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Abstract 
This is a tutorial for using two new MAPLE packages, thetaids and
ramarobinsids. The thetaids package is designed to prove generalized etaproduct
identities using the valence formula for modular functions. We show how
this thetaids package can be used to find theta-function identities as well as

identities for his so called Rogers-Ramanujan functions G(q) and H(q). In his thesis
Robins found similar identities for higher level generalized eta-products. Our
ramarobinsids package is for finding and proving identities for generalizations

associated with certain real Dirichlet characters. We find a total of over 300 identities.

1 Introduction

The Rogers-Ramanujan functions are

The ratio of these two functions is the famous Rogers-Ramanujan continued fraction

Ramanujan also found

and

and remarked that "each of these formulae is the simplest of a large class." Here we have used the 
standard notation

 and 

In 1974 B. J. Birch published a description of some manuscripts of Ramanujan
including a list of forty identities for the Rogers-Ramanjan functions. Biagioli [5]
show how the theory of modular forms could prove identities of this type efficiently.
See [2] and [4] for recent work. It is instructive to write the Rogers-Ramanujan
functions in terms of generalized eta-products.



The Dedekind eta-function is defined by

where and and the generalized Dedekind
eta function is defined to be

where  is the second periodic Bernoulli polynomial,  is the 

fractional part of , and 
and  The function  is a modular function (modular form of weight 0) on with
a multiplier system.

Ramanujan's identity (1.3) can be rewritten as

and

and (1.3). The following are nice level 13 analogues:

    (1.7)

and

    (1.8)

Here we have used the notation

Equation (1.7) was found by Ramanujan [3, Eq.(8.4),p.373], and equation (1.8) is
due to Robins [20], who considered more general identities. The following is level
17 analogue of (1.8) and appears to be new.

Motivated by these examples and other work of Robins [20] one is led naturally to
consider



Ratios of functions of this type were studied by Huber and Schultz [13]. They found
the following level 17 identity:

where

The main goal of the thetaids MAPLE package is to automatically prove identities for generalized 
eta-products using the thepry of modualr functions.
In Sections 3-4 we describe the ramarobinsids package, which uses the
thetaids package to search for and prove theta-function identities for general functions  
and  that are like the theta-function identities considered
by Ramanujan [5] and Robins [20]. 
We note that Liangjie [20] gave an algorithm for proving relations for certain
theta-functions and their derivatives using a different method. We also note that
Lovejoy and Osburn [13], [15], [14], [16], have used an earlier version of the
thetaids package to prove theta-functions identities that were needed to establish
an number of results for mock-theta functions.

1.1 Installation Instructions
First install the qseries package from
http://qseries.org/fgarvan/qmaple/qseries
and follow the directions on that page. Before proceeding it is advisable to become
familiar with the functions in the qseries package. See [9] for a tutorial. Then go
to
http://qseries.org/fgarvan/qmaple/thetaids
to install the thetaids package. In Section 3 you will need to install the ramarobinsids
package from
http://qseries.org/fgarvan/qmaple/ramarobinsids

2 Proving theta-function identities
To prove a given theta-function identity one needs to  basically
do the following.

(i) Rewrite the identity in terms of generalized eta-functions.
(ii) Check that each term in the identity is a modular function on some group 

(iii) Determine the order at each cusp of  of each term in the identity.
(iv) Use the valence formula to determine up to which power of  is needed to verify the identity.
(v) Finally prove the identity by carrying out the verification.

In this section we explain how to carry out each of these steps in MAPLE. Then
we show how the whole process of proof can be automated.

2.1 Encoding theta-functions, eta-functions and generalized



eta-functions
We recall Jacobi's triple product for theta-functions:

so that

In the qseries MAPLE package the function on the left side of (2.2) is encoded
symbollically as JAC(g,d,infinity). This is the building block of the functions
in our package. In the qseries package JAC(0,d,infinity) corresponds
symbollically to

Function Symbolic MAPLE form

We will also consider generalized eta-products. Let N be a fixed positive integer.
A generalized Dedekind eta-product of level N has the form

    (2.4)

where

In MAPLE we represent the generalized eta-product

 ... 

symbollically by the list



(7)(7)

> > 

> > 

(4)(4)

> > 

(8)(8)

> > 

> > 
(1)(1)

> > 

(3)(3)

(2)(2)

(9)(9)

(5)(5)

(6)(6)

