
linear combination of terms b11 b22 bsa, and Lemma
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6.3 follows from cyclic considerations.

We have

(6.25) to (6.27) c, = da+3, c,'= d,+3, C,y = dy+3,

the first of which 1s (6.15) + (6.48) + (6.21), in the

obviocus notation, and

2_ 2_
(6.28) to (6.30) Dbi=bytctdatil, by=byto +d +1,

+02+d +1,

3 2 2
the first of which is (6.15}.(6. 18) (6. 21) ' Substituting-for

and cq, in (6.28) to (6.30) from (6.2%) to (6.27), and

» Coo
s:lviig the resulting equations for d1, d2, and d3’ we obtalin
L (6.31) .. 2d b2+b§+b§-b ~b+by-4,
(6.32) 2d2-—b§ b2+b2=b,=b,+b, =4,
(6.33) 2d y=-b2+b%4bZ=b b, +b,=4.

- We now show that

(6.34) b, +b +b3+2 = 0.
- Then the rlght -hand side of (6. 31) is equal to
2 -
. (b1+§2+b3) -2b, -2(b b2 2b3 } ~(b +b2+b )+2b3 4
= -2b2-2(b_ b, +b b,)+2b,+2
i N 172 72 3 1 3’ <

and since the latter expression has a factor 2 we have d,
L " '
i and hence c, by (6.26), as a polynomial in b,, b,; and by,

with lntegral coefficients; clearly from cycllc considerations
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the same is true of d C., and_ca, and we have the Lemma.

2+ 93 4
- (6.34) is proved as follows. We have

b,‘d1 = c3+2d3+3,

which is (6.45).(6.18) + (6.?8).(6.21) + {6.21).(6.15).

Substituting for c, from (6.27) and then for d,, d,, and d,;

3
from (6.31) to (6.33), the-resuiting equation simplifies to

3 2_ .2 2,2 .2
b1 b1b2 b3?1+4b1+§2 b3+b1b2 b3b1+3b.1+b2 3b3 a2 0,

"and of course we may linterchange b1, b2, and ba, cyclicaliy

in this equation to obtain two other similar relations. - Adding

all three equations we arrive at
31 1y 127 a2 2 _
- [oy}={b b5 ]=[bIb, ]+4[bi}+[b,] = O.
. But it is easily verified that the left-hand side 'of this
- equation is equal to
A 5 | )

([b1+2)([2]1-2[b b, ]+2[b,]-3), |

using (6.14); and the second of these two factors, expanded as

a power series in y, begins 4y72+

.+, and is.therefore non-zero.
- Thus we arrive at the relatioh (6,34}, and complete the proof
of Lemma 6.3. “ | | |

. We further write

1N =,[b1b2], 

W= [hfbé]. L N

and prove the feollowing:t



WA;—_
i
i
-7 )=
I

: PR
LEMMA 6.4 ' Any expression of the form [b1 b,“ b, ] is

} equal to
' S(h)'+ FT(N)'I
where S(A) and T(A) are polynomials in N with integral

coefficients. , , ,
kg Ky kg
- By (6.34) any expression of the form b, " b,” -by” can be

expressed as a linear combination df terms bl1 bl
1 2

where 1. and 1, are non-negative integers. Clearly then,
1 2 k‘ k" kl
)

2

performing a cyclic summation, any [b1'1 b2 33] is equal to

a linear combination of terms [b11 bzl], and we need only
conslder the latter expression, rather than the former.
. Now, by {(6.14), (6.34), and the definition of X, b, to by,
are the roots of the cubic equation '
23 + 222 + Az + 1 =0,

860 that we have

3 — - 2- -
{6.35) | b1 = |2b1 hb1 1
(6030) b2 = 2b2 Lbz 1. )

’ 1
. In view of (6.35) and (6.36) any b11 b22 may be expressed in

~the form

| e IbZ4kb24Lb b tMb2b 4N b24Pb2p2
\ Gbef+Ib2+Jb1+Kb2+Lb1b2+Mb1b2TNb1b2+Pb1b ’

where Gy Hy, I, J,K,L,M; N, and P, are’ polynomials in M with
integral coefficients. Then, since A is not affected when

b1, b2, and b3' are interchanged cyélically, we have

3 ™.
H

s oA



' 1, 1 ,
(6.37) [b11b22]=3s+(H+1)[b1]+(J+K)[bf]+L[b1b2]+M[bfb2]+
2 2 2
+N[b1b2]+P[b1b2].
- But we have (6.34) and ‘the definitions of A and p
. 2
(6.38) to (6.40) [b,] = -2, (b by]=ry [b1b2] = B,
and '
(6.41) [b?] = [b,1° -2(b,b,] = 4 = 2
y 1 1 172 ’

