Automatic Proof of Theta-Function Identities

Jie Frye and Frank Garvan

Abstract
This is a tutorial for using two new MAPLE packages, thetaids and
ramarobinsids. The thetaids package is designed to prove generalized etaproduct
identities using the valence formula for modular functions. We show how
this thetaids package can be used to find theta-function identities as well as
prove them. As an application, we show how to find and prove Ramanujan’s 40
identities for his so called Rogers-Ramanujan functions G(q) and H(q). In his thesis
Robins found similar identities for higher level generalized eta-products. Our
ramarobinsids package is for finding and proving identities for generalizations
of Ramanujan’s G(q) and H(q) and Robin’s extensions. These generalizations are
| associated with certain real Dirichlet characters. We find a total of over 300 identities.

| 1 Introduction

The Rogers-Ramanujan functions are G(gq) = Z —q— = n

o n(n+1) i 1
H _ q " _
(4) Z (4:9), ,1=Ho(1—q5”+2)(1—q5"+3)

Sn+2 Sn+3
Glg) —¢"") =g""")
=H(q) n=0(1—q5n+1)(1—q5n+4)

=1+ 1

3
1+ _94_
1+ —9
_ + 1 +...
Ramanujan also found
H(q) G(q)'"' = ¢°G(q) H(g)'' =1 + 11 G(¢)°H(q)
and
LH(9)G(q'") - °Glg)H(g") =1, (1.3)
and remarked that "each of these formulae is the simplest of a large class." Here we have used the
standard ¢ - notation

6

n—1 o0
(a;9),= no(l —aq’) and(a;q)w=no(1 —aq’).
j= j=

In 1974 B. J. Birch published a description of some manuscripts of Ramanujan
including a list of forty identities for the Rogers-Ramanjan functions. Biagioli [5]
show how the theory of modular forms could prove identities of this type efficiently.
See [2] and [4] for recent work. It is instructive to write the Rogers-Ramanujan
functions in terms of generalized eta-products.

The Dedekind eta-function is defined by
1
n(x) =g [1(1-4"),
Pt

where te H:== {1eC:3(1) >0}andgq == &
eta function is defined to be

b
ng () =¢> 2% I (1-¢". (14

" & m ==+ g(mod §)

T

T and the generalized Dedekind

where P, (1) = {t}2 - {1t} + % is the second periodic Bernoulli polynomial, {t} =¢ - [¢] is the

fractional part of ¢, andg, §, meZ +
and 0 < g < &. The functionn 5 g(’t) is a modular function (modular form of weight 0) on SL,(Z) with

| a multiplier system.

Ramanujan’s identities (1.2) and (1.3) can be rewritten as
Ramanujan's identity (1.3) can be rewritten as

6
: n - 1 T T](ST)6
ng,(t)ng, (1) n,,(t)ng,(7) n(t)
and
1 1

| n5,(9, (117) g, (), (117)

It is natural to consider higher level analogues of Ramanujan’s identities (1.2)
| and (1.3). The following are nice level 13 analogues:

2
! - I S =143 —n(BTZ) (1.7)
M3z, 6(0N, 54(7) M3, 540505 6(7) n(1)
and
! _ I 1. (1.8

Ni3.0 5, 6(T)n13;1, 3,4(3 7) N3, 3,4(T)n13;2, 5, 6(37)

| Here we have used the notation

i o (1) 7 (90, (), ()
Equation (1.7) was found by Ramanujan [3, Eq.(8.4),p.373], and equation (1.8) is
due to Robins [20], who considered more general identities. The following is level
| 17 analogue of (1.8) and appears to be new.

1 B 1 .

=nl7;3, 5, 6, 7(T)n17;1,2, 4, 8(2 T) T]17;1,2, 4, 8(1)n17;3, 5, 6, 7(2 T)

Motivated by these examples and other work of Robins [20] one is led naturally to
| consider

GnNx) =G = [l n o0 HuN) =m0 =[] w00,

N N
x(g):1,0<g<7 x(g):—1,0<g<7

[where y 1s a non-principal real Dirichlet character mod N satisfying y(-1) = 1.

Ratios of functions of this type were studied by Huber and Schultz [13]. They found
|_the following level 17 identity:

2
=(r2+8r—1) —2r(r2+1)s+r2=O,
| where

A7 (57 n(177)°

:z G(1,17, (1—7)) o n(t)’

The main goal of the thetaids MAPLE package is to automatically prove identities for generalized
| eta-products using the thepry of modualr functions.

In Sections 3-4 we describe the ramarobinsids package, which uses the

thetaids package to search for and prove theta-function identities for general functions G(n, N, y)
and H(n, N,) that are like the theta-function identities considered

| by Ramanujan [5] and Robins [20].

We note that Liangjie [20] gave an algorithm for proving relations for certain

theta-functions and their derivatives using a different method. We also note that

Lovejoy and Osburn [13], [15], [14], [16], have used an earlier version of the

thetaids package to prove theta-functions identities that were needed to establish

an number of results for mock-theta functions.

| 1.1 Installation Instructions

First install the gseries package from
http://gseries.org/fgarvan/gmaple/gseries

and follow the directions on that page. Before proceeding it is advisable to become

familiar with the functions in the gseries package. See [9] for a tutorial. Then go

to

http://gseries.org/fgarvan/gmaple/thetaids

to install the thetaids package. In Section 3 you will need to install the ramarobinsids
package from

http://gseries.org/fgarvan/gmaple/ramarobinsids

| 2 Proving theta-function identities

To prove a given theta-function identity one needs to basically
do the following.

_(i) Rewrite the identity in terms of generalized eta-functions.
(i) Check that each term in the identity is a modular function on some group I' (V).
(ii1) Determine the order at each cusp of I', (N) of each term in the identity.

(iv) Use the valence formula to determine up to which power of ¢ is needed to verify the identity.
(v) Finally prove the identity by carrying out the verification.

In this section we explain how to carry out each of these steps in MAPLE. Then
we show how the whole process of proof can be automated.

2.1 Encoding theta-functions, eta-functions and generalized

| eta-functions
| We recall Jacobi's triple product for theta-functions:

o0 o0 n(n—1)
H(l—zq"‘l)(l—z‘lq”)(l—q")= Do(-1g 2, (20)
:sothat

© Y n(n—06+2g)
[[1(1_q&—g)(l_q&+g—5)(1_q&): D (- 2 L(22)

In the gseries MAPLE package the function on the left side of (2.2) is encoded
symbollically as JAC (g, d, infinity). This is the building block of the functions
in our package. In the gseries package JAC (0,d, infinity) corresponds

| symbollically to

Y 00 n(3n+1)
[T=¢"=2 -1g 2
_}’l:1 n=-o

:which is Euler’s Pentagonal Number Theorem.

Function Symbolic MAPLE form

ot JAC (g, d,infinity)
[T =% =) (1—g%+278) (1 —¢*)
n=1

JAC(0,0,infinity)

10

(1:) GETA (5, 9)

ﬂ(&) EETA (O)

['We will also consider generalized eta-products. Let N be a fixed positive integer.
| A generalized Dedekind eta-product of level NV has the form

=TI n (0% e

_ SNV, 0 <g< b
| where
1 o
_Z 'f I
roel 25 8T
S g

Z otherwise

;In MAPLE we represent the generalized eta-product

r r r

1 2
nN;gl(T) nN;gZ(r) -.-nN;gm(r)

[symbollically by the list
_[[N/ gy fl]/ [N/ Py f2], ey [N, g rm]]

| We call such a list a geta-list.
| 2.2 Symbolic product conversion

jac2eprod—Converts a quotient of theta-functions in JAC notation to a product
| of generalized eta-functions in EETA and GETA notation.