> > 

> > 

> > 

We call such a list a geta-list.
2.2 Symbolic product conversion
jac2eprod JAC notation to a product
of generalized eta-functions in EETA and GETA notation.
EXAMPLE:

currentdir();
"C:\cygwin64\home\Owner\math\mypapers\auto-theta\tutorial\maple"

with(qseries):
with(thetaids):
G:=q->add(q^(n^2)/aqprod(q,q,n),n=0..10):
H:=q->add(q^(n^2+n)/aqprod(q,q,n),n=0..10):
JG:=jacprodmake(G(q),q,50);

HG:=jacprodmake(H(q),q,50);

JP:=jacprodmake(H(q)*G(q)^(11),q,80);

GP:=jac2eprod(JP);

jac2getaprod JAC notation to a
product of generalized eta-functions in standard notation.
 jac2getaprod(JP);

1

GETAP2getalist
list as described above.
GETAP2getalist(GP);

2.3 Processing theta-functions
There are two main functions in the thetaids package for processing combinations
of theta-functions.
mixedjac2jac
terms of JAC(a,b,infinity) to a sum with the same base b. The functions
jac2series and jacprodmake from the qseries package are used.
EXAMPLE:
Y1:=1+jacprodmake(G(q),q,100)*jacprodmake(H(q^2),q,100);

Y2:=mixedjac2jac(Y1);



> > 

(10)(10)

(12)(12)

> > 

> > 

(13)(13)

(11)(11)

(9)(9)

> > 

processjacid
function of JAC-functions using mixedjac2jac and renormalizing by dividing
by the term with the lowest power of q.
As an example, we consider the well-known identity

  (2.6)
with(qseries):
with(thetaids):
F1:=theta2(q,100)^4:
F2:=theta3(q,100)^4:
F3:=theta4(q,100)^4:
findhom([F1,F2,F3],q,1,0);

JACID0:=qs2jaccombo(F1-F2+F3,q,100);

JACID1:=processjacid(JACID0);

expand(jac2getaprod(JACID1));

We see that (2.6) is equivalent to the identity

2.4 Checking modularity
Robins [21] has found sufficient conditions under which a generalized etaproduct
is a modular function on  

Theorem 2.1 ( [21](Theorem 3)). The function , defined
in (2.4), is a modular function on  if

(i) 

and

(ii) 

The functions on the left side of (i), (ii) above are computed using the MAPLE



> > 

(20)(20)

(15)(15)

> > 

(17)(17)
> > 

> > 

> > 

(18)(18)

> > 

(9)(9)

> > 

(19)(19)

(14)(14)

(16)(16)

functions vinf and v0 respectively. Suppose  is given as in (2.4) and this
generalized eta-product is encoded as the geta-list L. Recall that each item in the
list L has the form . The syntax is vinf(L,N) and v0(L,N). As an

example we consider the two generalized eta-products in (2.7).
EXAMPLE:
L1:=[[4,1,16],[4,2,-4]];

 vinf(L1,4),v0(L1,4);

 L2:=[[4,1,8],[4,2,-8]]; 

vinf(L2,4),v0(L2,4);

The numbers 0, 2 are even and we see that both generalized eta-products in (2.7)
are modular functions on  by Theorem 2.1.

Gamma1ModFunc(L,N)
is a modular function on . Here the generalized eta-product is encoded as the
geta-list L
whether both vinf(L,N) and v0(L,N) are even. It returns 1 if it is a modular
function on  otherwise it returns 0. If the global variable xprint is set to true
then more detailed information is printed. Thus here and throughout xprint can
be used for debugging purposes.
EXAMPLE:

Gamma1ModFunc(L1,4);
1

xprint:=true;

Gamma1ModFunc(L1,4);
* starting Gamma1ModFunc with L=[[4, 1, 16], [4, 2, -4]] and N=4

All n are divisors of 4
val0=2
which is even.
valinf=0
which is even.
It IS a modfunc on Gamma1(4)

1

2.5 Cusps
Cho, Koo and Park [8] have found a set of inequivalent cusps for .

The group  corresponds to the case 

Theorem 2.2 ( [8](Corollary 4, p.930)).  Let 
with 

(ii) The cusps 



(21)(21)
> > 

(9)(9)

> > 

(22)(22)

and  are equivalent mod if and only if

(ii) The following is a complete set of inequivalent cusps mod  .

S = { | 

       =     5 

=     5 

         chosen s.th. 

(iii) and the fan width of the cusp is given by

In this theorem, it is understood as usual that the fraction 

cuspequiv1( )  and 
a

are  -equivalent using Theorem 2.2(i).

