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the methods used to prove Theorems 1 and 2, and Theorem 3, in
(ASD). Indeed the congruences of Theorem 3.1 were originally
derived from other more complicated congruences which were
found by Dr. Atkin using the method of Theorems 1 and 2. [tis
because the above congruences for the ﬁﬁmu were discovered
before the identities given by Theorems 2.1 and 2.2 that I
‘was able to assign convenient variables to particular P(s)
for the purpose of these two theorems.

4, The values of the ucoﬁav for g = 11 proved in (AH)
were actually found empiricdally; for q = 13 we use a similar
method.

v:aww:m b =6, 5 4, 3, 2, 1, and 0, in equation (6.2)
of (ASD) (with q = 13), and b = O and 3 in equation (6.3)
of (ASD), we obtain respectively

s(¢) = o, §(7) = -s(5), . -5(8) =-s5(4),
(4.1) s(9) -5(3), - §(10)= -mamvy $Q1) =-s(1),
5(12)= -5(0), $(13)= ~£(x)+5(0)+1, S(16)=x"2f (x)+SEH1,

and it is easily seen that there are essentially only six
distinct S(b), which we take tc be S(O) to -5(5).
We wrilte

© n
- N ".Z.AXV = M.ZAU- .-w-.aux »
b b n=0

M Npe= Np = N

_ : .
50 that by (6.10) of (ASD)
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(4.2) N, =2 r. (d)x".
be d=0 bc

Then by (2.13) and (6.1) of (ASD), and (4.1) above,

FxNG, = {S(0)+8(43)}={S(1)+8(12)}==F(x)+35(0)~5(1)+1,
EOON,, = {5(1)+s(12)}-{5(2)+5(11)}==5(0)+25(1)-5(2),
(43) F(xINy, = {8(2)+5(11)}-{s(3)+s(10)}=-5(1)+25(2)-5(3),
f{x)Ny, = {s(3)+s5(10)}-{s(4)+5(9)} =-5(2)+28(3)-5(4),
CE(ON,. = {5(4)+5(9)} -[s(5)+s(8)} =-5(3)+25(4)-5(5),
F(x)Ng, = {S(5)+5(8)} -{s(6)+5(7)} =-5(4)+25(5),

and putting m = 2, 6, 3, 1, 5, and 4, in (6.7) of (ASD) we

obtain using (4.1) the following expressions for S{(0) to

S(5), respectively.

s(0)=f(x){y? E29) 51 g0a)-14p b2(0)( x _P(3}P(6) __ _ ;

P(0) XB()P(2)F(5T ¥ F(3).
5 P{4)P({5 9 P{1J)r(6) 12 _P{(5)
ARt Y sy ' M)

s(1)=t () {x Yy B8O g (6)4p%(0){ -4 FESHERL o

4, 2 __P(2) 5y 6 3 P(4)P(2 9 _p(a)p(s) -
+x*y? by - Oy v s RS + RR e

Cs(2)=f(x){x2y? |wwmmpw+mﬁwv+ﬁmﬁovmpx<p w s ﬁwnwwmwwwﬁov-
8 vaMvnow 11 lpll
- + 2)p(4)
4.4) XY P2(3)P(4) * Pyt X n P(3 vvawvw
3 vmbv 7 _¥

mﬁwv"mAXVMl344<l4lXa4 ivwlmﬁavld.vﬂ Ovmx v_u wv._.x ﬂAUV -

10_P(3)P(5) (1, =1 2)P(4) 12 -1 wﬁmvmﬁou
TCFOOPCORT) Y FZONR) T Y FO)F(2)P (473"

~

5(4)= mﬁxvm*< lwwwwpw ~g(5)+p2 ﬁovm -xy? vmw%wmwwmwov *
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2. _P(3)p(6) 3.3 __P(1)P(2) 6 _1 10 _P(6)
Y F2)pd(s) T XY Fla)P(s)P(6) * F(1)TX  F(2)P(5))’
S(5)=f(x){ -x3y3 Ll_l:honw J+g(4)+P2(0){ x%y Ewwkwwwwi-xq Lm.u.ﬁllﬂu%ﬂwv-

m o_w.m 10,2 __P(1)P(2)
X FeT* Fa)P(aTH® Y F(3)p(4)r(sT)"

Now, as with g =11, it ls clearly convenient to avoid the
terms involving %(m, 0O) which occur in (4.4). For example,

from (4.3) and (4.4) N,, contains a term

v afy? BL2a0) | 4y 44 2(6a0)

P(0) p(0) '
2 Em.wf 2,

1.e., in view of (4.2), Hoéﬁov contains a term 3y P(0

z(6.0) Also, the forms of

and r (4) contains a term |<b P(0)

01
“the uvohnv for q = 5, 7, given in (ASD), and for g=11, ﬁoomn:ow
with the congruences for the MAwhcv given in H:mOﬁma 3.1,
‘m:@mmmn that the values of the uvoﬁov. for mxmgnwm, will w:¢oy<m
‘either a factor P(6)/P(3) or a factor y/P(5); it is found to

be preferable to nOmeamn the factors of the former type. We
accordingly (following the case of g = 11) define . |
wuwﬁaUAo £ d g 12), the ::oHsmHHmmgz form of nvoﬁav. for g=13

rm shown; clearly, from the nmmplpﬁpo:.om wvﬁav and the

relation N{m, g, n) = N{qg - my, q, n) given in {ASD), we may

consider b and c.to lie between QO and é inclusive.
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P(3){r,,(0)-3y%5(2,0)/P(0)-2}/P(6),
vﬁmvmaémﬁov+<umﬁm.ov\nnov+dw\wﬁov.
P(1){r,,(1)-y*2(5,0)/P(0)}/P(2),
P(1){r,s (1)+2y%2(5,0)/P(0)}/P(2),
P(1){rg,(1)-y*2(5,0)/P(0)}/P(2),
~P(4){r,,(4)+y%2(6,0)/P(0)}/P(5),
-P(4){r,,(4)-2y*2(6,0)/P(0)}/P(5),
-P(4){r,,(4)+y*2(6,0)/P(0)}/P(5),