EXAMPLE:

> currentdir () ;
"C:\cygwin64\home\Owner\math\mypapers\auto-theta\tutorial\maple"
> with(gseries):
with (thetaids) :
G:=g->add (g”* (n*2) /agprod(q,q,n) ,n=0..10) :
H:=g->add (g” (n*2+n) /agprod(q,q,n) ,n=0..10) :
JG:=jacprodmake (G(q) ,q,50) ;

_JAC(0, 5, »)

i G JAC(1,5, «)
[> HG:=jacprodmake (H(q) ,q,50) ;

JAC(0, 5, »)

HG = &=/ 2= =/

G JAC(2, 5,)

> JP:=jacprodmake (H(g) *G(q) * (11) ,q,80) ;
JAC(0, 5,)"

JP = 11
JAC(1,5,) JAC(2,5, =)

> GP:=jac2eprod (JP) ;

GP = 1

i GETA(5,1)"" GETA(5,2)

jac2getaprod — Converts a quotient of theta-function in JAC notation to a
| product of generalized eta-functions in standard notation.
> Jjac2getaprod (JP) ;

1
11
ng (1), (%)

[GETAP2 getalist — Converts a product of generalized eta-functions into a
| list as described above.
> GETAP2getalist (GP) ;

| [[Sa la _11]3 [5323_1]]
| 2.3 Processing theta-functions

of theta-functions.
mixedjac2jac — Converts a sum of quotients of theta-functions written in
terms of JAC (a,b, infinity) to a sum with the same base b. The functions

jac2series and jacprodmake from the gseries package are used.
EXAMPLE:

JAC(0, 5, ©) JAC(0, 10, o)

Yi:=1
* JAC(1, 5, «) JAC(4, 10, =)

> Y2 :=mixedjac2jac (Y1) ;

There are two main functions in the thetaids package for processing combinations

> Yl:=1+jacprodmake (G(q) ,gq,100) *jacprodmake (H(g*2) ,q,100) ;

0y

()]

(€))

C))

©))

(6)

@)

®

JAC(0, 10,)’

i JAC(1, 10, ®) JAC(4, 10, =)
processjacid— Processes a theta-function identity written as a rational
function of JAC-functions using mixedjac?2jac and renormalizing by dividing

by the term with the lowest power of g.
As an example, we consider the well-known identity

Y2:=1+

16,(9)"=6,(¢)" +6,(¢)" (26)

> with (gseries) :

with (thetaids) :

Fl:=theta2(q,100)*4:

F2:=theta3(q,100) *4:

F3:=theta4 (q,100) *4:
findhom([F1,F2,F3],q,1,0);

i (X, — X, +.X3)

[> JACIDO:=gs2jaccombo (F1-F2+F3,q,100) ;

16 ¢ JAC(0,4, ©)° JAC(0,4, ©)°JAC(2,4,)°
i JAC(2, 4,) JAC(1, 4, »)*
B JACID1 :=processjacid (JACIDO) ;

JACIDO =

8 16
JACID] — - 16 g JAC(1, 4, 0;) 11— JAC(11,24, 00) :
| JAC(2,4, ©) JAC(0,4,)~ JAC(2,4, ©)
[> expand (jac2getaprod (JACID1)) ;
16 8
n, (1) 16m, (1)
- -
N, 5(7) N, 5(7)

[We see that (2.6) is equivalent to the identity
16 8
n(9" 16m,,()

4 8
| y,(7) N,,(7)
| 2.4 Checking modularity

Robins [21] has found sufficient conditions under which a generalized etaproduct
is a modular function on Fl (N).

Theorem 2.1 ([21](Theorem 3)). The function f (1), defined
in (2.4), is a modular function onI', (N) if

QD > apz(&) r, =0mod2
3|V, g 5 8

| and

(i) >, YPy(0) r, =0mod2
sv.g O 8

[The functions on the left side of (1), (i1) above are computed using the MAPLE

+JAC(1,2, »)*

®

(10)

an

(12)

13)

functions vinf and vO respectively. Suppose /(1) is given as in (2.4) and this
generalized eta-product is encoded as the geta-list L. Recall that each item in the

list L has the form[ﬁ, g,] The syntax isvinf (L, N) and vO (L, N). As an
g

| example we consider the two generalized eta-products in (2.7).

[EXAMPLE:
> L1:=[[4,1,16],[4,2,-41];

i Ll:=1[4,1,16],[4,2, —4]] a4
> vinf(L1,4),vO0(L1,4);

i 0,2 s
[> 12:=[[4,1,8],[4,2,-81];

i L2:=1[4,1,8],[4,2, —8]] (16)
> vinf (L2,4) ,v0(L2,4) ;

i 2,0 a7
[The numbers 0, 2 are even and we see that both generalized eta-products in (2.7)

are modular functions on l"1 (4) by Theorem 2.1.

GammalModFunc (L, N) — Checks whether a given generalized eta-product

is a modular function on I', (V). Here the generalized eta-product is encoded as the
geta-list L. The function first checks whether each § is a divisor of N and checks
whether bothvinf (I, N) and vO (L, N) are even. It returns 1 if it 1s a modular
function on I (V) otherwise it returns 0. If the global variable xprint is set to true

then more detailed information is printed. Thus here and throughout xprint can
be used for debugging purposes.

EXAMPLE:
> GammalModFunc (L1,4);
i 1 (18)
[> xprint:=true;
xprint = true 19)

=> GammalModFunc (L1,4) ;
* starting GammalModFunc with L=[[4, 1, 16], [4, 2, -4]] and N=4

All n are divisors of 4
valO=2

which is even.

valinf=0

which is even.

It IS a modfunc on Gammal (4)

i 1 (20)
:2.5 Cusps
_Cho, Koo and Park [8] have found a set of inequivalent cusps for Fl (N)N FO(mN).

The group I, (N) corresponds to the case m = 1.

;Theorem 2.2 ([8](Corollary 4, p.930)). Leta,c,a',c'eZ
| with (a, c) = (a',c') = 1.

(i1) The cusps

% and a? are equivalent mod (N)if and only if

(2) = ¢ mar

(i1) The following is a complete set of inequivalent cusps mod I" (N).

y.
S:{%O<C|N,O<S a '<N’(Sc,i’N):(aC,j’N):1’

o?) —
L ¢ i
_ N
S, TSy TS = isc, ; mod P
a . =+a,. . .modc ifc=ﬂ or N,

_ - GJ G J 2 ’

Ao j e .
a,;=a p mod c otherwise,

X p yc,jGZchosen s.th. X ZCSp Vo = anmodN, (xc, » yc’j) =1 },

(iii) and the fan width of the cusp = is given by
C

1, ifN=4or (c,4) =2,
(o= |
c , otherwise.
(¢, N)

In this theorem, it is understood as usual that the fraction + % corresponds to oo.
i a4)
cuspequivl(a, ¢, a,, ¢,, N) —determines whether the cusps — and —
€)

are I', (N)-equivalent using Theorem 2.2(1).

EXAMPLE:
[> cuspequivl(1,3,1,9,40);
i false
> cuspequivl(1,9,2,9,40);
true

We see that modulo Fl (40)the cusps % and % are inequivalent

and the cusps % and % are equivalent.

Acmake (c, N) —returns the set {aqj } where c is a positive divisor of V.

Scmake (¢, N) —returns the set {sc ; } where c is a positive divisor of V.