EXAMPLE:
cuspequiv1(1,3,1,9,40);

false
cuspequiv1(1,9,2,9,40);

true

We see that modulo the cusps  and  are inequivalent

and the cusps  and  are equivalent.

Acmake(c,N)  where c is a positive divisor of N.
Scmake(c,N)  where c is a positive divisor of N.
newxy(x,y,N) ] for given  such that  and
 

cuspmake1(N)  using Theorem

2.2. Each cusp in the list is represented by [a,c] [1,0].



> > 

(24)(24)

> > 
(23)(23)

(9)(9)

> > 

This MAPLE procedure uses the functions Acmake, Scmake and newxy.
EXAMPLE:

C10:=cuspmake1(10);

for L in C10 do lprint(L,cuspwid1(L[1],L[2],10));od;
[0, 1], 10
[1, 0], 1
[1, 2], 5
[1, 3], 10
[1, 4], 5
[1, 5], 2
[2, 5], 2
[3, 10], 1

We have the following table of cusps for 

Cusp Cusp-width

1

5

10

5

2

2

1

CUSPSANDWIDMAKE(N)  , and
corresponding widths. Output has the form [CUSPLIST,WIDTHLIST].
EXAMPLE:
CUSPSANDWIDMAKE1(10);

2.6 Orders at cusps

of generalized eta-products. We define the theta-function



(25)(25)

(26)(26)
> > 

> > 

(27)(27)

(9)(9)

> > 

   (2.8)

for .  [6, p.277]. The classical
Dedekind eta-function can be written as

and the generalized Dedekind eta-function can be written as

 =     (2.10)

Biagioli [6] has calculated the invariant order of   at any cusp. Using (2.10)
this gives a method for calculating the invariant order at any cusp of a generalized
eta-product.

Theorem 2.3 ( [6](Lemma 3.2, p.285)). The order at the cusp 

(assuming ) of the theta function   (defined above and assuming

(2.11)

where  and [ ]  is the greatest integer function.

 at the cusp , assuming  and .

 at the cusp ,

assuming  and .
EXAMPLE:
getacuspord(50,1,4,29);

1
600

We see that

Let  be a generalized eta-product corresponding to the getalist L. The following MAPLE procedure 
calculates the invariant order 
getaprodcuspord(L,cusp)
L at the given cusp. The cusp is either a rational or oo (infinity).
EXAMPLE:

GL:=[[4,1,16],[4,2,-4]];

getaprodcuspord(GL,1/2);

We see that 



> > 

(9)(9)

(28)(28)

> > 

(29)(29)
> > 

(30)(30)

Following [6, p.275], [19, p.91] we consider the order of a function  with respect
to a congruence subgroup  at the cusp  and denote this by

ORD ord      (2.12)
getaprodcuspORDS(L,S,W)

where  is the generalized eta-product corresponding to the getalist L,   (list of inequivalent cusps
of ) and W is a list of corresponding fan-widths.

EXAMPLE:
CW4:=CUSPSANDWIDMAKE1(4);

GL:=[[4,1,16],[4,2,-4]];

getaprodcuspORDS(GL,CW4[1],CW4[2]);

We know that the generalized eta-product

is a modular function on  . We calculated ORD

ORD

0

0 1

Observe that the total order of  with respect to  is 0:

ORD ORD = 0 + 1 - 1 = 0,

in agreement with the valence formula. See Theorem 2.4 below. Here  is the set of inequivalent cusps 
of   

2.7 Proving theta-function identities
Our method for proving theta-function or generalized eta-product identities depends on
Theorem 2.4 (The Valence Formula [19](p.98)). Let  be a modular
form of weight  with respect to a subgroup  of finite index in 



(9)(9)

Then

ORD     (2.13)

where  is the index of  in 

ORD ORD ,

 is a fundamental region for and ORD  is given in equation (2.12).

Remark 2.1. For , ORD  is defined in terms of the invariant order

ord  which is interpreted in the usual sense. See [19, p.91] for details of this
and the notation used.
Since any generalized eta-product has weight  and has no zeros and no poles
on the upper-half plane we have
Corollary 2.5    Let  ,  , ...  be generalized eta-products
that are modular functions on  Let  be a set of inequivalent cusps for   Define the 

constant 

ORD (2.14)

and consider 
   (2.15)

where each  Then 

if and only if 
ORD     (2.16)

To prove an alleged theta-function identity, we first rewrite it in the form
   (2.17)

where each  and each is a generalized eta-product of level  We use the following 
algorithhm:
STEP 1. Use Theorem 2.1 to check that  is a generalized eta-product on  for each 

STEP 2.  Use Theorem 2.2 to find a set   of inequivalent cusps for   and the fan width of each 

cusp.
STEP 3. Use Theorem 2.3 to calculate the invariant order of each generalized etaproduct  at each 
cusp of .