6.42) 212 (525 1=
(6.42) [b1b2]-[b1][b1b2] [b1b21 3b,b b ==2h-p+3,

2,29 2 ri2i 1o 2. . o2,
(6.43) - [b3b5]=[b, b, ]"-2[bTb, b }=[b,b,] +2[p ] = 2"-4,

using (6.14). . Hence (6,37) becomes
11 1
by,

and since both curly brackets on the right-hand side of ‘this

2]={3G—2(H+I)+(4~2h)(J+K)+NL+(-2&+3)N+(k2—4)P}+w{M-N},

equgtion are polynomials.in M ﬁith integral coefficients,

Lemma 6.4 follows. |
. We have the following relation between N and p3

{6.44) p2+(2k—3)p+k3-12h+17l= 0. ok K

Since p? is certainly of the form [b11 b22 b33] we know by

' Lémma 634 that a rflation of the above form exists, and the
coefficients in the equation are found by compaiing‘
'coefficients of powers of y in the expansions of the
appro#riate quantities as powe;.series in ys3 {éf. the proof
of (AH), equation (8.13).} ﬁe give.a direct proof aléo:'we

have



2 _ 1,2 2
w2e(2n-2)p = ~[b%,1[b,b2]
bY‘ (6040) and ,(6-42),
13,3 3,
= = [83by] + [b7) - 3
using (6.%4). But
rn3.2 2,2 2 2
: [b1b2] = [b1bé][b1b2] + [b1b2] + [b1b2]
using (6.14),

::J\a

-6 + 23
by (6.39), (6.40), (6.42), and (6.43); and

(53] [p;];yf] - (2,1 - [b;b31,

=6k - 11
‘by (6.38)y (6.40), (b.41), and (6.42).  Equation (6.44)
follows.

5

- Now, by Lemmas 6.1, 6.2, 6.3, and 6.4, F~ and

yf(y19)F5-§(4) are each equal to an expression of the form

-S(A) + uT(M}. Since the lowest powers of y in the expansions

of Fs, A, and p, as power series in y, are ~1%, =2, and -3,

5

respectively, we assume a form for F~ with S(A) of degree

7 and T(N) of degree 6. We find the 15 ccefficients involved

in these two polynomials by comparing coefficients of y-15,

-14
Y

~

values obtained by comparing coefflicients of y-1.. The
fesulting expression for_F5 is. found, usihg (6.44), to be a

perfect fifth power, and in fact we have

s euay y-z, and yO; {they appear seriatim), and check the



(6.45) “F=p + 5+ 9,

since F, A\, and p, are real for real y. Similarly, in the
case of yf(y19)F5ﬁ(4), S{A) and T{\) are of degrees 7 and 5
regpectively, and we find the 14 coefficients involved by
comparing coefficients of y_14, y-13, . ney yﬁz, and yo,
(again they appear seriatim), and check the values obtained
by comparing coefficients of y-1; we obtain

vE(y Y9)E(4)=-50T+277340 8101802702 +4089364x +100821 2083 -

2+67638607L—319561+p(-1155K5+

3 2

. ~61692429x

(b.46)

. +2564550%-38093317>+10287942)

+2093087h-
-16560108).
< The equations (6.44), {6.45), and (6.46), for q =.19, are of

course analogous to (AH), equations (8.13)y (i1.?)? and (11.9),

for q = 11,
We now write ,
my = yP(B(7IP(8),  my = -y°P(2)P(3)P(5),
my = P(4)P(6)P(9).
Then
(6.47) o m m,m, = v 3ey) /ey )

(6.48) to (6.50) m/m, = =b,, my/my = -b,, ma/m1 = =b,.

