-7 -

2. We shall now find mxunmmm%oa¢;$oﬂ,wvw‘ﬁvw.ﬁ¢mv
(0 s €12, s#6). Consider (1), vy~ £ 4 (y)T+)/83(y"?)
is the coefficlient of xm in
<..._,Z...pn<v.\mm._»$._m:p +B' +¥+a’' + B+ ¥ +1)}, a
cyclically symmetric polynomial in a, B', ¥, o', B, and ¥'.
Thus <|<manﬁ<gmﬁ4vxm\ - p,mﬁuA<Amv is the coefficient of x°
in a polynomial in a, B'y ¥, o', B, and ', z:wo:.mpﬁvaco:
not cyclically symmetric, is a Hw:mmw combination of terms

i i i i i i
p/m;m_ 2 g3 404 B ulq. 6 (the indices here may be presumed

non-negative because - 1/a = B'¥ o' p ¥'), also, for any

such term which occurs in the coefficlent of x%, (1.3) must

hold. Hence, by Lemma 1.4,y S 4(y)P(1)T(1)/£'3(y13)P(2) 1e
3, unnumn.ua.uu .um

equal to a linear combination of terms a 'b'’ b "¢ .

We define #(g), the "normalised" form of J(s), m: the following
mﬁ_x.onmom. | |
(1) = p(1) B (1)/p(2),
#(12)= -yp(2) T (12)/P(4),
" g(a) = -P(4) § (4)/P(5),
g(11)= P(5) & (11)/P(3),
g(0) = p(3) & (0}/p(e),
g8) = -y 'p(e) & (8)/P(1). |
Then we have shown that <mﬁ<4uyaﬂay14.»m equal to a linear

.o 3, 3 i, 1 3 ,
comblination of terms a VprT2 73 074 b 5 ¢! o. We can show,




—

‘vuowwa»:mn< results.

- (2.1)

in 'a similar manner, that this 4s true if @(1) ie repleced by
#(s) for s = 12, h..;;q 0, or 8, if we replace the multiplier
-1+/a by =-1/p', -1/¥ , =-1/a', =-1/p, or =1/ ¥ ', respectively.
JWHn:mu. given an expression for m:<iﬁﬁmv in the abowve 11st,
we may obtaln any other such (&) by interchanging the @{s)
(in the above order) and a, b', ¢, a"“, b, ¢', cyclicakly.

remaining six cases as -followss

We define #(s) in the

!
t
A

- g(10) = P(3) T (10)/P(2),

. g(9) = -p(e6) § (9)/P(4), -
g(s). = -yp(1) & (5)/P(3),
g(2) = -p(2) § (2)/P(3),

g(3) = pr(a) § (3)/P(8),
g(7) =y ip(s) & (T)/PC1).

We may show that the above result holds for ﬂ:mmo.&hmv by

considering y~’ mg»¢<v\mm4¢ﬁ<éuVﬁn + B + ¥+ a' + B+ + 1)}
multiplied by B'¥a', ¥a'P, a'p ¥', p ¥'a, ¥'a p', and ap' ¥,

instead of -1/a, =1/B', =1/ , =1/a*, -1/p, and -1/ ¥".
3y 3535 3,35 34
b' ®¢ Ta! ¢c' ©y rather

Thus we must now examine a b

uuu uuu
than [a TpeT2.73,0 7475 OH.

To deo thls we need nmﬁﬁmwa
Using {1.17), (1.15) can be written as
A+ B+ C+F + 4=0, i

Multiplying this equation by A, substituting for AB and CA

-
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from (1.12) and (1.14), and transposing we obtain

(2.2) C=a%+ (F+ 3)a-2.

Substituting this expression for C in (2.1), and transposing

we have

(2.3) B = A2 - ((F + 4)A -~ F - 2.

Also, haraqv can be written in the form

(2.4) K = -1/K + F + 3.