STEP 4. Calculate 



(9)(9)

> > 

(31)(31)

ORD

STEP 5. Show that 
ORD

where

Corollary 2.5 then imples that  and hence the theta-function identity (2.17).
To calculate the constant  in (2.14) and STEP 4 we use
mintotORDS(L,n) B in equation (2.14) where L the
array of ORDS:

ORD ORD ORD
where
ORD ORD ORD

and  are the inequivalent cusps of Each ORD  is computed using
getprodcuspORDS.
EXAMPLE:

    (2.18)

where

    

We rewrite this identity as

    (2.19)

Let
   (2.20)

where

STEP 1. We check that each function is a modular function on  
f1:=mul(GETA(25,j), j=1..12):
f2:=GETA(25,10)/GETA(25,5):
f3:=1/f2:



(37)(37)

> > 

> > 

> > 

> > 

> > 
> > 

(33)(33)

(39)(39)

(38)(38)

(34)(34)

> > 

> > 

(9)(9)

> > 

> > 

> > 

(31)(31)

> > 
(36)(36)

(35)(35)

(32)(32)

> > 

GP1:=GETAP2getalist(f1):
GP2:=GETAP2getalist(f2):
GP3:=GETAP2getalist(f3):
Gamma1ModFunc(GP1,25),Gamma1ModFunc(GP2,25),Gamma1ModFunc(GP3,25)
;

STEP 2. We find a set of inequivalent cusps for   and their fan widths
CW25:=CUSPSANDWIDMAKE1(25):
cusps25:=CW25[1];

widths25:=CW25[2];

STEP 3. We compute ORD  for each  and cusp  of 
ORDS1:=getaprodcuspORDS(GP1,cusps25,widths25);

ORDS2:=getaprodcuspORDS(GP2,cusps25,widths25);

ORDS3:=getaprodcuspORDS(GP3,cusps25,widths25);

STEP 4. We calculate the constant  in (2.14).
mintotORDS([ORDS1,ORDS2,ORDS3],3);

STEP 5. To prove the identity (2.18) we need to verify that
ORD

JACL:=map(getalist2jacprod,[GP1,GP2,GP3]):
JACID:=JACL[1]-JACL[2]+JACL[3]+1:
QJ:=jac2series(JACID,100):
series(QJ,q,100);

This completes the proof of the identity (2.18). We only had to show that the coefficient of  was zero 
in the q-expansion of for  We actually did it for as a check.

provemodfuncid(JACID,N)  in equation (2.14)
and prints details of the verification and proof of the identity corresponding to
JACID, which is a linear combination of symbolic JAC-functions, and N is the
level. If xprint=true then more details of the verification are printed. When this function is called 
there is a query asking whether to verify the identity. Enter yes to carry out the verification.
EXAMPLE:
provemodfuncid(JACID,25);

"TERM ", 1, "of ", 4, " *****************"
"TERM ", 2, "of ", 4, " *****************"



(41)(41)

(39)(39)

(9)(9)

> > 

> > 

(40)(40)

(31)(31)

> > 

"TERM ", 3, "of ", 4, " *****************"
"TERM ", 4, "of ", 4, " *****************"
"mintotord = ", -9
"TO PROVE the identity we need to show that v[oo](ID) > ", 9
*** There were NO errors. 
*** o Each term was modular function on
      Gamma1(25). 
*** o We also checked that the total order of
      each term was zero.
*** o We also checked that the power of q was correct in
      each term.
"*** WARNING: some terms were constants. ***"
"See array CONTERMS."
To prove the identity we will need to verify if up to 
q^(9).
Do you want to prove the identity? (yes/no)
You entered yes.
We verify the identity to O(q^(59)).
RESULT: The identity holds to O(q^(59)).
CONCLUSION: This proves the identity since we had only
            to show that v[oo](ID) > 9.

9
provemodfuncidBATCH(JACID,N) provemodfuncid
that prints less detail and does not query.
EXAMPLE:
provemodfuncidBATCH(JACID,25);

*** There were NO errors.  Each term was modular function on
    Gamma1(25). Also -mintotord=9. To prove the identity
    we need to  check up to O(q^(11)).
    To be on the safe side we check up to O(q^(59)).
*** The identity below is PROVED!