+ Alsoy in terms of these new func{ions (6.34) becomes

. {6.51) m1m§+m2m§+m3mf = =2y 35 (y)AE(y ),

by (6.47) to (6.50).  We now prove the following relation



" (6.52) m,m_+m_ m_+m.m, = yf (y)/f (y

o

19)
172 273 31

+ Denoting the left-hand side of this equation by X we have

X/m1m2 = 1=b,+b,b,

-~X/m2m3 t=b,+b b,

~-x/m3m1 = 1=b,+b, b,

by (6.48) to (6.50).,  Multiplying together these three

equations we obtain

%3 /02m2m? = - 2 ‘ _ R
/m1 omy = [b1b2] + 3[b1b2] 3[b1]+6,

using (6.14).  But by (6.38), (6.39), and (6.42), the right~-
hand side of this equation is equal to p + 57 + 9, or by
‘(6.45) to F. - Hence |

x3 = n2a2n2y 364 (y ) /e (v 1%) = 30y /0 (")
using (6.47), and {6.52) follows, since X aﬁd-f@y) are real for
real y. Next Wershqw'that | |
(6.53) v'zf(y)(m1+m2+m§)/f(v19) =i=A=5.
It would be possible to prove this‘relétion Qy a method similar

to tha; used for (6.52), however the following proof is simpler.

+ Using (6.47) we write (6.52) in the form

1
A/m 1 n 4 /my = -y ICOVIICAE
: |
Then, in view of this relation. the’ left -hand s1de of (6 53) is

equal to



i
1
!
]
[
t

-(m1+m2+mj)C1/m{+1/m2+1/m3),

- m1/m2+mz/m3+m3/m1)-(m1/m3+m2/m1 +tm3/m2 )=3,
2 [b1}-[b1b2]—3 ‘
by (6.48) to {6.50), and hence is equal to -A=5 by (6.38) and
(6.39); thus (6.53) is proved. : Now, if we write
(6.54) b = y 2 (y)(m +ny4my) /(v 7)),
then instead of A and p we may take‘b and F, as new.variables,

in view of (6.45) and (6.53. In fact from these two relations

we have
« {6.55) N == - 5,

Substituting for A and p from (6.55) and (6.56) in (6.44)

we obtain the following relation between » and Fi |

(6.57) .33 = F(F + 88 +19).

Also, substituting for A and p in (6.46) we obtain
yf(qu)F5§(4) as a polynomial in & and F. Further since
(6.57) is a cubic in &, this polynomial is equal to another
polyn6m1a1 in & And F of degree 2 in &; in fact we have u

344137.19°F%4363.19°F+7.19 )+

(6.58) . +5 (5F%+2504.19%F%43016.19%F%+232.19%+19%)+

Yf(Y19)F55(4)=b2(65.19F

| . +(2276.19F%45431.19%834717.19%F%424.,19 7 F+198),
-‘Making a slight change in notation for convenience, we
now re=-state (6.47), (6.52); (6;51)¢'(6.54); (6.58), and {6.57),

in order, as follows,

5
'a
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THEQREM 6,1  If we write
M, = 2620 e (r(p(8)/5 2y, My = =y (y 0 )R(2)R(3)R(5)/£5(y)

My = y£2(y 19 p(a)p(6)P(9)/8%(y),

then ﬁe have

s /2
M MM, = 1/F
: M1M2+MZM3+N§M1-1/F.
M MZeM M2+M M2 = -2/F%, | ’

172 7273 7371

where F = y_3f4(y)/f (y19); and if we further write

then we have
yf(y19)5(4) 2(65.19+41137.193/F+363.19°/F%+7.19 " /F)+
+e (5+2504.19%/F+3016.19%/F%+232. 198/E34198/F% )4
+(2276.19/F+5431.193/F24717.19%/F%+24.19 " /F*+19%/F%),

where, from thé last four equations but one, there is the

following relation between.e and F
| 3 5 (8¢ + 1)/F + 19/1—'2
- We cancfude this Part by obsérving that in the last
equation but 6ne the only term on the right-hand side without 7 j;

a factor 19 is 5¢, so that, in view of the definitions of e |

we have the following simple congruence, modulc 19,

and M1 to M3,

| (6.59) Fa)ase(y 19)f1b(y){P(4)P(6)P )+yP(1)P(7)P(8)-y “p(2)P(3)P(5)}, g

since f19(y) = f(y 19) (mod. 19).
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PART 4
'q = 11 throughout thls Part

The notatlion is that of (AH).
7. The following relations, not given in (AH), are needed,

They are of a type which has no analogue in the cases

g =05, 7y and 13.