Y=y mod N

cuspmakel (N)—returns a set of inequivalent cusps for I, (V) using Theorem

_newxy (x,v,N) —returns [x, y,] for given (x, y, N) =1 such thatx, =x mod N and

2.2. Each cusp 2 in the list is represented by [a, c], so that oo is represented by [1, 0].
c

@1

(22)

| This MAPLE procedure uses the functions Acmake, Scmake and newxy.
EXAMPLE:

> C10:=cuspmakel (10) ;

;2. 6 Orders at cusps

We will use Biagioli’s [6] results for theta-functions to calculate orders at cusps
of generalized eta-products. We define the theta-function

| C10:={[0,1],[1,0], [1,2], [1,3], [1,4], [1,5],[2,5], [3,10]} (23)
[> for L in C10 do lprint (L, cuspwidl (L[1],L[2],10)) ;od;
(0, 1], 10
(1, 0], 1
(1, 2], 5
(1, 31, 10
[1, 41, 5
[1, 51, 2
(2, 51, 2
 [3, 10], 1
We have the following table of cusps for Fl(10).
Cusp Cusp-width
0 10
® 1
1 5
2
1 10
3
1 5
4
1 2
5
2 2
5
3 1
10
CUSPSANDWIDMAKE (N) —returns a set of inequivalent cusps for V), and
| corresponding widths. Output has the form [CUSPLIST, WIDTHLIST].
| EXAMPLE:
> CUSPSANDWIDMAKE1L (10) ;
1 1.1 1 2 3
00705 7’ 7’ 75 7’ 7’7 7[17 107 57 107 5727271] (24)

(5-297% «

05, (T) =4 Tl (—g™m) (1 =g~) (1-¢"), @8
| m=1

for0 < g < o. This corresponds to Biagioli’s function]% g [6, p.277]. The classical
Dedekind eta-function can be written as

_n(*c) =93;1(r), (2.9)

;and the generalized Dedekind eta-function can be written as

Mg, () =) O (2.10)

n(ér) 6;4(7)

Biagioli [6] has calculated the invariant order of 95~g(1) at any cusp. Using (2.10)

this gives a method for calculating the invariant order at any cusp of a generalized
eta-product.

Theorem 2.3 ([6](Lemma 3.2, p.285)). The order at the cusp s = %

(assuming (b, c) =1) of the theta function Gs_g(’c) (defined above and assuming
| 04g) is
ord(0. (1), s =i(9& ; [ﬁ&} - i)z @.11)

(> 77) 286\ e e 2)’ '

| where e= (8, ¢) and [] is the greatest integer function.

Bord (8, g, a, c)—returns the order of@sig(r) at the cusp %, assuming (a, ¢) =1 and &+4g.

getacuspord (d, g, a, c)—returns the order of the generalized eta-function n S-g(1) at the cusp 4 ,
bl c

| assuming (a, ¢) =1 and otg.
| EXAMPLE:
> getacuspord(50,1,4,29);

600 (25)

;We see that

4 1
i Ord(ﬂso;l(’t),g)=w.
Let G be a generalized eta-product corresponding to the getalist L. The following MAPLE procedure
calculates the invariant order ord(G, {) for any cusp ¢ .
getaprodcuspord (L, cusp)—returns of the generalized eta-product corresponding to the geta-list

L at the given cusp. The cusp is either a rational or oo (infinity).
EXAMPLE:

> GL:=[[4,1,16],[4,2,-4]1;
| GL = [[49 19 16]9 [4: 2: _4]] (26)
> getaprodcuspord (GL,1/2) ;
—1 27

| We see that

16

M., (1) 1
ord ’—4, 5 =-1.
i n,.,(7)
Following [6, p.275], [19, p.91] we consider the order of a function f* with respect

| to a congruence subgroup I" at the cusp § € Q U { «} and denote this by

: ORD(£ET)=x({T)ord(£), (2.12)
getaprodcuspORDS (L, S, W) — returns a list of orders ORD(g, ¢ I, (N))

where G is the generalized eta-product corresponding to the getalist ., { € S (list of inequivalent cusps
of I', (N)) and W is a list of corresponding fan-widths.

[EXAMPLE:
> CW4 :=CUSPSANDWIDMAKE1 (4) ;
CW4 = 00,0,;},[1,4,1]} (28)
> GL:=[[4,1,16],[4,2,-4]1;
i GL = [[4,1,16], [4,2, —4]] 29)
[> getaprodcuspORDS (GL,CW4[1] ,CW4[2]) ;
| [0,1, —1] 30)
| We know that the generalized eta-product
16
N, (7)
f(t)=——7
N,,(7)

is a modular function on I (4) . We calculated ORD(jNe I (4)) at each cusp (of I, (4).

g ORD(/T (4))
% 0

0 1

1 -1

2

Observe that the total order of / with respect to I', (4) is 0:

ORD(/.T,(4)) = 2 ORD(£L T (4))=0+1-1=0,
L CeS

[in agreement with the valence formula. See Theorem 2.4 below. Here S is the set of inequivalent cusps
of T (4).
_ 1

| 2.7 Proving theta-function identities

Our method for proving theta-function or generalized eta-product identities depends on
Theorem 2.4 (The Valence Formula [19](p.98)). Let/ #+ 0 be a modular

form of weight k with respect to a subgroup I of finite index in I'(1) =SL,(Z).

| Then

ORD(/T) = 11—2 Wk (2.13)

7

| where [Lis the index of 1: nI(1),

ORD(/.T) = > ORD(/,5T),

_ CeR”
R’ is a fundamental region for I, and ORD(5LG F) is given in equation (2.12).

Remark 2.1. Forz € b, ORD(£ C F) is defined in terms of the invariant order

ord(£, ¢) which is interpreted in the usual sense. See [19, p.91] for details of this
| and the notation used.

Since any generalized eta-product has weight £ =0 and has no zeros and no poles
| on the upper-half plane we have

Corollary 2.5 Let f,(1), £(7), ... f,(T) be generalized eta-products
that are modular functions on Fl (N). Let SN be a set of inequivalent cusps for Fl (N). Define the

constants € &
N

B= > min ORD(f, 5T (N)): 1 <j<n}U{0}), (214)
secS’N,sioo

:and consider
] g(t) = o fi(t) +o,f(1) +.. +o f(1) +1, (2.15)

_where each ocj € C. Then

[if and only if
ORD(g(1),, T,(N)) > - B. (2.16)

;To prove an alleged theta-function identity, we first rewrite it in the form

] o fi(t) +o,f(1) +. o f(T) +1=0, (2.17)

_where each o, € C and each fz(T) is a generalized eta-product of level N. We use the following

| algorithhm:

_ST EP 1. Use Theorem 2.1 to check that fj(r) is a generalized eta-product on I', (V) foreach1 <j < n.
_ST EP 2. Use Theorem 2.2 to find a set cS’N of inequivalent cusps forT" (V) and the fan width of each
| cusp.

STEP 3. Use Theorem 2.3 to calculate the invariant order of each generalized etaproduct jj(1) at each
cusp ofl“1 (N).

[STEP 4. Calculate

B= 2, min| [ORD(f,s T (N)):1<j<n}U{0}).
secSqu&oo

[STEP 5. Show that

] ORD(g(T),OO,l"l(N)> > - B

| where

] g(t) =0 fi(7) +ofi(t) +.. +a f(1) + 1.
;Corollary 2.5 then imples that g(T) = 0 and hence the theta-function identity (2.17).