1
printJACIDORDStable()  and lower
bound for  after provemodfuncid is run. Formatted output from our example
is given below in Table 1. By summing the last column we see that , which
confirms an earlier calculation using mintotORDS.
printJACIDORDStable();

-------------------------------------------------------------
printJACIDORDStable()                                        
   Print a table of ORDS for each term in a jacprod-identity 
   using global data produced by the function provemodfuncid.
   Table is stored in the matrix bigmat which is returned.   
-------------------------------------------------------------
ORDS Table for the jacprod identity
_G = 

where
_F[1] = 

_F[2] = 



(9)(9)

> > 

(41)(41)

(39)(39)

(31)(31)

_F[3] = 

_F[4] = 
1



(9)(9)

> > 

(41)(41)

(39)(39)

(31)(31)



(41)(41)

(39)(39)

(9)(9)

> > 

(31)(31)

The last column of the table gives a lower bound for
ORDS of _G. By summing this last column (except for oo)
we see that the identity can be proved by showing that
the coefficients of
q^0, q^1, ... q^10 are all zero.
This confirms the calculation done by provemodfuncid.

bigmat

3 Generalized Ramanujan-Robins identities
As an application of our thetaids package we show how to find and prove
generalized eta-product identities due to Ramanujan and Robins, and some natural
extensions. In Section 1 we defined the functions  and 
principal real Dirichlet character mod satisfying  Robins [20] proved the following 

identity (1.3) (or (1.6)):
    (3.1)

where

Equation (3.1) is a restatement of (1.8). In this case and  is the Legendre symbol.

We will also consider

   (3.3)

We note that

where  is a root of unity. Using the notation (1.10) (with N = 5 and ) we may rewrite 

respectively.
We have written a number of specialised functions for the purpose of finding and
proving identities for these more general - and -functions. We have collected
these functions into the new ramarobinsids package. Go to

http://qseries.org/fgarvan/qmaple/ramarobinsids
and follow the directions on that page. This package requires both the qseries
and thetaids packages.
3.1 Some MAPLE functions



> > 

> > 

> > 

(41)(41)

(39)(39)

(45)(45)

(46)(46)

(49)(49)

> > 

(44)(44)

(42)(42)

(47)(47)

(9)(9)

> > 

> > 

> > 

> > 

(31)(31)

(48)(48)

(43)(43)

> > 

> > 

Geta(g,d,n)  in symbolic JAC-form.

GetaB(g,d,n) Geta(g,d,n) without the  factor.

GetaL(L,d,n) JAC-form 
with replaced by .

GetaBL(L,d,n) GetaL(g,d,n) without the q-factor.

GetaEXP(g,d,n) q in .
GetaLEXP(L,d,n) q for the generalized eta-product corresponding to
GetaL(L,d,n).
MGeta(g,d,n)  analogue of Geta(g,d,n)

MGetaL(g,d,n)  analogue of GetaL(g,d,n)
Eeta(n)  in JAC-form
EXAMPLE:
with(ramarobinsids):
Geta(1,5,2);

GetaB(1,5,2);

GetaEXP(1,5,2);
1
30

GetaL([1,3,4],13,1);

3

GetaLB([1,3,4],13,1);

3

GetaLEXP([1,3,4],13,1);
1
4

MGeta(1,5,2);

MGetaL([1,3,4],13,1);



(54)(54)

(56)(56)

> > 

(51)(51)

> > 

> > 

> > 

> > 

(41)(41)

(39)(39)

> > 

(50)(50)

> > 

(52)(52)

(53)(53)

> > 

> > 

> > 

(9)(9)

> > 

> > 

> > 

> > 

(57)(57)

> > 

(31)(31)

> > 

(55)(55)
> > 

> > 

Eeta(3);

CHECKRAMIDF(SYMF,ACC,T)
of - and -functions is an eta-product. This assumes that G(n), H(n), GM(n),
HM(n) have already been defined. GM and HM are the    analogues of G, H. The
SYMF symbolic form is written in terms of _G, _H, _GM, _HM. ACC is an upperbound
on the absolute value of exponents allowed in the formal product, T is
highest power of q considered. This procedure returns a list of exponents in the
formal product if it is a likely eta-product otherwise it returns NULL. A number of
global variables are also assigned. The main ones are
_JFUNC: JAC-expression of SYMF.
LQD: lowest power of q.
RID: the conjectured eta-product.
ebase: base of the conjectured eta-product.
SYMID: symbolic form of the identity.