(7.1) [rt] = yf(y)/£7(y23),

(7.2) "fa(v)[rSUJ/f’(y“) Ao+ 13,

(7.3) £2(y)[r)/£2(y22) = ~u + 61 + 16,

(7.4) B( [rstu]/fa(y“) = =A% = 1 4+ 40N + 7.
We prove (7.1) as follows. Denoting the left-hand

 side of the equation by X we have, using the definitions of

ay By ¥, 8, and e,

X/rt = GeaP + SeP + 6P + ¢ + 1,
together with the other four equations obtained on inter-
changing'r, $, ty u, v, and a, B, ¥, 6, €, cyclically.
Multiplying together these five equations we see that
xb/(rstuv)°, i.e. y“°f‘(y)xs/f‘(y‘1), is equal to a cyciically

symmetric polynomial in o, B, v, 6, and e, with integral

We may note that in view of the relation (7.1) the factor
D in the expressions for the rbc(d) for g = 11 is equal to
y“ e (yr) /% (y).
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coefficients, i.,e. to a linear combination of terms
[af p™ " &P €3], each of which is equal to an expression of
the form Q;(N) + uQg(\) by (AH), Lemma 9. Using the method
employed in (AH) to find the relations (11.7), {11.8), and
(11.9), that of comparing coefficlents of powers of y in
power series expansions, we obtain

y=2O£3(y)X2/£9(y11) = Ay - 170% - 108p + 346N - 131.
But the right-hand side of this equation is the same as the
right-hand side of (AH), equation (11.7). Thus, taking
fifth roots, (?.1) follows, éinge X and f(y) are real for
real v. -

(7.2), (7.3), and (7.4), may be proved in a manner

similar to that used for (7.1), and we omit the details,
although it should be.pointed out that we now need (AH),
equation (8.13) as well as (AH), equation (11.7).

From (7.2), (7.3), and (7}4), together with (AH),
equation (11,9), we have the folloWind result:
(7.5)  #(6) = = 1y=2£3(y23)[rstul/f4(y) + 2.190yf0(y11)[r ]/f (>

- 119¢%(y33) [reul/e® (v)+11‘y‘f“(v“)/f"(v)

Wenow.give'conjecturel expressions for the other ten §(s) as
follows. We wiite

'E
i
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yTIP(5)&(5)/P(1),

g(o) = y~*p(4) #(0)/P(2), g(5) =

g(4) = P(3)e(a)/P(a), - #(2) = P(1)#(2)/P(2),

B(9) = - P(8)8(9)/P(3), B(1) = - P(2)¢(1)/P(4a),

BLT) = = yp(1)4(7)/P(5), B(8) = - p(4)e(8)/P(3),

B(10)="= P(2)8(10)/P(1), B(3) = p(3)8(3)/p(5),
Then |

THEOREM 7.1 We have
= (tv)y ®f(y3))/f9(y) +

g(o)

+(-5rstu-533tuv+41tuvr-uvrs+29yrst)y"f3(y1Q/f‘(y)f

* 11(-a5r+65+63t=-48u+2v)y£O(y11)/¢7(y)+

+ 11'(-6rsu-32stv+20tur+4uvs+25vrt}fa(y11)/fg(y)+
+ 11’(-r/s-as/tht/u-su/Vw4v/r)y‘f*1(y{1)/f"(y),

)y ¢<s) =

(Tev)y™£(y23)/f (y) +
4+ (-2rstu- 217stuv-10tuvr+15uvrs —6vrst)y=2f3(yid)/fe(y)+
4+11(~9r- 12s+171t+30u-15v)yf y13)/£7(y)+ |
+11%(6rsu=~ 67stv—20tgr+18uvs+19vrt)f (y'}y) /fg(y)+ |

+11'(6r/s+7s/t+10t/u+3u/v+2v/r)y‘fxx(y:1)/f1=(y),

It is of interest to note that (7.%) is essentially the

"right" form for #(6), being equivalent to the equation

yE(y*¥)e(e) = 11g. + 2. 11'ga + 11°g, 4 11‘g5

given by Atkin [ 1 ) in his proqf of the Ramanujan congruence

for 11v,
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and these equations still hold if g(0), B(a), B(9), B(7),s

and ¢(1P), or B(5), B(2), #(1), #(8), and p(3), are interchanged |
cyclically, so long as r, S, t, u, and v, are also 1nterchanged | L
cyclically. |
' We hope to prove the above theorem at a later date. The
following considerations Qut its val;dity beyond any reasonable

doubt.