To calculate the constant B in (2.14) and STEP 4 we use
mintotORDS (L, n) — returns the constant B in equation (2.14) where L the
| array of ORDS:

i L= [ORD(fl),ORD(fZ),..., ORD(fn)],

| where

| ORD(f) =[ORD(£§, T,(N)),ORD(5, T\ (N)), s (/G Ty (N))]

_and Cl, Cz, y Cm are the inequivalent cusps of I', (V). Each ORD(f) is computed using

| getprodcuspORDS.
| EXAMPLE:
L As an example we prove Ramanuj an’s well-known identity

_ 2

H% =R(¢") - ¢ - —L—, (19

B —q") R(q’)
| where

=ﬁ _ 5n— (l_an—3).

- _ 5n—1)(1_q5n—4)

| We rewrite this identity as

n(t) :nzs;w(r)) M,s.s(7)

- —22 " (2.19)
n(257) T]25;5(1:) n25;10(1")
Let
g(t) =£(1) - f(1) +A4(T) +1, (2.20)
| where
_ (v _ Mys,10(7)

A s) JH“ZSJ A

£(x) - 1 :nzs;s(r)

3

H() Mys,10(7)
ST EP 1. We check that each function is a modular function on F (25).

> £1:=mul (GETA(25,3j), j=1..12):
f2:=GETA(25,10)/GETA(25,5):
£f3:=1/£2:

GP1l:=GETAP2getalist (f1l) :
GP2:=GETAP2getalist (£f2) :
GP3:=GETAP2getalist (£3):
GammalModFunc (GP1,25) ,GammalModFunc (GP2,25) ,GammalModFunc (GP3, 25)

i L, 1,1 31)
STEP 2. We find a set of inequivalent cusps for I', (25) and their fan widths

[> CW25:=CUSPSANDWIDMAKEL (25) :
> cusps25:=CW25[1];

P11 1 1 1 1 1 1 1 1 1 2 2 3 3 3

cusps23 =100, 0, s 3 4 S 6 7 8 90 100 110 127 5° 25° 5° 10° 25° (32)
iiiliiiiiﬁ}
57257257107 25° 25° 107 25° 25° 25

> widths25:=CW25[2] ;
| widths25 = [1, 25, 25,25, 25,5, 25, 25, 25, 25, 5, 25, 25, 5, 1, 5,5, 1,5, 1, 1,5, 1, 1,5, 1, I, 1] (33)
| STEP 3. We compute ORD(];, §T,(25)) for each;j and cusp {of T' (25).

> ORDS1:=getaprodcuspORDS (GP1l,cusps25,widths25) ;
ORDSI! == [—-1,1,1,1,1,0,1,1,1,1,0,1,1,0, —1,0,0, —1,0, —1, —1,0, —1, —1,0, —1, (34)
| L —1]
[> ORDS2 :=getaprodcuspORDS (GP2, cusps25,widths25) ;
| ORDS?2:=1[-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0, =1, —=1,0,1,1,0, =1, =1, 1] (35)
[> ORDS3: =getaprodcuspORDS (GP3, cusps25,widths25) ;
| ORDS3 = 1[1,0,0,0,0,0,0,0,0,0,0,0,0,0, -1,0,0, —=1,0, 1, 1,0, =1, —=1,0, I, I, —=1] (36)

| STEP 4. We calculate the constant B in (2.14).
> mintotORDS ([ORDS1,0RDS2,0RDS3],3) ;
-9

(37)
;ST EP 5. To prove the identity (2.18) we need to verify that
] ORD(gCQ,w,FNZS))>>9
| > JACL:=map (getalist2jacprod, [GP1,GP2,GP3]) :
| > JACID:=JACL[1]-JACL[2]+JACL[3]+1:
| > QJ:=jac2series (JACID,100):
> series(QJ,q,100) ;
o(q”) (38)

This completes the proof of the identity (2.18). We only had to show that the coefficient of ¢’ was zero
in the g-expansion of g(1) forj < 10. We actually did it forj < 98 as a check.
STEPS 1-5 may be automated using
provemodfuncid (JACID,N) — returns the constant B in equation (2.14)
and prints details of the verification and proof of the identity corresponding to
JACID, which is a linear combination of symbolic JAC-functions, and N is the
level. If xprint=true then more details of the verification are printed. When this function is called

there is a query asking whether to verify the identity. Enter ye s to carry out the verification.
| EXAMPLE:
> provemodfuncid (JACID, 25) ;

"TERM ", 1, "of ", 4, MW okkkrkkkhkhkhkhkkhkhkrxkkhkhkx

"TERM ", 2, "of ", 4, MW okkkrkkkhkhkhkhkkhkhkrxkkhkhkx

"TERM ", 3, "of ", 4, " FREXKKkAX KKk X KokAN
"TERM ", 4, "of ", 4, "M xkkEkkkkkkkkkkxkkxN

"mintotord = ", -9
"TO PROVE the identity we need to show that wv[oo] (ID) > ", 9
*** There were NO errors.
*** o Each term was modular function on
Gammal (25) .
*** o We also checked that the total order of
each term was zero.
*** o We also checked that the power of g was correct in
each term.
"x*x* WARNING: some terms were constants. ***x"
"See array CONTERMS."
To prove the identity we will need to verify if up to
a”(9) .
Do you want to prove the identity? (yes/no)
You entered yes.
We verify the identity to O(g”(59)).
RESULT: The identity holds to O(g”(59)).
CONCLUSION: This proves the identity since we had only
to show that v[oo] (ID) > 9.

9
provemodfuncidBATCH (JACID, N)—is a version of provemodfuncid
that prints less detail and does not query.

_EXAMPLE :
> provemodfuncidBATCH (JACID, 25) ;
*** There were NO errors. FEach term was modular function on

Gammal (25) . Also -mintotord=9. To prove the identity
we need to check up to O(g”(11)).
To be on the safe side we check up to O0(g”(59)).

*** The identity below is PROVED!

1
_print JACIDORDStable () —prints an ORDs table for the]; and lower

bound for g after provemodfuncidis run. Formatted output from our example
is given below in Table 1. By summing the last column we see that B =-9, which
| confirms an earlier calculation using mint ot ORDS.

> printJACIDORDStable () ;

printJACIDORDStable ()
Print a table of ORDS for each term in a jacprod-identity

Table is stored in the matrix bigmat which is returned.

ORDS Table for the jacprod identity
G =
F—=_F+ F+ F,=0
where
_F[1] =
GETA(25,1) GETA(25,2) GETA(25,3) GETA(25,4) GETA(25,5) GETA(25,

F[2] =

using global data produced by the function provemodfuncid.

6) GETA(25,7) GETA(25,8) GETA(25,9) GETA(25, 10) GETA(25, 11) GETA(25, 12)

(39)

(40)

GETA(25,10)

GETA(25,5)

GETA(25,5)

GETA(25,10)

1

ORD(_G) |

4)

F

) ORD(

3

F

) ORD(

2

F

| cusp ORD(_F|) ORD(

0o

— — —
() S (e} (e () () () S (e} (e () () S (e} (e
() S S) () () () S S) () () () S S) () ()
— —
() S S) () () () S S) () () S S () —
—
() S S () () () () S S) () () — S S — ()
o — o
— — —) — — — — o — — () o S [a)

The last column of the table gives a lower bound for
ORDS of G. By summing this last column (except for 00)
we see that the identity can be proved by showing that
the coefficients of

ag*0, g*l, ... g*l0 are all zero.
This confirms the calculation done by provemodfuncid.
bigmat 41)

| 3 Generalized Ramanujan-Robins identities

As an application of our thetaids package we show how to find and prove
generalized eta-product identities due to Ramanujan and Robins, and some natural
extensions. In Section 1 we defined the functions G(n, N, X) and H (n, N, X) , Where y is a non-

principal real Dirichlet character mod N satisfying x(-1) =1. Robins [20] proved the following

striking analogue of Ramanujan’s
_identity (1.3) (or (1.6)):
L G(3)H(1) - G(1)H(3)=1, (3.1)
| where

1 1
Gn)=—", Hn)=——m"m"m"".
7)

_ Mi3.1,3,4(77) Mi32,56(7

Equation (3.1) is a restatement of (1.8). In this case N=13 and = (1—) is the Legendre symbol.