Thus, by virtue of (2.2), (2.3), mmn (2.4), any polynomial in
A, B, C, 1/K, and -K, with integral coefficlents, can be
expressed as a polynomial in A, A\x. and F, also with integral
coefficients. « Further, multiplying (2.3) by A, substlituting
for AB from ﬁgranv. and transposing we obtain

(2.5) o ¢m = =(F + 4)A% - (F + 1)A + 1,

and, acwa»vw<u:m (2.4) by 1/K, and #nm:mnom»:m we have

(2.6) | C(1/K)2 = (F + 3)/K + 1.

So, by virtue of nn.uu and (2.6}, any polynomial in A, 1/K, and
F, with p:ﬂwmumw coefficients, can be expressed as a llnear
combination Wm terms | |
C(247) FP (e A2/K + eyA% + e A/K + 0 8 + 8 /K + ef)
where h is a :o:u:oomﬁ»<m integer and e, to P are positive,
:oomﬂw<m. Or Zero, u:ﬁmmmnm._ We no:npcam that m:< polynomial
in >. By C, d\x. and -K, s»ﬂ: integral oommmwowmnﬂm. wm equal

Kl

to & linear oosw»:nn»oa of nouso (2. qv
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We note here that by (1.3), (1.15), (1.16), and (%.17),
A, B, and C, ruo the roots om.nzm cubic equatlon
. (2.8) 2 4 (F+4)z? 4 (F 4 1)z -1 =04
that by ﬂi.aqvi 1/K and =K are the roots of the quadratic
equation

{(2.9)
and that (2.3) and (2.6) follow from (2.8) and (2.9)

22 - (F 4+ 3)z - 1 = 03

respectively.

Now, using (1.6} to (1.%1) m:« muﬁv.unouum.uauuuo.uo can
be oxquWmma as a polynomial in A, By n..a\x. and |x. with
integral coefficiente. Thus we arrive at

LEMMA 2.1 - Any expression of the form

I, 3, 3, 3435 3
a ‘b nn wm. “p un. 6 is egual to a linear combination of terms

ﬁwmqv. This mﬂmeaosﬁ remains valid if in (2.7) A is replaced
by any one of A, B, C, and 1/K 1is vaHmnon by either of 1/K, =K.
The latter sentence follows because of the cyclic properties
of our relations,
We note that if we define m.v< {1.17) then Lemma 1.2 1ls a
consequence of Lemma 2.1, for by Lemma 2.1 any

iy, 3,4
2,73,

1 uu uo
(a 'b! b “¢*' °] is expressible as a linear combination

of terms /
. Mm (1/K- xvﬁ>nu+mnnm>nu+m A;\x xVH>u+no ﬁ>u+uo (/K- xv+o°ow.

and any such dmna. in view om AJ auv. (1.16), and (1.17), 1is
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equal to a polynemial in 1/K = K with integral coefficients.
+ Now, we have shown that <mn<;uvﬂﬁdvmq is equal to a

J i, 3 i, d J
linear combination of terms a Aw_ wo wm. Sc 6

»d , and hence

by ‘Lemma 2.1, to a linear nomv»:ow»ozﬂbm terms (2.7) where,

for a reason !:po: will appear in mm. we choose to replace A
and A\z by C maa |x_nmmvmnﬁ»<ou<.__>uao. mp<m:aﬂAAv in terms

of C and -K we obtain all the @g(s) (s = 1, 12, 4, 11, O, 8)
‘immediately by interchanging #(s) {in the order given), and

A, By C, and 1/K, =K, cyclically. We have exactly the same
situation for the other six d(s) (s = 10, 9, 5, 2, 3, 7) where,
again for a reason which will appear in 83, we choose to
express #(10) in terms of C and -K. Thus Lif for each of the

twelve values of $ we choose varlables from A, B, C, and 4\x.

