
Automatic Proof of Theta-Function Identities

Jie Frye and Frank Garvan

Abstract
This is a tutorial for using two new MAPLE packages, thetaids and
ramarobinsids. The thetaids package is designed to prove generalized etaproduct
identities using the valence formula for modular functions. We show how
this thetaids package can be used to find theta-function identities as well as

identities for his so called Rogers-Ramanujan functions G(q) and H(q). In his thesis
Robins found similar identities for higher level generalized eta-products. Our
ramarobinsids package is for finding and proving identities for generalizations

associated with certain real Dirichlet characters. We find a total of over 300 identities.

1 Introduction

The Rogers-Ramanujan functions are

The ratio of these two functions is the famous Rogers-Ramanujan continued fraction

Ramanujan also found

and

and remarked that "each of these formulae is the simplest of a large class." Here we have used the
standard notation

 and

In 1974 B. J. Birch published a description of some manuscripts of Ramanujan
including a list of forty identities for the Rogers-Ramanjan functions. Biagioli [5]
show how the theory of modular forms could prove identities of this type efficiently.
See [2] and [4] for recent work. It is instructive to write the Rogers-Ramanujan
functions in terms of generalized eta-products.

The Dedekind eta-function is defined by

where and and the generalized Dedekind
eta function is defined to be

where is the second periodic Bernoulli polynomial, is the

fractional part of , and
and The function is a modular function (modular form of weight 0) on with
a multiplier system.

Ramanujan's identity (1.3) can be rewritten as

and

and (1.3). The following are nice level 13 analogues:

 (1.7)

and

 (1.8)

Here we have used the notation

Equation (1.7) was found by Ramanujan [3, Eq.(8.4),p.373], and equation (1.8) is
due to Robins [20], who considered more general identities. The following is level
17 analogue of (1.8) and appears to be new.

Motivated by these examples and other work of Robins [20] one is led naturally to
consider

Ratios of functions of this type were studied by Huber and Schultz [13]. They found
the following level 17 identity:

where

The main goal of the thetaids MAPLE package is to automatically prove identities for generalized
eta-products using the thepry of modualr functions.
In Sections 3-4 we describe the ramarobinsids package, which uses the
thetaids package to search for and prove theta-function identities for general functions
and that are like the theta-function identities considered
by Ramanujan [5] and Robins [20].
We note that Liangjie [20] gave an algorithm for proving relations for certain
theta-functions and their derivatives using a different method. We also note that
Lovejoy and Osburn [13], [15], [14], [16], have used an earlier version of the
thetaids package to prove theta-functions identities that were needed to establish
an number of results for mock-theta functions.

1.1 Installation Instructions
First install the qseries package from
http://qseries.org/fgarvan/qmaple/qseries
and follow the directions on that page. Before proceeding it is advisable to become
familiar with the functions in the qseries package. See [9] for a tutorial. Then go
to
http://qseries.org/fgarvan/qmaple/thetaids
to install the thetaids package. In Section 3 you will need to install the ramarobinsids
package from
http://qseries.org/fgarvan/qmaple/ramarobinsids

2 Proving theta-function identities
To prove a given theta-function identity one needs to basically
do the following.

(i) Rewrite the identity in terms of generalized eta-functions.
(ii) Check that each term in the identity is a modular function on some group

(iii) Determine the order at each cusp of of each term in the identity.
(iv) Use the valence formula to determine up to which power of is needed to verify the identity.
(v) Finally prove the identity by carrying out the verification.

In this section we explain how to carry out each of these steps in MAPLE. Then
we show how the whole process of proof can be automated.

2.1 Encoding theta-functions, eta-functions and generalized

eta-functions
We recall Jacobi's triple product for theta-functions:

so that

In the qseries MAPLE package the function on the left side of (2.2) is encoded
symbollically as JAC(g,d,infinity). This is the building block of the functions
in our package. In the qseries package JAC(0,d,infinity) corresponds
symbollically to

Function Symbolic MAPLE form

We will also consider generalized eta-products. Let N be a fixed positive integer.
A generalized Dedekind eta-product of level N has the form

 (2.4)

where

In MAPLE we represent the generalized eta-product

 ...

symbollically by the list

(7)(7)

> >

> >

(4)(4)

> >

(8)(8)

> >

> >
(1)(1)

> >

(3)(3)

(2)(2)

(9)(9)

(5)(5)

(6)(6)