;We will also consider

* *

G (mNy) =G (m =[] 0. B (aNx)=H (n) = [1

*

Ny (17,

;We note that

_ n&g(r) :m&gn&g(T i)

where m&g is a root of unity. Using the notation (1.10) (with N =5 and x = (15)) we may rewrite

| Ramanujan’s identities (1.2), (1.3) as
GO HM) -G HOMY =1 + 11 G(1)° H(1)H®,
H(1) G(11) - G(1) H(11) =1,

| respectively.

We have written a number of specialised functions for the purpose of finding and
proving identities for these more general G- and H-functions. We have collected

| these functions into the new ramarobinsids package. Go to

L http://gseries.org/fgarvan/gmaple/ramarobinsids
and follow the directions on that page. This package requires both the gseries
| and thetaids packages.

| 3.1 Some MAPLE functions

with T replaced by nt.

GetaEXP (g, d, n)—returns lowest power of g in nd.g(nr).

GetalL (L,d,n).
| MGeta (g,d,n)—n analogue of Geta (g, d, n)

*
| MGetal (g,d,n)—n analogue of Getal, (g, d, n)

| Feta (n) — returns Dedekind eta-functionn(#7) in JAC-form

| EXAMPLE:
| > with(ramarobinsids) :
> Geta(l,5,2);

7'13° J4c(2, 10, %)

i JAC(0, 10, o)
> GetaB(1,5,2);
JAC(2, 10, o)
i JAC(0, 10, «)
[> GetaEXP(1,5,2);
1
30

> GetaL([1,3,4],13,1);
g4 J4C(1,13, 00) JAC(3, 13, ®) JAC(4, 13, %)
JAC(0, 13,)°

> GetaLB([1,3,4],13,1);
JAC(1, 13,) JAC(3, 13, %) JAC(4, 13, ®)

JAC(0, 13,)>

[> GetalEXP([1,3,4],13,1);

1
i 4
[> MGeta(1,5,2);

' 13° J4C(2, 10,) JAC(4, 40, 2) JAC(0, 20,)

Geta (g, d, n) — returns the generalized eta-function 1 d_g(nr) in symbolic JAC-form.

. 2
GetaB (g, d, n)—returns Geta (g, d, n) without the ¢ 28 factor.
Getal, (L, d, n) — returns the generalized eta-product corresponding to the geta-list in JAC-form

GetaBL (L, d, n) — returns the generalized eta-product Getal (g, d, n) without the g-factor.

i JAC(0, 10, %) JAC(0, 40,) JAC(2, 20, =)>
[> MGetaL([1,3,4],13,1);

w)2 JAC(4,13, ») JAC(8, 52, ©))

(¢'1* J4C(1, 13, ®) JAC(2, 52, ®) JAC(0, 26, ®) JAC(3, 13, @) JAC(6, 52, o) JAC(4,
26,)2 JAC(8, 26, %)) | (JAC(0, 13, ©) JAC(0, 52, ®) JAC(1, 26, ®)2 JAC(3, 26,

GetalLEXP (L, d, n) — returns lowest power of g for the generalized eta-product corresponding to

42)

43)

(44)

45)

(46)

“7)

(48)

(49)

> Eeta(3);

i g'1%74C(0,3,)
CHECKRAMIDF (SYMF, ACC, T)—checks whether a certain symbolic expression
of G- and H-functions is an eta-product. This assumes thatG (n), H (n), GM (n),

HM (n) have already been defined. GM and HM are the 1 analogues of G, H. The
SYMF symbolic form is written in terms of G, H, GM, HM ACC is an upperbound
on the absolute value of exponents allowed in the formal product, T is
highest power of g considered. This procedure returns a list of exponents in the
formal product if it is a likely eta-product otherwise it returns NULL. A number of
| global variables are also assigned. The main ones are
* JFUNC: JAC-expression of SYME.
* LOD: lowest power of g.
* RID: the conjectured eta-product.
* ebase: base of the conjectured eta-product.
|+ SYMID: symbolic form of the identity.
EXAMPLE:
[> with (gseries) :
with (thetaids):
with (ramarobinsids) :
G:=j->1/GetaL([1,3,4],13,3):
H:=j->1/Getal([2,5,6],13,3):
GM:=j->1/MGetaL([1,3,4],13,]):

\%

V"V"V

v

v

| > HM:=j->1/MGetaL([2,5,6],13,]):
| > GE:=j->-GetalEXP([1,3,4],13,]3):
> HE:=j->-GetalLEXP([2,5,6],13,3):

\%

GHID:=(_G(1)*_G(2)+ H(1)*_H(2))/(_G(2)*_H(1)-_G(1)*_H(2))
_ _G) _GR2)+ H(1l) _H(2)
CHID = =2y H(1) = _G(1) _H(2)
> CHECKRAMIDF (GHID,10,50) ;
[—2,0,—2,0, —2,0, —2,0, —2,0, —2,0,0,0, —2,0, —2,0, —2,0, —2,0, —2,0, —2, 0,
i -2,0, —-2,0, —2,0, —2,0, —2,0, —2,0, 0]
> ebase;

i 26
> JFUNC;
(quAC(l, 13,) JAC(3, 13, o) JAC(4, 13, o) JAC(2, 26,) JAC(6, 26, «) JAC(S, 26,
o) +JAC(2,13,) JAC(5,13,) JAC(6, 13,) JAC(4, 26,) JAC(10, 26,
) JAC(12,26, ©)) | (g (~q JAC(2,26,) JAC(6, 26,) JAC(8, 26,) JAC(2, 13,
) JAC(5,13,) JAC(6, 13,) +JAC(1, 13, 00) JAC(3, 13,) JAC(4, 13,
i o) JAC(4, 26, ©) JAC(10, 26,) JAC(12,26,)))
> 1LDQ;
i —1
> RID;
2 2
n(131) n(21)

n(267)°n(1)*

> SYMID;

(30)

(1)

(32)

(33)

(54)

(35)

(36)

G() G2)+ H() HE2) _n(131)’n(21)’ -

_ 2 2
I _G(2) _H(1) = _G(1) _H(2) y(261)* (1)
> etamake (jac2series(_JFUNC,1001) ,q,1001);

n(131)'n(217)°)
n(267)"n(x)’

;It seems that

2 2
G(1) G(2) + H() H2) _n{137) n(27)" o,

G(2) H(1) — G(1) H(2) 1ﬂ26Tfn(ﬂ2

when N=13 and y = (?), at least up to quOO.

| EXAMPLE:
| > RRID1:= JFUNC-Eeta (13)“2*Eeta(2)“2/Eeta(26)*2/Eeta(1)*2:
:> JRID1:=processjacid (RRID1) :
[> jmxperiod;
26 59)
> provemodfuncidBATCH (JRID1,26) ;
***% There were NO errors. FEach term was modular function on
Gammal (26) . Also -mintotord=18. To prove the identity
we need to check up to O0(g”(20)).
To be on the safe side we check up to O(g”(70)).
*** The identity below is PROVED!
1 (60)

[Thus identity (3.4) is proved.

| The search for and proof of such identities may be automated.