Firstly the definitlons of the g(¢) and the general form’

of the theorem are analogous for gq = 11 1o the case of q = 13 i

(§.2), Secondly, noting (7.1) and the following relation , ;
r/s + s/t + t/u + u/v + v/t = 1 {

which 1s given in (AH) (page 186) as [a] = 1, we point out ]
the correspondence between the expressions for thé ¢(§) 7_ -i?
given in the theorem and the expression for $(6) given by A ;
(7.5). | -
Lastly, in finding tﬁe theorem, ﬁe assumed tha£ the é

¢(s) could be expressed in such a fbrm, and then found.gng

checked the values of the coefficients involved by comparing ' 3

coefficients of powers of y in power serles expansions, in a j
manner similar to that used for q = 13, 1In fact we made five
distinct checks in the case of each of our two sets of

coefficients. The powers of 11 th;h appear in the coefficients

serve as an additional check.,
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8. The following theorem is proved in [4] (Theorem
12, pages 95 and 96):

THECREM 8.1 Suppose-tﬁat g and h are simple automorphic
functions on a group G, such that g has precisely o poles ih
the fundamental region of G and h has precisely B poles in the
fundamental region of G. Then there is a polynomial in u and
Vy P(u; v}, such that P{(g, h) = 0 and.deguP = B, deg P = a.

In our application of this thecrem, g is prime and
G = Fo(q’): where the subgroup ro(n) (n a non-zero integer) pf

the modular group is defined as the gfoup of transformations

g =2l Eb ¢, d integral, ad - bc = 1, ¢ 5 0 (mod. n). .

cT + d’
Also we choose

9 = g(z) = {nlar)/n(r)}*, h = h(z) = 1(qa7)/0(T),
where n(j). the Dedekind modular form, is defined,by

n(r) = exp(niz/12).£(x), x = exp(2nir), imy > 0,

and s s{q) is the least'positive even integer such that

i

6 = s(q - 1)/24

is integral. Clearly

g =xb e(y)/e(x){ ho= xBE(ye)/E(x),

\
where

A= (g* - 1)/24
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1

{and is integral since (q, 6) = 1}, Now, it 1s shown by Newman
in [9] (g and h are precisely as in this psper) that g is an
entire modular function* on ro(q) [and §0 on ro(q')j, h is an

entire modular function on [_{(g®). Furthermore (see [(9]1) g S
o

‘has a pole of order § {in the uniformising variable

2, = exp(-2n1/qy)} at the parabolic vertex 7 =0 and is regular

elsewhere throughout the fundamental region of ro(q), h has a

pole of order p at T = O and is regular elsewhere throughout the
fundamental region of ro(ql). Sinﬁe.po(q') is of index q in
Iro(g), it follows that g has precisely g4 poles in the fundamental
region of ro(ql). Thus by Theorem B.1 Fhere is & polfnomial in

u and v, P(u, v), such that P(g, h)'= O, deg,P = A; deg, P = q6 .1 %

From this polnt onwards q has the value 13. Then s = 2,

§ = 1, A = 7, and we have shown that there'is a relatioﬁ
- 7 13 '
(8.4) £ © c(g mighh™ = 0,
L=0 m=0 ‘

with coefficients c(4, m), not all. zero. Replacing g and h bf

the variables o ' .
g/h® = {n(137)/n(1697)}3 =y~ £3(y)/f*(y13),

1/h = nbr)/q(1697) 3 377 £(x)/E(yre)

A

A(T)
b(s)

b

LI}

* The term “"entire modular function” is not ds?d in [9])3 it is

defined by Newman in [10] (page 352).

+ This result was communicated to us, with the proof, by Dr. Newman.
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L

for convenience, we have g = A/b?, h = 1/b, and (8.1) becomes

7 13 -
(8.2) - £ ¢ clg, matp
A=0 mM=0

24~m 0. | L -

o We now examine (for a reason which will appear shortly)
the effect of the transformation T — -1/1697 on equation (8.2),
]

As a special case of the transformafion formula (1.4) of [9]

? we have

i nl= 1/1) = (~11)% q(1).

i lWhence _

| A{=-1/1697) = {n(-1/1ar)/n(-1/1)}= = 13{n(137)/n{7)}3=13A/b>,
é b(~1/1697) = n(-1/1697)/n{-1/7) = 130(1697)/7(7) = 13/b, "

and so, replacing T by =-1/169y in (8.2), we obtain

713 0 _,.
I (8.3) % 1374 ¢(4,m)a%p" = 0.