-K, according to the following tables

s] o] 1] 4] 8 |11 | 12 <] 2 13 |5 1719 |10
aAlc || B c | a c |a B |B| A c
=K =K [-K [1/K | 1/K| 1/K 1/K | =K | =K 1/K[1/K | =K

Table 2.1 : Table 2.2

Ly

then <mn<auvﬁﬁmvmq i1s equal to a linear combination of terms
(2.7) in each of which A and 1/K are replaced by variables

sppropriate' to the particular value of r. and for each value
of h the coefficients ma‘«o e - in Anqu.oum ﬁ:o_m-am for all

the s of one group of eix. We find the values of ¢, to LA
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(for each value of J@o@ngaﬁw:ov in the two-distinct cases. by
comparing coefficients, as vwmqmm.

- Consider the case to which Table 2.1 appllies.  Let H be
the :»u:muw value of h occurring, i.e¢. the highest value of h
for which e, to e, are not -all zero.: H:mﬁ;ﬂmﬁ<4uV&Aémumq is
(without loss of generality) the sum of terms (2.7) with

O € h& H. Now, since A and 1}/K (expanded as ascending power
- ,

‘series in v) begin y + .., andy " + ... respectively, the

lowest power of y oontﬂuujﬂfw:_nvm_vuwor¢¢.om (2.7} ts =%, and
it occurs in the term om\x (and in none of the other five terms
as it :mvumamv.” Thus, writing E, to mo for ﬂ:m‘md to e,
appertaining to h = H, the Hoimmd‘voz@ﬂ of y in ﬁ:m aggregate

of terms (2.7) 1is =(H + 1) (since F begins <|ﬁf? and it Onmcﬂm
in the term m:mm\z (only); but <mn<ﬂmv&n4mvmq begins tqq<|u+....
hence Eg = O 1f H + 1 > 5. Applying this argument to all of the
six @(s), using the variables »aaunmﬂmn in Table 2.1 in each

o. 1, 4, m. 11, and 12, ummvoonw<m~<u

",

case, we ovﬂm»: Amuos S

E, = 0 1f H > 6,
By, = E; + E, 30 if H > 6,
E, =0 if H > 4,
*E, =0 if H D> 4,
‘Ey -~ Ey 4+ Eg 20 if H>'5, "
+Ep, = 0 if H > 4
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1

when 8 = 1, or 11, <mﬁ<4uv&nmvmq is equal to an expression
in which the lowest power of y occurs in three terms of the
bracket prefixed by F'. Thus if H > 6, E, to E, (found
seriatim) unm.upp zero, but this contradicts the definition
of Hy hence H { 6. We need only to notice that, from the case
# = 0 above, E, #0 1f H = 6, to conclude ﬁsnﬂ.pa fact H = 6,

It may be shown, by similar reasoning, that for the
other group of @{s), H i{s again 6.

For each umocu of f(e) then we need to find the coefficients
e, to e, for each h in the range O {'h § 6. Comparing
coefficlents of powers of y for the first 7 powers of y otcurring
in the expression for <mn<awvuﬁmvmq (for each s of the group in
question) we obtain 42 equations relating the 42 unknown
coefficlents. It turns out that armmo equations nnw_mcmmwo»m:ﬁ
to determine the coefficients, in fact, in each of the two cases,
the coefficlents appear seriatim, = |

We state the results* in w:o forms

THEOREM 2.1 We have

'

A

* In actual fact we checked the values of the coefficients

found, in both cases, by comparing w&o coefflcients om,a:o
. \

5

eighth lowest power of y for ¢ = 8 and s = 7.
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<ma<iuvaﬁ4uvnd\m +h-mm>\x-mw>-4\x +99)}/F%+
| , +dmn-a»»\x-m)m-400>\x-u4>so\x¥amov\mm+
+13%(=1142/K=442 -85A/K-16A-1/K+105) /F4
+13%(= 74%/K-3a2 ~3aa/k 6 -5/K +27) /554
+13%(= 28%/k -A%  ga/K A -1/k. +7) /854