3.2 Ten types of identities for Ramanujan’s functions G(q) and
_H(q)

We consider ten types of identities. We write a MAPLE function to search for and

prove identities of each type. Here we assume N =5 and x = (g) We continue

_to use the notation (1.10).
| In this section

Gu%ﬂ{Li(?)%:mjﬁ):(%fmﬂw’

EXAMPLE:

[> with(gseries):

:> with (thetaids) :

:> with (ramarobinsids) :

[> G:=j->1/GetaL([1],5,3):
[> H:=j->1/GetaL([2],5,3):

| > GM:=j->1/MGetaL([1],5,]):
[> HM:=j->1/MGetaL([2],5,73):
[> GE:=j->-GetaLEXP([1],5,7):
[> HE:=j->-GetaLEXP([2],5,3):
[3.2.1 Type 1

| We consider identities of the form

G(a) H(b) + G(b) H(a) =f(1),

| where £(T) is an eta-product and a, b are positive relatively prime integers.
[findtypel (T)— cycles through symbolic expressions

[_G(a) _Hb) +c G(b) H(a)

| where2 <n <T, ab=n, (a,b)=1,b <a,ce{-1,1}, and

GE(a) + HE(b)- (GE(b) + HE(a)) =%(b—a) eZ, (3.5)

using CHECKRAMI DF to check whether the expression corresponds to a likely eta-product,
and if so uses provemodfuncidBATCH to prove it. Condition (3.5)

eliminates the case of fractional powers of g, which in our case means a = b mod 5.
=Thepﬂmemneahormunmalmtof[a,b,c] which give identities .

| EXAMPLE:

| > proveit:=true: noprint:=false:

| > gthreshold:=6000:

> findtypel (11);

***% There were NO errors. Each term was modular function on
Gammal (30) . Also —mintotord=8. To prove the identity
we need to check up to O(g”(10)).
To be on the safe side we check up to O(g”(68)).

*** The identity below is PROVED!

[6, 1, -11
61 T
G6)_H(1) = G(1)_H(6) = -Lex)n(z)
n(31) n(21)
"n:"’ lO
*** There were NO errors. Fach term was modular function on

Gammal (55) . Also —mintotord=40. To prove the identity

we need to check up to O0(g”(42)).

To be on the safe side we check up to O0(g”(150)).
*** The identity below is PROVED!
(11, 1, -1]

_G(11) _H(1)— _G(1) H(11)=1

! (16,1, =11 [11, 1, =11] (61)
> PROVEDFL1;

i [fe, 1, —1,30, =81, [11,1, —1,55, —40]] (62)
[> myramtypel:=findtypel (36) ;
*** There were NO errors. Fach term was modular function on

Gammal (30) . Also —-mintotord=8. To prove the identity
we need to check up to O(g”(10)).
To be on the safe side we check up to O0(g™(68)).

*** The identity below is PROVED!

(6, 1, -1]

_G(6) _H(1) —_G(1) _H(6) =
n(31)n(27)

annl 10
*** There were NO errors. Each term was modular function on
Gammal (55) . Also -mintotord=40. To prove the identity
we need to check up to O(g”(42)).
To be on the safe side we check up to O0(g”(150)).
*** The identity below is PROVED!
(11, 1, -1]
_G(11) _H(l)— _G(1) _H(11)=1
*** There were NO errors. Fach term was modular function on
Gammal (70) . Also -mintotord=48. To prove the identity
we need to check up to O0(g”(50)).
To be on the safe side we check up to O(g”(188)).
*** The identity below is PROVED!
(7, 2, -1]

607 _H2) —_G2)_Hm =2ltnn)
n(7t)n(21)
*** There were NO errors. Each term was modular function on
Gammal (80) . Also -—-mintotord=64. To prove the identity
we need to check up to O(g”(66)).
To be on the safe side we check up to 0(g”(224)).
*** The identity below is PROVED!

(16, 1, -1]
2
41
G(16) _H(1) — G(1) H(16) = n(47)
n(8t)n(21)
Hn:H, 20
*** There were NO errors. FEFach term was modular function on

Gammal (120) . Also -mintotord=128. To prove the identity
we need to check up to O(g”™(130)).
To be on the safe side we check up to O0(g”(368)).

*** The identity below is PROVED!

[8r 3, _1]
~G(8) H(3)— _G(3) H(8) = T](24’C) n(6T) n(4T) T](T)
n(12t) n(81)n(31)n(21)
"nzll, 30
*** There were NO errors. FEach term was modular function on

Gammal (180) . Also -mintotord=288. To prove the identity
we need to check up to O0(g”(290)).
To be on the safe side we check up to O(g” (648)).

*** The identity below is PROVED!

[9, 4, -1]

. n(361) n(61) (1)
_G9) _ —T - n(18t)n(127) n(31) n(21)

*** There were NO errors. FEach term was modular function on
Gammal (180) . Also —-mintotord=288. To prove the identity
we need to check up to O0(g”(290)).
To be on the safe side we check up to O(g”(648)).

*** The identity below is PROVED!

[36, 1, -1]

n(97) n(61t) n(41)
n(18t) n(12t) n(3t)n(21)

~G(36) _H(l)— _G(1) _H(36) =

V& 2o AN

myramtypel == [[6,1, —1], [11,1, —11,[7,2, —1], [16,1, —11, [8,3, —1],[9,4, —1], (63)

i [36,1, —1]]

;> read xprogs:

> PROVEDFL1;

(e, 1, —1,30, —8], [11, 1, —1,55, —40], (7,2, —1, 70, —48], [16, 1, —1, 80, —64], [8,3, (64)
—1, 120, —1281], [9, 4, —1, 180, —288], [36, 1, —1, 180, —288]]

> for j from 1 to nops (PROVEDFL1l) do printtypel (PROVEDFL1[j],3,5+3)
;od;

n(6t)n(r)
G(6) H(1) —G(1) H(6) = ,T (30), -B=8, (3.6)
n(3tn(zt)

G(11) H(1) —G(1) H(11) =1,I',(55), -B=40, (3.7)

G(7) H(2) — G(2) H(7) — U4t () JT,(70), -B=48, (3.8)

n(71)n(27)
n(41)’
n(81)n(21)
n(24t) n(61t)n(41) n(7)
n(12t) n(81)n(31) n(21)

G(16) H(1) —G(1) H(16) = ,T,(80), -B=64, (3.9)

G(8)H(3)—G(3)H(8) = ,T,(120), -B=128, (3.10)

n(361) n(61)°n(x)
GO9)YH4) —G4)H(9) = ,1.(180), -B=288, (3.11)
n(18t) n(121t) n(3t) n(27) !
n(91) n(61)’n(41)

G(36) H(1) —G(1) H(36) = ,T,(180), -B=288, (3.12) (65)

i n(18t) n(127) n(37) n(27)
We have included the relevant groups I', (V) and values of B (see (2.14) and

(2.16)). These identities are known and are equations (3.9), (3.5), (3.10), (3.6),
(3.12), (3.14), and (3.15) in [5] respectively.

[3.2.2 Type 2

;We consider identities of the form

i G(a) G(b) £ H(a) H(b) =/ (1),

| where (7) is an eta-product and a, b are positive relatively prime integers.
| findtype?2 (T)—cycles through symbolic expressions

L _G(a) G(b) +c H(a) H(b)

| where2 <n <T, ab=n, (a,b)=1,b <a,ce{-1,1}, and

GE(a) + GE(b)- (HE(a) + HE(b)) =—%(a—|—b) eZ, (3.13)

using CHECKRAMI DF to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. Condition (3.13) eliminates the case of fractional powers
of g, which in our case means a = -b mod 5. The procedure also returns a list of [a,b, c] which

| give identities .