-y P(6){x,4(8)-y2(4,0)/P(0)}/P(1),
-y TP (6){rgq (8)+2y72(4,0)/P(0)}/P (1),
P(5){75,(11)-2(1,0)/P(0)-y™"}/P(3),
P(5){r ,(11)+22(1,0)/P(0)+2y" "} /P(3),
P(5){ r 5 (11)-2(1,0)/P(0)-y™"}/P(3),
-yP(2){r,,(12)+y°2(3,0)/P(0)}/P(4),
~yP(2){r,,(12)-2y?5(3,0)/p(0)}/P(4),
-<vﬁmvmHuhAawv+<mmhw.ov\vﬁovw\wﬁav.

.

for all other values of b and ¢ with ¢ = b + 1,

Ry (0) = P(3)r, (0)/P(6),
Ry (1) = P(1)r, (1)/P(2),
Ry (2) = -P(2)r, (2)/P(3),
R,.(3) = P(4)r, (3)/P(6),
Ryo(4) = =P(a)ry (4)/P(5), @

Roo(8) = =yP(1)r, (5)/P(8),

mwoﬁov

Hanﬁmv-
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Ryo(7) = ¥y 'P(8)r, (7)/P(1),
Ry (8) = =y™'P(6)r, (8)/P(1),
RLe(9) = =P(6)r, (9)/P(4),

Ry (10)= P(3)z, (10)/P(2),
Rpo(11)= P(3)r, (11)/P(3),

mvoﬂdnvu.=<unnvnanﬁdmg\vﬁhv.

and, for all remaining values of b and ¢, we use the relations
Rpe (4R (4) = Ry (a),

Rp(d) =Ry (d).

It will be noticed that in the above definitions the
._nonwmwowm:ﬁ of any Hvoﬁav is vummwmmp< the nommmunwmaﬁ of
$(d) in the definttion of @#(d), given in § 2.

| We might now proceed as for q = 11, and use An.wv and
(4.4}, together with the congruent form of J\mhxv given by
Theorem 3.1, to obtain congruent forms of all the mmoﬁau. as
a first step in the attempt to obtain identical forms. Indeed,.
it would be possible to find identical forms directly, by
using the identical form of 1/f(x) given by Theorem 2.1 or
q:mnuma 2.2, However, either of these methods would be
mxnumam_< tedious, and instead we nuoomma as follows.,

Using {2.13) of (ASD) we determine* each of zo; to zwo.

as a power series in x, as far mm.xAnm._ In view of (4.2) this

,\ .

*The divisions by f(x) were carried out by means of a single-
length programme on Durham University's Ferranti "Pegasus"
computer; further details are glven at the end of the thesis

fpage 90 ).



a+<mm us every acoﬁav. as a power serles in y, as far as
<ao. and it 1s a simple matter to find the corresponding
terminated power series for the mmnﬁav.

We now seek congruences for the mvnﬁav..p: the following
manner. - The factor vﬁou\mmﬁ<v occurring in the congruences
,mon the f(b) given in Theorem 3.1, together with the factor
vmnov occurring in the expressions for the S(b)} given in

. (4.4), suggest that each mmnﬁavlnoomncm:nm will involve a

Nmmnwou vwnov\mM¢<v. Also, the form of the wvoﬁavnoosmncm:wmm

for g = 11, given in [ 6], and the fact that in (4.4) the
terms in the brackets prefixed by vmﬁou are of degree =1 in
the P(a), suggest that each :mnaavlno:mwcm:om will w=<op<m a
linear combination of 1, m*, n, 1*, m, n', and a further
variable, the further variable being different on~< for
different values of d and being a multipiicative combination
of these quantities, of degree 1. It is obvious that we may
consider this further variable to be linearly independent of
i, m'y n, 1', m, and nt.

We find, by comparing coefficients of powers of y in the
expansions of the munnmunwmﬁm quantities (the coefficients are
of course all integral}, that in fact, each mvnﬁay appears
to be congruent to the product ow.vwﬁov\mwa<v and a linear
combination of 1, m', n, H...a..s_._mna up to two further

(nn»mwpmmm the further variables found to suffice are given in
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,.zm draw up a list of

with ¢ =

U + ﬂ L] .

The

dlo [1 2 [3]4 (5 |6l 7]8]9 [10f 11 [ 12
Kl | Kn|nW | K1 | Km| Km| = | m/K|m/K| 1/K | Kn | n'/K|Lt/K
KnfkKm| -~ | = [ kK1~ | -] =)1/Kl = | = {(m/K|n'/K

' HQUH@ b..— .

apparent congruences for all the mcooau

number of ﬁmuam found in the mxvm:mpo:

Om each wUnﬁnv is sufficient ﬂo determine and check the 8

ﬁon less) coefficlents involved in each such congruence.