EXAMPLE:
with(qseries):
with(thetaids):
with(ramarobinsids):
G:=j->1/GetaL([1,3,4],13,j):
H:=j->1/GetaL([2,5,6],13,j):
GM:=j->1/MGetaL([1,3,4],13,j):
HM:=j->1/MGetaL([2,5,6],13,j):
GE:=j->-GetaLEXP([1,3,4],13,j):
HE:=j->-GetaLEXP([2,5,6],13,j):
GHID:=(_G(1)*_G(2)+_H(1)*_H(2))/(_G(2)*_H(1)-_G(1)*_H(2));

CHECKRAMIDF(GHID,10,50);

ebase;
26

_JFUNC;

LDQ;

RID;

SYMID;



> > 

> > 
> > 

> > 

> > 

> > 

> > 

(60)(60)

(41)(41)

(39)(39)

(50)(50)

> > 

> > 

(9)(9)

> > 

> > 

(58)(58)

(57)(57)

(31)(31)

(59)(59)

> > 

etamake(jac2series(_JFUNC,1001),q,1001);

It seems that

    (3.4)

when  and , at least up to 

EXAMPLE:
RRID1:=_JFUNC-Eeta(13)^2*Eeta(2)^2/Eeta(26)^2/Eeta(1)^2:
JRID1:=processjacid(RRID1):
jmxperiod;

26
provemodfuncidBATCH(JRID1,26);

*** There were NO errors.  Each term was modular function on
    Gamma1(26). Also -mintotord=18. To prove the identity
    we need to  check up to O(q^(20)).
    To be on the safe side we check up to O(q^(70)).
*** The identity below is PROVED!

1
Thus identity (3.4) is proved.
The search for and proof of such identities may be automated.

H(q)
We consider ten types of identities.We write a MAPLE function to search for and

prove identities of each type. Here we assume  and   We continue

to use the notation (1.10).
In this section

EXAMPLE:
with(qseries):
with(thetaids):
with(ramarobinsids):
G:=j->1/GetaL([1],5,j):
H:=j->1/GetaL([2],5,j):



> > 

(41)(41)

(39)(39)

> > 

> > 

> > 

> > 

> > 

(57)(57)

(31)(31)

> > 

> > 
(62)(62)

> > 

(50)(50)

(63)(63)

(9)(9)

> > 

(61)(61)

> > 

GM:=j->1/MGetaL([1],5,j):
HM:=j->1/MGetaL([2],5,j):
GE:=j->-GetaLEXP([1],5,j):
HE:=j->-GetaLEXP([2],5,j):

3.2.1 Type 1
We consider identities of the form

where  is an eta-product and  are positive relatively prime integers.
findtype1(T)

where  and

using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product,
and if so uses provemodfuncidBATCH to prove it. Condition (3.5)
eliminates the case of fractional powers of q, which in our case means   mod 5.
The procedure also returns a list of [a,b,c] which give identities .
EXAMPLE:
proveit:=true: noprint:=false:
qthreshold:=6000:
findtype1(11);

*** There were NO errors.  Each term was modular function on
    Gamma1(30). Also -mintotord=8. To prove the identity
    we need to  check up to O(q^(10)).
    To be on the safe side we check up to O(q^(68)).
*** The identity below is PROVED!
[6, 1, -1]

"n=", 10
*** There were NO errors.  Each term was modular function on
    Gamma1(55). Also -mintotord=40. To prove the identity
    we need to  check up to O(q^(42)).
    To be on the safe side we check up to O(q^(150)).
*** The identity below is PROVED!
[11, 1, -1]

PROVEDFL1;

myramtype1:=findtype1(36);
*** There were NO errors.  Each term was modular function on
    Gamma1(30). Also -mintotord=8. To prove the identity
    we need to  check up to O(q^(10)).
    To be on the safe side we check up to O(q^(68)).
*** The identity below is PROVED!
[6, 1, -1]



> > 

(41)(41)

(39)(39)

(50)(50)

> > 

(63)(63)

(9)(9)

> > 

(57)(57)

(31)(31)

"n=", 10
*** There were NO errors.  Each term was modular function on
    Gamma1(55). Also -mintotord=40. To prove the identity
    we need to  check up to O(q^(42)).
    To be on the safe side we check up to O(q^(150)).
*** The identity below is PROVED!
[11, 1, -1]

*** There were NO errors.  Each term was modular function on
    Gamma1(70). Also -mintotord=48. To prove the identity
    we need to  check up to O(q^(50)).
    To be on the safe side we check up to O(q^(188)).
*** The identity below is PROVED!
[7, 2, -1]