4=0 m=0

*

Furthermore, this relation must be irreducible. We prove
this in an elementary manhef as follows. Consider the more
general result

N P
(8.4) T § d(g, m)A®*p* = 0,
: 4=0 m=o0

as a.relation in x. We observe that A¥b" begins «x

-xab-vu+

and denote by -t the overall lowest power of x in the expansions
of those terms d(s,‘m)Azb' which actualiy.occur, 1.e. for which

d{4, m) # 0., Then, since the left-hand side of (8.4) is

! * We may note that A{7) = 13g(~-1/1697) and b(y) = 135(-1/169£)-
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identically zero, x™% must be the initial power of x in the
expansions of at least two such.terms. In other words there
exist distinct integer pairs (£, m,) and (439 my) such that

4 =134, + Tmy = 134, + oy, d{ g,y m,), d{igs mgy) £ 0,
(8.5) _
0O £, =7, 0sg ig £ Ay, O s m, <4, 0 ¢ m, £ B,

Now Ly # Ly (ofherwise m, = my also), so that without loss of
generality we may take 4, > g, (x 0) (gﬁving O <m < m), But
from (8.5) g4, = 4, (mod. 7). Hence 4 =2 7. Similarly m, 2 13,
Thus, since d{(g,, m,), d( g mm) # 0, the degrees in A and b
of any relation of the form (8.4) must be at least 7 and at least
13 respectively.i It fqllows that (8.3) is irreducible, of .
degrees 7 and 13 in A and b. Further, taking A = 7,lp = 13, so
that £y s 7y my < 13, and remembering that, whatever'the values
of N and u, Ly : 7, m! 2 13, we see that in the case of (8.3)
£, = 7 and ﬁﬁ-= 133 since g, > 4, 2 0O and by = j, (mod. 7),
this means that iy = 0, and similarly m, = O; so that t = 91,
Thus | '
c(7, 0), c({0, 13) £ 0 |
and c(gy m) = 0 if 1324 + 7m > 91, Le.m > 13 = 134/7, i.e. if .
m>13 = 24(0 g g < 7)y, m>0 (4= 7).
It follows that we may rewrite (8.2) and (8.3) respectively

Y
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}

(8.6) (7, 0)A7b=1¢ + £ g% ¢(4, m)atp=24"" = o,
. §=0 m=0

6 13-24 = wpm
T oga=tm oo m)ate™ = 0,

(8.7) 1377¢(7, 0)A” + &%
{=0 m=o
Multiplying (8.6) by 13™7bi¢ and writing m.-sfor 14-24 - m in
the gummation we obtaln
(8.8) 1377c(7, 0)A7 + 2 14523 1377¢(g,14 - 24 = m)A%H™ = O,
A=0 m=1
Now in each of equations (8;7) and {8.8) the highest power
of A occurring is 7 {since ¢(7,-0) # O} and A7 1is present in
and only in the initial term. Also, these initial terms are the
same and (B.7) is irreducible. It follows, since there can be |
_only one irreducible relatlon between A and b, that the left=
hand sides of the equations muet be identical. Hence, equating
| coeffliclients of Azbm. wa have =

T=4-m c(z;'m)}

c(z{ 14 = 24 - m) = 13
and the overlapping of the m~summation ranges means that elther
side of this equation must be 2ero whenever m = 0, &0 that in
(8.7) {or (8.8)} we may take 1 = m s 13 - 2. Thus, taking
¢c(0, 7) = = 137 (without loss of generality) and writing d(z.m)

for 13""m ¢c(z, m) in (8.7), we arrive at the following.
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THEOREM 8.2 Let
A= yria(y)/fa(y19), b = x"7f(x)/f(y1s).