~Inspection of ‘this list reveals no cets of congruent relations

..Umﬁimoa the

glven for q

cannot hope

for g =

11.

to find »am:ﬂwﬁwmm for the R,

bc
Instead we adopt the following method. °

mvnﬁnv for different values of d such as are

14 wnAno.Av to (9.14) of (AH), so that we

(d) in the way used

The form of the identities for the mﬁmv given in Theporem

3.2 suggests that each wmoﬁav may be mn:mp to the sum of two

linear combinations of the type alréady indicated, multiplied

by P2(0)/£%(y) and 13yr3(0)/¢?

now arisess we have not found a sufficient number of terms of

(y) respectively.

A difficulty

any wvoﬁnv to enable us to determine the 16 (or less)

coefficients involved in such an identity..

We circumvent

wa:»m.a»mmwncpa< in a manner mCmmwmpm:ﬂH< well illustrated by

the following example.




Writing

U v = yP3(0)/s%y),

p30)/8%(y),

s$¢ that

. (4.5) U = FV,
and noting that for q = 11 the numerical values of the
coefficlents involved in the mvnaavJ»am:ﬁ»ﬂﬁmm are small,
we assume that there is an identity for xodcov of the form
wm‘nov = cﬁnwwlwanmslww_lm54+wxsv+
_.+4u<ﬁmip+mna+mm=+mhp.+mua.+mo
where the U-term on the right-hand side is our congruent form

:.+qup+mmxsv,

of wodﬁov written so that its coefficients all lie between

16 M:nRCmH<mn and £ to fg are w:ﬁmmmnm. The numbers of

terms found in the expansion of moéﬁov is sufficient to

determine mH to mm and check the resulting identity.
H:.OU&mw:w:m apparent identities for all the mmoaav we

occasionally find that in the U-bracket a 4, for example, should

be a =9; this presents :m serious Qumwwncwn<._ Also, we

should :o&ﬁ that for any ﬁmud»ncHLH mmnmav a certain amount

of transfer between U~ and V- brackets is possible. For

example, in the case of morﬁov we have the relations

(4.6) and (4.7) U(131) = 13v(-31+1'=k1), -U(13n)=13V(~3n+n"=kn),

found U<.acpﬂva<w:n‘ﬁd.aqv through w<.~ and :_nomﬁmoﬂm<m~< and

IR

using (4.5). .




We state the result, a complete set of conjectural
<rpcmm of the mUnﬁav for q = 13, in the form of a theorem,
and then prove that the values are in fact correct.
~THEOREM 4.1 - am have the following; for each mmnanv
given, both brackets on the right-hand side involve
Hr m'y ny, 1'ym, n', and the quantities indicated in Table
4.1, only. .
Ry, (0) = U(~51-3m-3n=21"-2m"+3Kn)+13V(-21-2m-2n+m"'+n'=K1}),

moaﬁav = U(=Bl+ém+n+l'+m'=2n'=8Kn)+43V(~1+2m+n+l'=m'=n’'~-
- ~Km-2Kn),

Ryi(2) = U(7m=61'+4m'+4n'+3n'/K)+13V(3m-21"+m"'+n"+n"/K),
mnénuv = U(61-9m+3n+m ' +7n' =K1 )+43V{1-m+2n~1"+m"'+n' +K1),
mc“ﬁhv = U(3l-m+7n+l'+n'~K1+6Km)++3V(3n+K1+2km),
quﬁuv.n cnuwuma+m:+ap.+:.|mxa¢++w<~mp+s+=+=.smxavg

mo_on = cA:H+uauo=+uH.-an+m=,v++m<ﬁw+summ+m:.y.

moahqu = U(=1=3n+ém'=6n'+2m*'/K)+13V(-2n+3m'=n"'-m'fK),

Ry (8) = U(-2m=n+31"-5m'=n"+m'/K)+13V(-2m-n+1'),

modﬁcv = U(3m=10n=1"'"=2m'+1*/K)+13V(1-3n-1"'-m"'+n"+1'fK),
woénaovu.cnmp|m3|w:|a.+mxsv++m<ﬁwplhaa:+s.+mxav.

moaﬁﬂdvu U(m+4n+41'-3m'=4n’'=~4n'/K)+13V(m+n+l'-2m*'=2n'=-n"'/fK),
Ry (12)= cﬁausumpr+ua.+a:.-uH.\wv+Am<ﬁa-=-wH.+s.+=.v, |




} ﬁ.. mamﬁov =
Ryp(1)
Ryp(2)
Ryp(3)
Rip(4)
Ryp(3)
Ryp(6) =
Ryp(7)
o Rip(8) =
R, ,(9) =

Ryp(10)=

i

It

mdmhﬁavu
mamnémvm

R,5(0) =

Ry3(1) =

Ryal2) =
uv_

it

Rpa(

R,..(4) =

23!
Ry3(d)
Rja(e)

" Rga(7)

R 4(8)

i

_|M¢\

CA¢H|3|M:|H_+E.+:.anHIN:V++w<n~+B|~.|K:U_

U(71+m=2n-n'+7Kn)+13V(21-m=n+Km+2Kn),

_cnlplbalwp.+5.+:.+m:.\Rv+4m<nlwlale.+a.+:.V.

cﬁlaw+osnhats.+:.+mxeV+4w<ﬂlw+3|w:+:.v.
chmw+3|m:|a.n:.+wKHthsv++w<ﬁHlm:+:.rxsv.
U(=1-3m=7n+41"+n'+Km)++3V{-m=n+1'+n'+km),

U(=1-3m+5n+1'+m'+n*)+13V(~142n+1"),

Y(-2143n-1'+6m'=n'=m'/K)+13V(=1+m+n=-n'),
U(m+n+al ' +2m ' +n'=m*/K)+13V(min+l-m" },

U{~m+9n=31"'=2m ' +2n'+21 ' /K)+13V(=143n=-m"'+1"'fK),

cﬁnww+q5|:+e.+ms.:oR:v+am<A|H+w3+:+H.sa.uma:u.