*** There were NO errors.  Each term was modular function on
    Gamma1(80). Also -mintotord=64. To prove the identity
    we need to  check up to O(q^(66)).
    To be on the safe side we check up to O(q^(224)).
*** The identity below is PROVED!
[16, 1, -1]

"n=", 20
*** There were NO errors.  Each term was modular function on
    Gamma1(120). Also -mintotord=128. To prove the identity
    we need to  check up to O(q^(130)).
    To be on the safe side we check up to O(q^(368)).
*** The identity below is PROVED!
[8, 3, -1]

"n=", 30
*** There were NO errors.  Each term was modular function on
    Gamma1(180). Also -mintotord=288. To prove the identity
    we need to  check up to O(q^(290)).
    To be on the safe side we check up to O(q^(648)).
*** The identity below is PROVED!
[9, 4, -1]

*** There were NO errors.  Each term was modular function on
    Gamma1(180). Also -mintotord=288. To prove the identity
    we need to  check up to O(q^(290)).
    To be on the safe side we check up to O(q^(648)).
*** The identity below is PROVED!
[36, 1, -1]



> > 

> > 

(65)(65)

(41)(41)

(39)(39)

(50)(50)

> > 

> > 

(63)(63)

(9)(9)

> > 

> > 

(57)(57)

(31)(31)

(64)(64)

read xprogs:
PROVEDFL1;

for j from 1 to nops(PROVEDFL1) do printtype1(PROVEDFL1[j],3,5+j)
;od;

We have included the relevant groups  and values of  (see (2.14) and
(2.16)). These identities are known and are equations (3.9), (3.5), (3.10), (3.6),
(3.12), (3.14), and (3.15) in [5] respectively.

3.2.2 Type 2

We consider identities of the form

where  is an eta-product and  are positive relatively prime integers.
findtype2(T)

where  and

using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so 
uses provemodfuncidBATCH to prove it. Condition (3.13) eliminates the case of fractional powers 
of q, which in our case means   mod 5. The procedure also returns a list of [a,b,c] which 
give identities .



> > 

> > 

(41)(41)

(39)(39)

(67)(67)

(50)(50)

> > 

> > 

(63)(63)

(9)(9)

> > 

(68)(68)

(57)(57)

(31)(31)

> > 

> > 
(66)(66)

noprint:=true:
findtype2(24);

PROVEDFL2;

for j from 1 to nops(PROVEDFL2) do printtype2(PROVEDFL2[j],3,13+
j);od;

These identities are known and are equations (3.4), (3.3), (3.8), (3.7), (3.11), and
(3.13) in [5] respectively.

3.2.3 Type 3

We consider identities of the form

which are not a quotient of Type 1 and 2 identities, and where  is an eta-product, are 
positive relatively prime integers, and 
findtype3(T)

where 
 and 

GE  GE HE  HE

GE  HE HE  GE     (3.20)

and [  is not an element of the list myramtype1

(found earlier by findtype1), using CHECKRAMIDF to check whether the expression corresponds to 



> > 
(69)(69)

> > 

> > 

(41)(41)

(39)(39)

> > 

(50)(50)

(72)(72)

(71)(71)

> > 

> > 

(63)(63)

(9)(9)

> > 

(57)(57)

(70)(70)

(31)(31)

a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns  
lists 
[ ] which correspond to identities.
xprint;

false

qthreshold;
6000

findtype3(126);

for j from 1 to nops(PROVEDFL3) do printtype3(PROVEDFL3[j],3,20+
j);od;



> > 

(41)(41)

(39)(39)

(72)(72)

> > 

> > 

(57)(57)

(31)(31)

(73)(73)
> > 

> > 

(50)(50)

(63)(63)

(74)(74)

(9)(9)

> > 

The equations marked * (see pdf) appear to be new. The other equations correspond to (3.16),
(3.18), (3.35), (3.22), (3.41), (3.40) and (3.39) in [5], and (1.24) in [20] respectively.
We have corrected the statement of equation [20, (1.24)].

3.2.4 Type 4

We consider identities of the form

where  is an eta-product and  are positive relatively prime integers, and at least one of a,b is 
even.
findtype4(T)

where  and

and at least one of a,b is even, using CHECKRAMIDF to check whether the expression corresponds to a 
likely eta-product, and if so uses provemodfuncidBATCH to prove it.  The procedure also returns a 
list of [a,b,c] which give identities .
findtype4(24);

read xprogs:
printtype4(PROVEDFL4[1],3,35);

3.2.5 Type 5

We consider identities of the form

where  is an eta-product and  are positive relatively prime integers, and at least one of a,b is 
even.
findtype5(T)

where  and

and at least one of a,b is even, using CHECKRAMIDF to check whether the expression corresponds to a 
likely eta-product, and if so uses provemodfuncidBATCH to prove it.  The procedure also returns a 
list of [a,b,c] which give identities .