) +13%(- 3a2/i-2a2 - BA/K -A -1/K- +8)/F],

vy ®)F(9)=(-39A+3)/F +(-3942 +114/K=-985A~-33/K+264) /F %+
. +13( 2a%/k-067% +13A/K-786A-83/K+348)/F3+
+13%( an2/K-462 +10A/K-3348-68/K+210)/F%+

+133( 3A%/K-1642 + an/k- 82A-28/K+ 68)/F>+

+13%C A2/~ 382 + Ak - 11a- 6/Kk+ 12)/F%4+

+13%( 2a%/k- 342 + a/K - . 8A- 8/K+ 12)/F7,

. mam these equations still hold if #(12) or #(9) is replaced
by unmv for values of s occurring in Table 2.1 or Table 2.2
recspectively uao<macn that A is replaced by A, B, or C, and
1/K. is replaced by 1/K or '-K, according to these tables.
It is Interesting to compare the powers of 13 occurring i
in the equations of this ﬂ:monas.iwﬁ: those occurring. in
the expression for <mﬁ<4uvmﬁov given in (1.18),
We proceed to derive an alternative form of Hzmonma,m.aw
Writing .
1 = y2P(3)/P(6)P(5), m = yP(4)/P(5)P(2), _,n-,_\mv:._(zaﬁe_
1'= yP(2)/P(4)P(1), m'=P(6)/P(1)P(3), n'=-yP(5)/P(3)P(a),




"

.:c,:m<m_uaaoa»mnmp<. from the definitions of A, B, C, and X,
(2.10) 1/1* = m/m* = n/n' = K,

which equations‘will be used without explicit mention, and
(2.11) to (2.13) 1/m = A, m/n =B, nfl =C,

We note that equations (2.10) do pot remain valid if 1/k, -K,
and 1, m', n, ', m, n', are interchanged cyclically, but
that (2.10) to (2.13) all remain valid if A, B, C, and 1/¥, |Nr
are interchanged cyclically and 1, m', n, 1', m, and n', are

pdﬂmun:m:aoa according to either

_ l m*"' n 1' m n?
(2.14) na_ “n 1' -m n' |wv
or
(L, m* n o1t omonty . .

(2.13) “m''n =1'"m -n' ]

$ubstituting for A, B, and C, from (2.%1) to (2,%3), in (1.12)
to (1.44) we obtaln in each case
(2.16) ° 1/1 + 1/m +1/n = 0.
Similarly {(2.1) umnoaow
(2.147) - 1/m + m/n +_3\H + F + 4 =0,

Now, (2.16) may be written mw -
(2.18) | lm/n = =1 =-m,
and (2.17) as | .