U(=3n+1'=2m'=6n"'=-n'/K)+13V(-m-2n-n"),

U(l-m+n=1'43m*=3n'=21'/K+ n'/K)+13V{n+m’'~n'~ 1'/K);

U(B1-m4dn+l*=n'=K1)+13V(21-ntn=n'+kn),
ch|oH+wals+m:.|oK:v++@<A|mp+m5+:+:;|mxpv.

cﬁ-ua+op.-na.:o:_uhag\xv+4u<ﬁna+m~.-ma,-ms.-a.\xvy

_cﬁnhy+ua+=+a_aqs.+va++m<A:H+a+Hgaa.-m=.V.;
.cﬁnmynw3+3.lRp|x3u+ew<nla|:.tKav.
.chlmH+JD:|w~.nmu.+wxav+4m<A|H|3+m:|mu.u.

U(=~l=4n=~1'=-4n")+43V{=~m=2n-n"'),

[

U{=21=-2n+1'=m'+5n'+m'/K)}+13V(=n+m'+2n"'),

cn|p+BJ:|nH.|w3,v+dw<ﬁasle.+:.v..




U(=m=9n+4l'=m ' +n*)}+143V(1l-m=2n+1'+m"“+n'=1'/K),

=
N
w
Eain
0
s
It

R,,(10)= U(71-5m+3n-m'+5Kn)+13V(21-2m-1'+m'+2Kn),
mnwﬁéévn cala+mslow.ama_iwn.fa.\x+w:.\xv++w<ﬁlp+:lw.L
) | -m'=n'+m'/K+2n' fK),
muundmvu U(l+m=n=41'~3m'=n'+1'/K-2n"'/K)+13V(-m=-n=1"'=

-m'en'+l'/K);
mmhﬁov = U{-31=6n+1')+13V(-1-n+1'4n'=Kn},
mwhﬁév = U{6l+m+6n=-n'=Km+5Kn)+13V(21~-1'=n'+2Kkn),

Ry,(2) = U(Bm+31'+m'=2n"'+n"/K}+13V(1+2m-n+n'/K),

R,,(3) = U(=1=7m=n+3n"'-K1}+13V(=2m+m'+n" ),

Ry,(4) = U(~514+3m+5n=1"=-m"+5Km}+13V(-21+n+2Km),

mwaﬁwv = cﬁuH+walgﬂsle.+:.10K3v+4m<AmH+malw:|mp.+:_|RBV.
mmhhov = U(3m+4n=-21"+m'+2n" ) +13V(2m+n=1"), .

Ry, (7) = U(l+n+1'+3m'=3n')+13V(n+l'-n"),

Ry,(8) = U(1=-3m+n+61'+m'+n'-m'/K)+13V(~m+n+21'-n'=1"/K),

Ry,(9) = cﬁws+m=+mH.+as.-ps.-bp.\xv+dm<nwa+:-m:_ap.\xv.

.wwhﬁéovu chlhp+wslw::wp.+a.|wwsvﬁém<n|NH+3|:|MN:V.

Ry, (11)= U(=1+m=3n+41'+5m'+n"+2m"' /K -2n*'/K)+13V(1+m=n+1"+
| +2m'+n'-m*/K-n*/K),

mwaﬁémvu U(=14+n=-2m'+4n'%31'/K+n'/K)+13V(m+n-m'+2n'+1'fK);
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U{=51+2m+&n+n'+2K1) +13V(=1+m+n+Kn),
U(=51-m+4n=~1'=2n'+2Km=3Kn)+13V(=-21=-m+n+1'=~n'~kn),
U(1=-10m=51'+3m'+3n'/K)+13V(=1=2m+n-1'+2m ' +n'/K),
U(=61+6m+2n+5n' =K1)+13V(=1+2m+ntn'=K1),
U(=31=2m=7n+1"'+n'=7Km)+13V(m=n+n'=K1=2km),
UEE1+10n+n'+5Km)}+143V(~3143n+1'+2km),
U(21-%m=3n=-m'+3n")+13V(=2m+m'+n'),
U(l=n+l'=m*'=5n'+m'/K}+13V(1l=n=n"),
U(4m+81'=2m'=-n'=1"'/K)+13V(1l+m-n=-m'),
_cnnuauuznnp.wns.wne.\xv+4u<ﬂumaus+u.v.
U(=2n+1'+m'+2Kn)+13V(1=-n+kn),
U(1-m+2n431'42n '’ /k=4n* /k) +13V (=n+n+1'=m'=n'=n'/K),

cﬁ|s|=+oH.+u:rv++w<nls+we.+5.+=.|e.\xg.