Then there is an irreducible polynomial relation

13 21
- d(g, m)a%p™

6

A" = g
" A=0 mn1

with integral coefficients H(L, m) which satisfy

d{4, 14 = 24 = m) = 134777 4, 0y,

The last equation of course follows from the corresponding
result for the c(4, m). The word "integral"™ is valld as follows.
We have seen that, in the polynomial relation of Theorem 8.2, if
two or more of the quantities Adp™ have the same initial power
of x, then this power must be =91, and that x™®! {s the initialr
power of x in precisely two of these quantities one of which 1is
A7, In other words in the right=hand side no two A%b™ have the
same initial power of x. Thus the d(gz, m), determined by
equating the coefficlents of powers of Xx in the expansions of
eeeh side, appear strictly seriatim. Since in ghe expansion of
any A‘bm, including A%, the eoefficient_of-the’initial power of
x 1ls unity and that of any other power of x integral, it follows
that every d(gz, m) must be integral, |

‘ In obtaining the values of the d (2, m) only the 28 values

auch that 4 + m 2 7 need to be calculated; the remainder can
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then be written down. These 28 values may be obtained by
comparing the coefficients of x™®1, x™90, ... as far as x~*9;

9 of these 43 powers (viz. -78, =71, =65, -64, -58, =57, =52, =51,
-50) are not expressible in the form =13z - 7m (0 < ¢ < 6,

1 s ms 13 = 2¢), so that no new d(2, m) is obtained, and

6(viz. =72, -66, =60, -59, =54, =53) give, sﬁpd&fluously,

d(g, m} such that g + m <'7.*-

We find that

A7 = A®(11,13b) +
+A8 (36.13b%=-204.13b%+36.13%b) +
+Ai(38.13b=-346.13b*+126g13=b8-346.{3=b=+38.133b) +
+Aa(20.13b*-222.13b°+i02.13=bs-422.13=b*t102.133ba -
1(8.9) -222.13%b2 + 20.13%b)+

+Aﬂ(6.13b°-74.13b3+38.139b;-184.13=b5+56.133b5-184.133b‘+
+38.13%b3-74,13*b%+6.13%b) +
+A(13b211-133b10+7,139b9~37.132b8+134b?-51,133b8+136b5 -
*3%.13¢b*¥7.13=bs-136bn+138b)+
+(bls-13b1=#7.13b11-3.13=b1°+15.13=b9-5.133b9+19.13ab7-
~5.134b8+15,134b8=3,135b*+7,135b2-138b8+138b ),
It turns out then that the d(g, m) are all non~zero and

that they contain powers of 13 which could not have been anticipated

from Theorem 8.2, . .

* In actual fact we examined the coefficients of suffiknt of
x93, xTRO0, .., ,x™*%, and of x74¢®, to enable us to find each of

and to make 12 independent checks on the 28 values.

] Y ' .' S
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We observe, finally, that while the above result 1s new,
the relation between A and b¥ obtainable by "squaring" (8.9)

is given, in effect, by Lehner in (8] (pages 376 and 379).
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THE _COMPUTER _PROGRAMME (SEE PAGE 26)

The programme was written to divide the first of tﬂe
following two power series by the second '
Ug + upx 4 ugx® 4+ L. 4 ougx® 4 ;..,
T+ vyix 4+ vax® + L0+ vox® + ...y
both sets of coefficlents being integral. Denoting the

quotient power series by

Wo b Wix o+ wax® 4+ Ll owex® 4 L,

we have, equating coefficients of powers of x in the first of

these series with those in the product of the second and

third, and transposing,

W= U,
Wy o= uy, = (v, wo),
Wg = ug = (v, w, + vg wo),
cetri e
Woa = Uy = (Vg Waoy + Vawa_g + ...+ oV, wo),

Thusrwo, Wiy Wy ...y, Wy, ... are integral and may be
successively found by means of these relations.

We omit the actual programme since its notatlon is

peculiar to "Pegasus”™ and content ourselves with the following

-

'pbservations. The calculation of the w, is basi%ally a simpie

brocess and ;ndeed'the only sub-routinés used were a "read"



"and a "print" routine. As each w, If found it is both

stored and printed; the process terminates at some pre-
determined value of n (142 in our case), which number forms
part of the data, The computer was set to stop immediately

if “"overflow" occurred at iny stage, but in fact this did

hot happen. The total computer-~time taken for the six

divisions was well under an hour,

e e e e
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Part 4 (g = 11)
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nir)s 9 = glr), h = h(T)
(1, m) ,
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