> > 

> > 

(41)(41)

(39)(39)

> > 

(72)(72)

(80)(80)

> > 

> > 
(75)(75)

> > 

(77)(77)

> > 

(57)(57)

> > 

(31)(31)

(79)(79)

(50)(50)

> > 

(78)(78)

> > 

(63)(63)

(9)(9)

(76)(76)

> > 

findtype5(24);

printtype5(PROVEDFL5[1],3,37);

printtype5(PROVEDFL5[2],3,38);

These correspond to equations (3.26) and (3.27) in [5].

3.2.6 Type 6

We consider identities of the form

where  is an eta-product and  are positive relatively prime integers.
findtype6(T)

where  
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so 
uses provemodfuncidBATCH to prove it.  The procedure also returns a list of [a,b,c] which give
identities .

read xprogs:
Warning, `L` is implicitly declared local to procedure 
`printtypelist`
findtype6(24);

WARNING: There were 41 ebasethreshold problems.
         See the global array EBL.

NOTE: This may mean there identities giving theta-functions that are not eta-products.
PROVEDFL6;

read xprogs:
printtypelist(printtype6,PROVEDFL6,3,39);

These are equivalent to equations (3.25) and (3.24) in [5].

3.2.7 Type 7



> > 

(41)(41)

(39)(39)

> > 

(72)(72)

> > 

> > 

(75)(75)

(57)(57)

(31)(31)

(84)(84)

(81)(81)

(50)(50)

(83)(83)

> > 

> > 

> > 

(63)(63)

(9)(9)

> > 

(82)(82)

We consider identities of the form

where  is an eta-product and  are positive relatively prime integers.
findtype7(T)

where  and both a, b are odd,
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so 
uses provemodfuncidBATCH to prove it.  The procedure also returns a list of [a,b,c] which give
identities .
findtype7(24);

printtypelist(printtype7,PROVEDFL7,3,41);

This corresponds to (3.29) in [5].

3.2.8 Type 8

We consider identities of the form

where  is an eta-product, and is an integer.
findtype8(T)

where and 
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so 
uses provemodfuncidBATCH to prove it.  The procedure also returns a list of [a,c] which give 
identities.
findtype8(24);

WARNING: There were 2 ebasethreshold problems.
         See the global array EBL.

printtypelist(printtype8,PROVEDFL8,3,42);

3.2.9 Type 9

We consider identities of the form

where  is an eta-product, and are positive integers, and  or .
findtype8()



> > 

> > 

> > 

(41)(41)

(39)(39)

(72)(72)

> > 

(75)(75)

(85)(85)

(57)(57)

(31)(31)

> > 

> > 

(88)(88)

(50)(50)

> > 

> > 

(63)(63)

(9)(9)

> > 

(87)(87)

(86)(86)

is a likely eta-product for   or  with   the smallest such positive integers,
using CHECKRAMIDF, and if so uses provemodfuncidBATCH to prove it.  The procedure also 
returns a list of [a,b,x] which give identities.
findtype9();

printtypelist(printtype9,PROVEDFL9,3,43);

This is equation (3.1) in [5].

3.2.10 Type 10

We consider identities of the form

in which the numerator is not a Type 1 identity, and where  is an eta-product, are 
positive relatively prime integers, and 
findtype10(T)

where 
 and 

GE  HE HE  GE

GE  HE HE  GE     (3.44)

and [  is not an element of the list myramtype1

(found earlier by findtype1), using CHECKRAMIDF to check whether the expression corresponds to 
a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns  
lists 
[ ] which correspond to identities.
qthreshold:=3000:
findtype10(120);

printtypelist(printtype10,PROVEDFL10,3,45);



> > 

(88)(88)

(41)(41)

(39)(39)

(50)(50)

(72)(72)

> > 

> > 

(63)(63)

(75)(75)

(9)(9)

> > 

(57)(57)

(31)(31)

Equation is (3.38) in [5]. The other type 10 identities appear to be new.

4 More Generalized Ramanujan-Robins identities

We consider generalized Ramanujan-Robins identities
 for , that

satisfy Dirichlet Character Table Generator
[14] useful. See the website

http: //www.di-mgt.com.au/dirichlet-character-generator.html