U{=61l+m+2n=21'=n'+K1)}+13V(~21~-n"'),
U(21+2m+2n+1'+2n' =Km+Kn)+13V( l+m+n+n'+Kn),
U(7Tm+1'=4m'=5nt=4n'/k)+13V{1+m~n~2m'=2n'*~n'/K),
cﬁmp-oa+=-o=.-xev++m<ﬁw-ua-ma.v.. |
UEB1=2m+5n=n'+5Km)+13V{=1=2m+n+l"'~n'+Km),
U(31+6m=6n+51"'=2n"=3Km)+43V(21+m=2n+1'=m'=km),
.cnka+:+ue_+a.|s:ev+em<ﬁH+B+H.|5.|:_V..
U(31+n521 +4m ' +7n ' ~m* /K )+13V{n=-1"4m"+n"'),

U(=3m=n=1'=3m'+2n"'+21 ' /K)+13V{=men+L1"+n'),




.Iwh..r..

mwonov = U(m+2n+21"'=3m'+4n'+21 ' /K)+13V(m+n-m'+2n'+1*/K),
Adovu U(=31+4n+1'=2Kn)+13V(=1+2n+1"'),
muwﬁédvu U{m=n=51'4+5m'+6n+5n" /K)+13V(m=21"+2m'+2n' +n \xv.

. mmoﬁémvn_cﬁ-H+a+=+mb.+As.+=.rLH.\xv++w<na-H.\w-:_\xv.

The following relations will be required in the proof of
m:»w theorem for systematic simplification of expressions
involving 1, m', J.ﬁp.. m, and n'.
(4.8) to (4.10) Im/n = =l-my, mn/l = -m=-n, nl/m = -n-1;

=Fl=314+m=-n, am\:unma|wa+3:H.

i

(4.11) to (4.13) Hu\a

:m\m = -Fn=-3n+l-m;

(4.14) to (4.16) pm\s

1

Fl+2l=m+n, aw\p = Fm+2m=n+l,

3u\5 = Fn+2n=1+m;

(4.17) to (4.19) K1 = =F1=31+1', Km = -Fm-3m+m’', Kn =--Fn=3n+n',

]

(4.20) to (4.22) '1¥YK = F1'+31'+1, m'/K = Em'+3m'+m,

_ n'/K = Fn'+3n'+n;
Rw

.F(31-K1)+101-31",

. K%n = F(3n=-Kn)+10n-3n',

(4.23) to (4.25) K21 maF (3m~Km)+10m=3m",,
(4.26) to (4.28) H.\nmnmnma.+w.\xv+aok.+mw.
a_\Kmumﬁma.+a.\Kv+goa.+ma.
n'/K%sF(3n" +:.\Kv+ao= +3n.
,ﬁh ‘8) to (4.16) follow from (2.16) and (2.17)y (4.17) to
(4.22) from (1.147), and Aa.mmv to (4.28) from (4.17) to

(4.22) respectively; (4.8) and (4.11) have already been given
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as (2.18) and (2.19) respectively. We shall also need the

relations

1/m=¥, b = m/n=K, ¢ = n/1-k,
A/mt + 1/, b' = m'/nt+1/K,
c' = n' /1 +1/K,

- (4.29) to (4.31) a

,A».wJV to (4.34) a'

. ..mnwmusm from (1.6} te (1.%1) and (2.11) to nwuemv.. Of course
%me of the equations (4.8) to (4.34) remain valid when
i, m*v n, 1', m, and :..‘uum interchanged according to
(2.14) or (2.145) and a, b', ¢, a', b, and ¢', are interchanged
cyclically. Flnally, the following will be required
-P2(0)1'b = P2(0)(1+1'+m*),

29(1)=g{2)+1
29(2)=g(4)+1 = P2(0)mec' = P2(0)(-m=n+m'),

2g(3)-g(6)+1 = -P2(0)m'c = P2(0) (m+m +n'),
{(4.35) 2 )

2g(4)+g(5) =2 P“(O)n‘a = P“{0)(=n~1"=n"),

29(5)+g(3) = P2(0)1bi = P2(0)(-l1=m+1'),

2g(6)+g(1) = P2(0)na' = P2(0)(=1-n+n");

these relations arise from (ASD), Lemma 8 (with g n.+wv. and
- (4.29) to Aauw»v above, using Aatmw to (4.40) (divided
through by K 1f necessary).
© The proof of Theorem 4,1 is similar to those of (ASD),

Theorems 4 and 5, and (AH), Theorem 6.  If we write



| T NS, = Ny #{-3y22(2,0)/p(0)-2) +x*{y %2 (6,0)/P(0)], |
N, = zan+m<wuﬁn.oV\vﬁov+4w+th-n<¢mﬁo.ov\wnovw+mmm<nunw_ov\mﬁx.
Nig = Noa+x*{y*2(6,0)/P(0)}+x" | -2(1,0)/P(0)-y '} 4
: | +x12{ -2y25(3,0)/P(0)},
zmn = zma+xM:<Lmnm.ov\nonw+x4dﬁmmﬁa.ov\nﬁov+m<|4w +
. o +x2{y22(3,0)/P(0)},
Nis = zuu+xmn<»mﬁm.oU\vﬂoVw+xmm:<wmna.ov\mﬁovw+

e es(1,0)/pt0)-y T,
. NI, = Ngotx{-y*5(5,0)/p(0)}+x®{2y°2(4,0)/P(0)},
then in view of (4.2) and the definitions of the R (d) we
have for any fixed values of b and ¢ with ¢ = b + 1 |
(4.36) .uvnovmo\vﬁuv+xmﬁwvmxw¢AVaxmvA@vmm\vﬁmv+xuvﬁ@v=m\mahv-
~x*p(5)R, /P (4)~xPy 1P (5) Ry /P (1)+xR +x Ty P(1)R,/P(5)-

=xPyP(1)Rg/P(6)=x"P(4)Ry/P(6)+x OP(2)R, /P(3)+

—

+x"'p(a)r, /P(5)=x"%y " p(4)R, /P (2)
where for convenience the suffix bc is dropped, n:n_manv is

written as wa. Thus writing
12

f(x)N'/P(O) = ¢
d=0

we can use (4.36) and the expression for -f(x)/P(0) given by

xn
R

{(1.1) to find each t, as a linear combination of Ry in which !

d
each wn occurring is multiplied by some multiplicative

combination of the -P{a); for example we find that .
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_ﬂMpu =P(2)P(6) (R +R,)/P(1)P(3)=P(3)P(4)R,/P?(2)~
~yP(3)P(6)R,/P(4)P(5)+y2P(1)(Rs-Rg)/Pl6)+
+yP(2)P(5)R,/P(3)}P(4).