:> noprint:=true:

> findtype2 (24) ;

i (1,4, —11,11,4,11,1[2,3,1],[1,9,1],[1,14,1],[1,24,1]] (66)

[> PROVEDFL2;

[[1,4,—1,20,—4],[1,4,1,20, —41,[2,3,1,30, —8],[1,9, 1,45, =241, [1, 14,1, 70, 67)
—481, [1,24, 1,120, —128]]

=> for j from 1 to nops (PROVEDFL2) do printtype2 (PROVEDFL2[j],3,13+
j) ;od;

G(1) G(4) —H(1) H(4) = ?(101)2 ,T,(20), -B=4, (3.14)
n(20t) n(51t) n(21)
4
G(1) G(4) +H(1) H(4) = n(z;“') -, T,(20), -B=4, (3.15)
n(41) n(r)
n(3 1) T

n(21)

,I'.(30), -B=8, 3.16)
n6t)n(z) ‘
2

n(31)
G1HGO)+H(1)YH9) =—""—"""
n(91) n(r)

G(1) G(14) + (1) H(14) = 7T N(27) JT,(70), -B=48, (3.18)
n(14 1) n(t)

n(12t)n(8t)n(31)n(21)

n(24t) n(61t)n(41) n(t)

[These identities are known and are equations (3.4), (3.3), (3.8), (3.7), (3.11), and
(3.13) in [5] respectively.

G(2)G(3) +H(2)H(3) =

,T,(45), -B=24, (3.17)

G(1) G(24) +H(1) H(24) = ,1,(120), -B=128, (3.19) (68)

[3.2.3 Type 3

:We consider identities of the form
G(@1)G(by) £ H(ar)H(by) ()
G(ay)H(by) £ H(ay)G(hy) ’

which are not a quotient of Type 1 and 2 identities, and where f (’c) is an eta-product, a,, b, a,, b, are
positive relatively prime integers, and a,b, = a, b,.

:f indtype3 (T)—-cycles through symbolic expressions

_G(al)_G(bl) tc _H(al)_H(bl)

i _G(az)_H(bZ) —i—c2 —H(az)—G(bz)
_where2 <n<Tab =a,b,=n, (al, by, a,, bz) =1,a, <b,, b, <a,,
¢, 0 € {-1,1}, and

_GE(al) + GE(bl) - (HE(al) + HE(bl)),

_GE(a2) + HE(bz) — (HE(ay) + GE (b2)) €7, (3.20)

and [a,, b, S,] is not an element of the listmyramtypel

2 ’
(found earlier by findtypel), using CHECKRAMIDF to check whether the expression corresponds to

a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns

lists
[a,, by, ¢y @, by,)] which correspond to identities.
B Xprint;
i false
[> gthreshold;
6000

> findtype3(126) ;
[[3,7,1,21,1, =11, [2,13,1,26,1, =11, [1,34,1,17,2, =171, [1,39, 1, 13,3, —1], [1, 54,
1,27,2, =11, [7,8,1,56,1, =11, [3,22, 1, 11,6, —11, [2,33, 1,66, 1, —11, [4, 21, 1,
12,7, =11, [1,84,1,28,3, —11,[3,32,1,96, 1, —11, [7, 18, 1, 14,9, —1], [2, 63, 1,

| 126,1, —1]]
[> for j from 1 to nops (PROVEDFL3) do printtype3 (PROVEDFL3[j], 3,20+
j) sod;
G(3) G(7) +H(3) H(7) ol
Gl HD) —HzD 61 =1,T,(105), -B=192, (3.2])
G(2) GU13) +H(2) H(13) _ o
G26) HiL) —H(26) G(L) =1,T,(130), -B=240, (3.22)
G(1) G(34) +H(1) H(34) _n(171)n(21)
= ,T (170), -B=448, (3.23
G(17) H(2) —H(17) G(2) n(341) n(7) (170) (329
G(1) G(39) +H(1) H339) n(131)n(31)
= ,T (195), -B=768, (3.24
G(13) H(3) —H(13) G(3) n(391)n(7) (199 (329
G(1) G(54) +H(1) H(54) m(27t)n(181t)n(31t)Nn(21)
= ,T(270), -B=1008,
G(27) H(2) —H(27) G(2) n(54t)n(9t) n(671) (1) 1(270)
(3.25)
G(7)G(8) +H(7) H(8) _ m(28t)n(21)
= ,T(280), -B=1152, (3.26
G(56) H(1) —H(56) G(1) nq(141)n(41) 1(280) (3.26
G(3) G(22) + H(3) H(22) _n(331t)n(21)
= ,T.(330), -B=1600, (3.27
G(11) H(6) —H(11) G(6) mn(661) n(1) 1(330) (3.27)
G(2) G(33) +H(2) H(33) _n(221)n(31)
= I (330), -B=1600, (3.28
G(66) H(1) —H(66) G1) _n(11t)n(6t) 100" (.29
G(4) G(21) +H(4) H(21) _n(42t)n(281t)n(127t)n(7t)n(3t)n(21) I (420)
G(12) H(7) —H(12) G(7) n(841)n(21t)n(14t)n(6t)n(47t)n(x) ! ’
-B=2688, (3.29)
G(1) G(84) +H(1) H(84) _ m(427)n(28t)n(127)n(7t)n(31)n(21) I (420)
b 1 2

G(28) H(3) —H(28) G(3)
-B=2688, (3.30)
G(3) G(32) +H(3) H(32)

n(84 1) n(21t) n(14 1) n(61) n(41) n(r)

n(48t)n(12t) n(81)n(21)

G(96) H(1) — H(96) G(1)
(3.31)

T (480), -B=3072,
n(24t) n(16t)n(6t)n(41) '

(69)

(70)

(71

G(7) G(18) + H(7) H(18) _m(631)n(421)n(31) n(21)
= I", (630), -B=5760,
G(14) H(9) —H(14) G9) _ n(1267) n(217) n(67) n(x) ~ 1 0"
(3.32)
G(2) G(63) + H(2) H(63) n(427t)n(181t) n(7t) n(31)
= ,,(630), -B=5760, 72
G(126) H(1) —H(126) G(1) _ n(211) n(141) n(91) n(67) 1 ") 72)
i (3.33)
The equations marked * (see pdf) appear to be new. The other equations correspond to (3.16),

(3.18), (3.35), (3.22), (3.41), (3.40) and (3.39) in [5], and (1.24) in [20] respectively.
We have corrected the statement of equation [20, (1.24)].

[3.2.4 Type 4

:We consider identities of the form
G'(a) H (b) + G (b) H (a) =/ (1),

where f(T) is an eta-product and a, b are positive relatively prime integers, and at least one of a,b is
| even.
[findtype4 (T)— cycles through symbolic expressions
; _GM(a) HM(b) +c GM(b) HM(a)
[where2 <n <T, ab=n, (a,b)=1,b <a,ce{-1,1}, and
_ GE(a) + HE(b)- (GE(b) + HE(a)) € Z, (3.34)
and at least one of a,b is even, using CHECKRAMIDF to check whether the expression corresponds to a
likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns a
| listof [a, b, c] which give identities .
[> findtype4 (24) ;
i (e, 1, —11]] (73)
:> read xprogs:

> printtype4 (PROVEDFL4[1],3,35);
3 3
n(24t)n(6t) n(41) n(r)

G*(6) H*(1) — G*(1) H¥(6) = 5
n(127) n(8t)n(37)n(21)

5> 1,(120), -B=128, (74)

(3.35)

| 3.2.5 Type 5

;We consider identities of the form
G (a)G (b) +H (a)H (b)=f(1),

where (1) is an eta-product and a, b are positive relatively prime integers, and at least one of a,b is
| even.
[findtype5 (T)—cycles through symbolic expressions
i _GM(a) GM(by +c HM(a) HM(b)
| where2 <n <T, ab=n, (a,b)=1,b <a,c € {-1,1}, and
_ GE(a) + GE(b)- (HE(a) + HE(b)) €Z, (3.36)
and at least one of a,b is even, using CHECKRAMIDF to check whether the expression corresponds to a
likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns a
| listof [a, b, c] which give identities .