Hm\a =-=lm/n -Fl = 4] =~ n

which using Aw.dwu becomes
AMraov : Hm\a.u -El = 31"+ m - .n, \

and using (2.%1) this equation may be written as

.
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. (2.20) na? = <F1 - 31 +m =~ n
or, dividing through by X,
(2.21) mA%/k = ~F1' - 31* +.m' - n',
Also we have trivially from (2.11) _
..ﬁw.mmv. and (2.23) mA = 1, mA/K = 1°.
S50, multiplying the first ‘'equation om.qrmoums 2.1 by m, and
substituting mou,a>w. s>m\R. mA, and mA/K, from (2.20) to
+ (2.23), we obtain <mﬁ<iwvamnewv as a sum of terms
©(2.24) - m:ﬁow 1+ am m' + mm n + ow_p, + mw m + e/l n'). ‘
+ We chose to take m with #(12) for a reason which will appear
in § 3. Now we have seen that the first equation of Theorem
2.1 still holds if we interchange #(1), g(12), #(4), £(11),
g(o), #(8), and A, B, C, and 1/, -¥, cyclically. _Hence the
above equation for #(12) still holds if we interchange these
#(s) cyclically, and interchange 1, m', n, 1, ah and n',
mnnonam:o to (2.14) or (2.15)., - We obtailn a similar result
for the other m»w g(s) by multiplying the second equation of
Hrmonms.w.d by m. Thus acwﬁnvp<»bm~&¢mv by '1'y m, n*, 1, m',
and n, when s = 1, 12, 4, 41, O, and 8, or 10, 9, 5, 2, 3, and
7 respectively, and denoting the result by @'(s), so that
B101) = yh(1)/P(a),  g1(10)=yP(3)E(10)/P(4)P (1),
g (12)=-y%q(12)/p(5), u.3T..._V,ZSQS\EE_U_Q,,
(225 g7 (4) = yD(4)/p(3), g(3)=y%p (1)8(5)/P(3)P(4), "
B1(11)= yR(11)/p(6), #'(2)=-y2p(2)§(2)/P(6)P(5),

,
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gr(o) = §lo)/pP(1), g(3) = P(4)T(3)/P(1)P(3),
. gr(8) = yl(s)/P(2), gr(7) = -yP(5)8(7)/P(2)P(6),

__ we may re-state Theorem 2.1 in the form:

il
il

~ THEOREM 2.2 We have
A<mﬁ<4uva.ﬁ+mv =m/FE +( 6 1 -m* - +221' +99m - Y&%+
.. +13(30 1-15m'+3n452 1 '+156m+6n")/F o+
+132(35 1-22m'+4n+39 1'+104m+11n)/Fi+
+133(17 1~12m'+3n+13 L'+ wba+q=,v\mw+
+13%( 4 1- 3m* +n +2 1'+. ém+2n%)/FO4

+4whﬁ 5 l= 4m'42n - +l'+ oa+m=,v\mq.

<mA<Auvu.ﬁovuua\m + (3 1-33m'+39n-15 1'+225m .V\mw+
+13(13 H-mds.+oqannupu+mmas;m:,v\mm+

+132(12 1-64m'+46n-4% I'+164m-4n*)/F+

+13%( 5 1-25m'+16n=18 1'+ 52m-3n')}/E +

+#13%  1- sm'+ 3n -4 &+ om~ n*)/E%+

#13%(  1- em'+ 3n -5 1+ 9m-2n')/F’,

and these equations mnppp,ropa if #'(12) or ¢'(9) is replaced

by g'(s) for values of s ooncuaw:m.u: the first or the
second row of the following table respectively provided

that 1, m*'y, n, 1'y m, and n', are pnﬂmwo:m:uun according to

.ﬂrvu_ﬂmvwou




5 1 12 4 11 0 8

s 10 9 5 2 3 7

n' 1 m' n 1 m

-1 m' | =n 1* [=m | n°

m' n 1t m n' 1

. L = -n 1* | -m n' | =1 m'
1"} m n' 1 m’ n

=-m n' -1 . m' |-n 1

We emphasise that for any particular value of w the equation
given in H:omuoa 2.2 is simply the equation given in Theorem
2.1 multiplied by 1, m*', n, 1*', m, or n'; the former equation,
of degree O in d:n P(a), becomes an equation of degree -1 in
the P(a). Although in H:oOHmawn.; each $(s) is expressed in
terms of only two variables,such as A m:n.a\ﬁ. the two variables
are different for different values of s. AHa,q:mome 2.2 six.
variables are needed, but they are the same for all the §(s),
and moreover, unlike Theorem 2,1, the expressions mHm:
:oaoom:mOCm_ws these <muwmvpmm._.

3. In this paragraph all congruences are modulo 13.
We state and proves ) ’ '

| THEOREM 3.1 We have .
§(0) = 6P(6)§(6)/P(3)~5yP(0)/P(5),
CB(1) = 6p(2)8(6)/P(1)+2yP(0)/P(6),