If in thls example we define Hm. the *normalised" form of

t

Mu U<

T, = -<-mvmovﬁm\vndu

then we find that

,~ABc'Ry-R +Rg-R, /K,

_ona the coefflcient of each ma in aspm.oncmﬂpos is equal to

anuamﬁmq+m+v\xamowm

a simple expression in 1, m', n,:1'y my, and n', as follows:

-B/K = -m'/n | _ by (2.12)3
-BCb = =m{m/n-K}1 by (2.12),(2.13), and (4.30),
= =m(=1/m=n/1=-1/k=-1)}/1. | by {1.17) and (2.47),
= m'/i=-n/1+1 C by (2.10);
-~ABc'= =1'/n-1 by ﬁm.;dv.ﬁu.Amvw and (4.34)}.

By proceeding in the above manner for all.the ﬁa. m:wwmvw<.

:ousmhwmwsm the t in each case, we arrive at the followings

T, = v T, uahmo+mawv\w+wﬁmq+médv\=+=nmh+mme?+mo..
T, = <-mvnuvﬂd\mn4vu-s.mo\p +(=1/n-m'/n} (R +R, )+
__fﬁ-a\=+xvmm+n|pxanp\avﬁmw+mov+mq.
T, = -<-mvhovﬁn\vnduw-s.Amo+m4V\=+ﬁa.\pus\p+ﬁvmm+
M ..+A-H.\auévwmnm@+mm-méo\x. |
_ Ty = -<-Avnovﬁu\vakvu-e.mJ\:+n-a\a-e.\avﬁmh+m4J~+/

+(~1/m+k)Ro+(=n/1=1/K} (Ry+R; ) +Rg,

[



l..u 8-

T, = <n4vﬁmvﬂa\vAmvnsmm\sr+hna.\e.+:\afvnm;m+mhv+
+A-=.\H.-d\xvmm+n-a.\=.+xvAmu+muu+mdo.
Tg = <|4vnuvﬂu\vﬂwvu|=,Amu+mov\p+ﬁz.\aup\5++vmo+

4 {=mt/1=1)Rg=R +R , -R /K,
g.ms Te = =P(2)t,/P(4)=-1"(R,+R,)/m+(1'/n-m/n+1)R+
+(=n'/m=1)R =R 4R, ;=R /K,

n

T, = vﬁmvﬂq\vﬁov ueﬁmaa+=mv\a.+ﬂupxa.;a_\=_++Umu+
“.+A:\a.|+vmuumo+mo+qu,

Tg = wnévﬁm\vnmv nnﬁmm+manv\w=+ﬁn:\a_lw.\a.++vmw+
_+Aa\p.-+vm¢-mm+ma+xmo.

Ty = -vanvﬁo\uﬁmvuaa_mh\a+ﬁaa\yuz.\wvﬁmo+mmv+ﬁusxy+nvmo+

‘.+n|s\=|4\xvﬁmio+mqv+mw.
T .= vﬁavﬁdo\vﬁovupwd4\3.+h-=.\s_+p\a,v¢mm+mev+
A+A-H,\a.ngxavmw+ﬁ==_\p.+xVﬁxn+mdov+=w.

P iw¢hvﬂdJ\nauvnsﬁmau+maiv\=,+~-5\H;y=_\e.+4vmio+
| +np\a.|+vma-mo+ma+xwm,
T,.n= |<vﬁavn;m\vnoywaz+m\p_+ﬁaw;\:.¢s\:,vﬁm+4+mou+

+nua_\=.ya\xvméo+ﬁnw.\s.+xvﬁm¢+muu+mu.

We observe that, apart from Ho. ﬂ:m_ea mmpw.:macnmpp< into
two groups of six given by d = 1, 3, 4, 9, 10, 12, and d = 2,
9y 6, 7, 8, 11, respectively, and that with d:m.:ouampwmwsm.

factors as chosen, interchanging either Tyv Tge Tyr Hdw. Tgs

and Hdo.‘ow Tgow Tgy Tgy 444. Tys» and T, cyclically



ﬁnouummuo:mm to interchanging mo. xm. md. m;m. ma, maa. and
mw. Ryr Roy Ryo0 Rgr Ry n<npwnnﬂﬂ< ﬁwnm<asa R unchanged)
Hmtim interchange 1, m', n, :1', m, and n', according to
(2.44) or (2.15); the two groups of six R4 onncﬂ_:mwcnmwp<
in Table AJJ._ Ho is invariant under these interchanges. We
might have anticipated such a situation as an aild in finding
,ﬂ:m identities of (4.37) (cf. the proofs of Theorems 2.1 and
2.2).