> findtypeb5 (24) ;
i [[1,4,1],[2,3,1]] (75)
[> printtype5 (PROVEDFL5([1],3,37) ;
2
n(4r)
i n(87)n(27)
> printtype5 (PROVEDFL5[2],3,38) ;

n(127)’n(81) n(31) n(27)
n(241) n(67)°n(47) n(x)

G*(1) G*(4) + H*(1) H*(4) = ,T,(80), -B=64, (3.37) (76)

3

G*(2) G*(3) + H*(2) H*(3) = , T, (120), -B =128, an

i (3.38)
These correspond to equations (3.26) and (3.27) in [5].

[3.2.6 Type 6

;We consider identities of the form
Gla)H (b) £G (a) H(b) =f(1),

| where /(1) is an eta-product and a, b are positive relatively prime integers.

[findtype6 (T)—cycles through symbolic expressions

[_G(a) _HM(b) +c _GM(a) H(b)

[where2 <n <T, ab=n, (a,b)=1,b <a,c € {-1,1},

using CHECKRAMI DF to check whether the expression corresponds to a likely eta-product, and if so

uses provemodfuncidBATCH to prove it. The procedure also returns a list of [a, b, c] which give
identities .

[> read Xprogs:
Warning, "I~ is implicitly declared local to procedure
‘printtypelist”
[> findtypeb6 (24) ;
WARNING: There were 41 ebasethreshold problems.
See the global array EBL.
i [[1, 1, =11 [1,1,1]] (78
| NOTE: This may mean there identities giving theta-functions that are not eta-products.
> PROVEDFL6;
i [[1,1, —1,20, —4], [1,1, 1,20, —4]] 79)
:> read xprogs:
[> printtypelist (printtype6, PROVEDFL6,3,39) ;

21](201)2
G(1) H*(1) — G*(1) H(1) = T.(20), -B=4, (3.39
(1) H*(1) (1) H(1) n(107) n(27) 1(20) (3.39)
2n(41)
G(l)H*(1)+G*(1)H(1)=—n(- JT,(20), -B=4, (3.40) (80)
ni2zt

:These are equivalent to equations (3.25) and (3.24) in [5].

[3.2.7 Type 7

| We consider identities of the form

i G (a) G(b) + H (a) H(b) =f(1),

| where /(1) is an eta-product and a, b are positive relatively prime integers.

[findtype7 (T)— cycles through symbolic expressions

i _GM(a) _G(b) +c HM(a) H(b)

| where2 <n <T, ab=n, (a,b)=1,b <a,c € {-1,1}, and botha, b are odd,

using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. The procedure also returns a list of [a, b, c] which give
| identities .

> findtype7 (24) ;

i [[L,9, —1]] (81)
> printtypelist (printtype7, PROVEDFL7,3,41) ;

2
n(181t) n(121) n(7)
G*(1) G(9) — H*(1) H(9) = T.(180), -B=288, (3.41) (82)
n(36t)n(9t)n(6t)n(27) !

:This corresponds to (3.29) in [5].

[3.2.8 Type 8

;We consider identities of the form
G(1)“H(a) + H(1)" G(a) =f(7),

| where /(1) is an eta-product, and a > 1 is an integer.
;f indtype8 (T)—cycles through symbolic expressions
_ _G(1)? H(a) +c H(1)? G(a)
[where2 <a <T, andc € {-1,1},
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. The procedure also returns a list of [2, ¢] which give
| identities.
> findtype8 (24) ;
WARNING: There were 2 ebasethreshold problems.
See the global array EBL.

! [[3, —11] 83)
> printtypelist (printtype8, PROVEDFLS, 3,42) ;
3
GO HG) —H(1) G3) = ——nUST) JT,(15), -B=4, (3.42) 84)

i n(5%) n(37) n(x)
| This is equivalent to equation (1.27) in Robin’s thesis [20].

[3.2.9 Type 9

;We consider identities of the form

i G H(1)" - H1)"G(1)" +x=f(x),

| where (1) is an eta-product, and a, b are positive integers, andx =0 orx =- 1.
| findtypes () — determines whether

_G(1)d H(L)YY - HLE gL + x

b

_is a likely eta-product for x =0 orx=-1 with a, b the smallest such positive integers,

using CHECKRAMIDF, and if so uses provemodfuncidBATCH to prove it. The procedure also
| returns a list of [a, b, x] which give identities.

[> findtype9 () ;

L [[11,1,1]] (85)
[> printtypelist (printtype9, PROVEDFL9, 3,43) ;
6
G(l)”H(l)—H(l)“G(l)—1=M,r1(5),—3=2, (3.43) (86)
n(t)

:This is equation (3.1) in [5].
[3.2.10 Type 10

;We consider identities of the form
G(a))H (b)) = H(a)G(b))
i G(ap)f (by) £ H(ay)G (by)

in which the numerator is not a Type 1 identity, and where f(1) is an eta-product, a,, b, a,, b, are

=f(1),

_positive relatively prime integers, and a\b, = a, b,.

| findtypel0 (T)—cycles through symbolic expressions
_G(al)_H(bl) + ¢ _H(al)_G(bl)

i _G(az)_HM(bz) —I—cz_H(az)_GM(bZ)

_whereZ <n<Tab =a,b,=n, (al, by, a, bz) =1,a,> b, b, <a,,

¢, 0 € {-1,1}, and

_GE(al) + HE(b1) - (HE(a1) + GE(bl)) ,

_GE(a2)+ HE(bZ)— (HE(a2)+ GE (bz)) ez, (344

and [a b, cl] is not an element of the listmyramtypel

l ’
(found earlier by findtypel), using CHECKRAMIDEF to check whether the expression corresponds to

a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns

lists

| [a;, byycyray by c,l

[> gthreshold:=3000:

> findtypelO (120) ;

i [[19,4, =1,76,1,1], (28,3, —=1,12,7,1], [12,7, —1,28,3, 1]] @7

> printtypelist (printtypelO, PROVEDFL10,3,45) ;

G(19) H(4) —H(19) G(4) _ n(76t)n(21)

= T ,(380), -B=2160, (3.45
G(76) H*(1) +H(76) G*(1) 1(381) n(471) 1(380) (3.43)

G(28) H(3) —H(28) G(3) _ n(217) n(147) n(67) n(471) n(x)
GUI2) H¥(7) +H(12) GXT) n(427) m(28 %) n(77) n(31) n(27)’
=2400, (3.46)

which correspond to identities.

,T,(420), -B

(88)

G(12) H(7) —H(12) G(7) _ n(847) n(217) n(147) n(67)°n(x)

G(28) H*(3) + H(28) G*(

,T,(420), -B

(98]

) m(42t)’n(12t) n(71) n(31) n(27)
=2400, (3.47)

:Equation is (3.38) in [5]. The other type 10 identities appear to be new.

| 4 More Generalized Ramanujan-Robins identities

We consider generalized Ramanujan-Robins identities
associated with non-principal real Dirichlet characters y mod N for N < 60, that
satisfy x(-1) =-1. We found David Ireland’s Dirichlet Character Table Generator
| [14] useful. See the website

http: /www.di-mgt.com.au/dirichlet-character-generator.html

(88)