We now find alternative expressions for the Ha. This
time .each palr of values of b and ¢ (with ¢ = b +-1) 1is
considered separately, so that we have 78 qcmﬁnv (in the
obvious notation) to determine, viz. ._.3?: to T, (d) for
d =0 tod= 12, These expressions are found as in adm

} following mxmavwmm.
| dognov {(again in the ovcwm:m notation) is by definition
the coefficient of xo

, (4.38) ﬂoéonumﬁovm-m<vﬁéVuhov\vnmuvﬁavvﬁuv-vanvvﬁwv\vﬁmvamVvhmx

in haxvzma\vnov. thus we have

from the definition of zma. the expression for mﬁxvzoa given

in (4.3), and the values of S{0O) and S(1) given in (4.4); of
course -the terms involving Z(m,0) all disappear.  Multiplyling
(4.38) by -yP(2)/P(3) we obtain - .

i

P(0)(3mta+ntc),

P(0)(31'=3m+nn'/1=n) by (4.29) and(4.31),

P(O)(-3m+4l'=m'=n"'/K)
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by (4.13) (divided through by K) and (1.17). The method of
this example applies when d #Z 0. When d = O the procedure
48 slightly different.

ty,(0) is the coefficient of x° in fF(x)N3,/P(0), and
bwoo.mm.&:m as in the previous example we obtain

ty,(0) = m|woAmv+m¢oV-mW\vaov.
,mpnnm Hw,mov = <|Aﬁo*dov this equation becéomes

4404Aow = vﬁovﬂlp+a+m:+w.lms_+:.v
by means of relations (4.39).

A complete set of alternative values of <amoﬁav\vﬁov s
given in Table 4.2 at the end of this Part (page 46).

By mncwﬁw:a our two expressions for each wmnﬁav we now
_:m<m. for any fixed values of b and ¢, a set of 13 _
mwacHﬁmsaocm linear equations for wUnAQUnQ =0 to dmv Moreover
these equations have a unique solution; this may be seen by
proving that a determinant is non-zero, but it is easier to
observe that the equations are in fact the necessary and
mcmmpnwmsﬂ conditions that ww m&nhavxn.um the quotient of
&So given power mwnwmm. >wnwunw:mp< to prove Theorem 4.1 all
that remains is to show that for(b, 9 =0, O to &, 0
Hmmnmnﬂwcmp< the values of the mmnaav given in jSm theorem

satisfy these egquations.  In oﬂ:anﬂiouam we need to show that

for each of the 78 anhav the ‘value found by substituting for
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}
the mvnﬁav from the theorem in the appropriate equation of

(4.37) agrees with the value given by Table 4,2. This is
tediocus but mﬁum»a:dmonzwua* we proceed as in the following
example.,
, Consider HoahAU as given by substituting for the modaau
from the theorem in the second equation of (4.37). Each

ﬂﬂau.»m expressed in the theorem as the sum of two brackets,
one multiplied by U and the other by 13V. We write down and
simplify ~U< means of (4.8) to Amummvuuw:m total contribution
of the U-brackets and the total contribution of the V-brackets
separately, and combine the Hmmcpﬁw:o two expressions. . The
contribution of ﬁ:m.¢rvnmnrmﬁm is
,-s.A-mpnnaumn+s_+:.-xpv\w+h-~\;-a;\=Vﬁ-H+ma-mH.;xanmx=v+
+{=m/n+K) (3m=21"+m " +n'+n' /K}+(=-1/m=1/K) (31+m=2n=1"'=m"'+2n ' -2Km+
+1/K)+(=2n+3m "' -n"-m"' fK)

= ﬁ-mp+03-=-mH.+ma.+n=_v+ﬁaxe+uxa+w.\x-a.\x-ma.\xv+A-H.\x~v+

+(2/K2+3/K=3+K) Im/n+ (= 1/K%+2/K)mn/ 1+ (=2/K+2 ) n1/m+

F(=1/K241/k=3)12/m+(~a/K=2)m2/n+(2/K+1) 12 /n+ (=1 /K2 42/K)n? /)
and this expression, on substltuting for e.\Kw.\pa\:. mn/1,
ni/m, Hm\s. an\a. em\:. and sn\p. from (4.8) to (4.,16) and

ha 23) to {4.28), reduces to

F(41+2m=21"46m"'=m'/K)+( m_+dda-= oH.+Jua_|u=.v+

+(3K1+2Km+1'/K=5m* fK+n' \xv



which expression, on substituting for each term in the third
bracket from (4.17) to (4.22), reduces to

(4.39) F(l=1'+m'+n'-m"'/K),

only terms containing a factor F remain.,  The contribution of
the U~brackets is

|a.n-uwuma-w=-m~.-ma.+mxrv\e+ﬁsp\:ua.\aVAamH+qs-mH.+Aa.+n:.-

.|mR:|w~.\RU+A|3\:+KVnqaloH.+aa.+bs.+ws.\Rv+ﬁlw\a|A\KUﬁmpl

~7n+31'-2m'+n'-5Km+1'/K)+(=1-3n+6m'=6n"+2m" /K)

_nhsﬂﬂ+ﬂqa+o;wp.+qa.+»=.v+ﬁAQxH+qxawwH.\x+a.\x-:.\xv+ﬁue.\nmv+

+(3/K345/K%410/K-7) ILm/n+(3/K=3)mn/ L+( =1 /K+7 )nl/m+
+A-A\xm-u\m-wv_m\a+ﬁaj\xunéaxx-qvam\=+¢w\xm+w\x+mvHn\a+
+(2/K%+3/K)m?/1

and this expression, on substituting for Hixm‘ ¥m/n, mn/1,

nl/m, Hw\a. 5m\:. em\:, and BM\H. reduces to

F{(1314+7m+51"+14m"+31"' /K+6m' /K )+(281+435m+3n+91'+25m ' =4n")+

+(13K1+7Km+71 ' /K+8m' /K=3n" /K }+( =31 ' /k%=3m"' /K?)

which expression, on substituting for each term in the third
and fourth brackets from (4.17) to (4.22) and (4.23) to (4.28)
respectively, reduces to

(4.40) F(31'+13m'~3n'+3m*/K)+13(~1+m+1'+2m'=n"'),

only terms containing either a factor F or a factor 13 remain.

Multiplying oxunommwo:a (4.39) m:a.ﬁa.LOV by 13V and U



Hmmbmnn»<mpw. and adding, remembering that FV = U, we obtain
the following mxbummmmo:.mow aoéadv

FU(31'+13m'=3n"'+3m' /K)+13U(m+3m ' -m' /K),
and this expression, on substituting for m'/K in the second
bracket from (4.21), reduces to
: « FU(31'~3n'+43m"'/fKk).

‘Since FU=y !

P(:0), this is the same as the value of Hadndv
given by Table 4.2.
We perform the above verification for each of the 78 anﬁan
the working is always essentially the same as the above, and
is therefore omitted.  This completes the proof of Theorem 4.1,

As in the case of q = 11, there are certain linear

congruence relations (but no identities) between the HUoAaV for ’

)a given value of d when g = 13; if we write
mAAQV = HQJAQV:mwucAaV.
h sp(d) = 1y (d)=5r,.(d),
s5(d) = umwﬁavrbwuonaum
.uhhav = Hubﬂavlwuwoﬁnv.
s5(d) = r . (d)-2r,,(d),

we have, modulo 13,
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ul
C

mwﬁovummbon+mmmaou

{H}
o

mwﬁav+mmwﬁéuuwmaadvrwmwnéu
mnﬁwv

ni
C

Hi
O

5,(2)+5,(2)-5s,(2) +s5(2)
5,(3) =5,(3)
mwﬁuv +mmﬁwv|mmnnmvaomuﬁwv

L] H
C C

L]
o

m4AnglbmmAav+hmwﬁavummnnbylomwﬁnv

]|
O

s,(5)

m
o

mmﬁuV-Mmmﬁuvuamaﬁuvunwuﬁuv

Ll
o

MJAGV+Mwwﬁov iUmonv

]
o

mmnmv+wmuhov+wmhaov+mmwaov

8]
C

méﬁqummwaqv+0mwaqﬂ
207) =85(7)-35,(7) ~5.(7)

)
O

i
O

5,(8)+65,(8)~55,(8)~5s (8)-3s,(8)
$,(9) -6s,(9)
s,(9) =45,(9)+2s,(9)~65,(9)

L "
O o

i
@]

m,._:orwm.m:g -5s; ag

H
o

mn:@+ommag+amagg-mm:ov
M m;:Av+umm:Jvnwwmsévuwmhséunwmm:Au = 0,
5,(12+25, (12455, 12 =55, (12 +35, (12) = O.
The above congruences with each ncnhav replaced by the corresponding
Hav follow psson»mﬂﬁw< from H:@onms 4.1, and for each value of
d we simply divide through by the :ousmpumw:@ factor no:nmw:ma in the

ﬁnv (the oOmmm»n»o:ﬁm of the T, Aav in the congruences are such
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that the ﬁmnam H:<oh<mso (m, 0) disappear).
}
sm sm< note that since

® 12 n
mﬁgv y P(13n +d) = 2. 5 N(b, 13, 13n +d)y
=Q n=0 b=0Q
w 6 n
= & N(O, 13, 13n+d)y™M42 3 2 N(Dbs13,13n+d)y
:uo b=1.n=0
{using the relation N(m, q, n) =N(g ~ m, q, n) given in (ASD){
= HOAQv + mvmg Hvﬁqv

dnav+wn4mﬁav+uu uﬁav+qamaﬁnv+oahuﬁnv+adauoﬂavﬁsoa.duv
{using (6.8) and (6.9) of (ASD)}, Theorem 4.1 may be used in an
alternative proof of Theorem 3,1.




Table 4.2

Uﬂvn Oo._ .—-N Nuw wu& Lvom Um@

O -1+m+2n+ | 21-m#m'- | -1l+m=-n+ -1-m+n- l4m+m'+n' | -n-1'-n"

+l'-2m'+n'|l -2n' +m'+2n’ -2m'-n'
11 31'-3n'+ ~1'-m'/¥X 2nt 1-2n° =2142n! i-nt
+3m' /K
2| 3m’ -m! 0 -m+1'+m’ 2m=-21'=2m'[ ~m+l'+m*
3! n-m' -2n+2m’ n Lement=2'/K | =m*'+2n'+ |m'=n'=1'K
| +21' /K
411=-1 3l+m’' -31-2m* “l+m’ 1=-m+Kn -21+2m=-
-2Kn

w\wsuma.!n:. -n+m'+3n*| -n' 0 0 0

63 =l+1l'+n' |21-21'-2n'| =141'+n' -1 21" -1

7 © 0 -1 21 n+l! =21-2n-21"
B| © -m-n-~n' 2m+2n+2n’ “m=n=n' -n 2n
9{-3m+4l1'~ |m=31'+2m'+|1'=m'-n'/K| O 1 -21"

-m'=n*/K -|+2n'/K
1C0] O 0 m=-n+kKl -3m+2n- 2m-n-n'+ ‘m+2n’
-2K1 +Kk1

.;4 G m l=-m+m* . “2l=-m=2m' l+m+m' 0

12| 3n ‘1=2n=-Km -21+n=-1"+{1l+n+21'=~ =n-1" 0

+2Km ~Km