> >

> >

> >

We call such a list a geta-list.
2.2 Symbolic product conversion
jac2eprod JAC notation to a product
of generalized eta-functions in EETA and GETA notation.
EXAMPLE:

currentdir();
"C:\cygwin64\home\Owner\math\mypapers\auto-theta\tutorial\maple"

with(qseries):
with(thetaids):
G:=q->add(q^(n^2)/aqprod(q,q,n),n=0..10):
H:=q->add(q^(n^2+n)/aqprod(q,q,n),n=0..10):
JG:=jacprodmake(G(q),q,50);

HG:=jacprodmake(H(q),q,50);

JP:=jacprodmake(H(q)*G(q)^(11),q,80);

GP:=jac2eprod(JP);

jac2getaprod JAC notation to a
product of generalized eta-functions in standard notation.
 jac2getaprod(JP);

1

GETAP2getalist
list as described above.
GETAP2getalist(GP);

2.3 Processing theta-functions
There are two main functions in the thetaids package for processing combinations
of theta-functions.
mixedjac2jac
terms of JAC(a,b,infinity) to a sum with the same base b. The functions
jac2series and jacprodmake from the qseries package are used.
EXAMPLE:
Y1:=1+jacprodmake(G(q),q,100)*jacprodmake(H(q^2),q,100);

Y2:=mixedjac2jac(Y1);

> >

(10)(10)

(12)(12)

> >

> >

(13)(13)

(11)(11)

(9)(9)

> >

processjacid
function of JAC-functions using mixedjac2jac and renormalizing by dividing
by the term with the lowest power of q.
As an example, we consider the well-known identity

 (2.6)
with(qseries):
with(thetaids):
F1:=theta2(q,100)^4:
F2:=theta3(q,100)^4:
F3:=theta4(q,100)^4:
findhom([F1,F2,F3],q,1,0);

JACID0:=qs2jaccombo(F1-F2+F3,q,100);

JACID1:=processjacid(JACID0);

expand(jac2getaprod(JACID1));

We see that (2.6) is equivalent to the identity

2.4 Checking modularity
Robins [21] has found sufficient conditions under which a generalized etaproduct
is a modular function on

Theorem 2.1 ([21](Theorem 3)). The function , defined
in (2.4), is a modular function on if

(i)

and

(ii)

The functions on the left side of (i), (ii) above are computed using the MAPLE

> >

(20)(20)

(15)(15)

> >

(17)(17)
> >

> >

> >

(18)(18)

> >

(9)(9)

> >

(19)(19)

(14)(14)

(16)(16)

functions vinf and v0 respectively. Suppose is given as in (2.4) and this
generalized eta-product is encoded as the geta-list L. Recall that each item in the
list L has the form . The syntax is vinf(L,N) and v0(L,N). As an

example we consider the two generalized eta-products in (2.7).
EXAMPLE:
L1:=[[4,1,16],[4,2,-4]];

 vinf(L1,4),v0(L1,4);

 L2:=[[4,1,8],[4,2,-8]];

vinf(L2,4),v0(L2,4);

The numbers 0, 2 are even and we see that both generalized eta-products in (2.7)
are modular functions on by Theorem 2.1.

Gamma1ModFunc(L,N)
is a modular function on . Here the generalized eta-product is encoded as the
geta-list L
whether both vinf(L,N) and v0(L,N) are even. It returns 1 if it is a modular
function on otherwise it returns 0. If the global variable xprint is set to true
then more detailed information is printed. Thus here and throughout xprint can
be used for debugging purposes.
EXAMPLE:

Gamma1ModFunc(L1,4);
1

xprint:=true;

Gamma1ModFunc(L1,4);
* starting Gamma1ModFunc with L=[[4, 1, 16], [4, 2, -4]] and N=4

All n are divisors of 4
val0=2
which is even.
valinf=0
which is even.
It IS a modfunc on Gamma1(4)

1

2.5 Cusps
Cho, Koo and Park [8] have found a set of inequivalent cusps for .

The group corresponds to the case

Theorem 2.2 ([8](Corollary 4, p.930)). Let
with

(ii) The cusps

(21)(21)
> >

(9)(9)

> >

(22)(22)

and are equivalent mod if and only if

(ii) The following is a complete set of inequivalent cusps mod .

S = { |

 = 5

= 5

 chosen s.th.

(iii) and the fan width of the cusp is given by

In this theorem, it is understood as usual that the fraction

cuspequiv1() and
a

are -equivalent using Theorem 2.2(i).

EXAMPLE:
cuspequiv1(1,3,1,9,40);

false
cuspequiv1(1,9,2,9,40);

true

We see that modulo the cusps and are inequivalent

and the cusps and are equivalent.

Acmake(c,N) where c is a positive divisor of N.
Scmake(c,N) where c is a positive divisor of N.
newxy(x,y,N)] for given such that and

cuspmake1(N) using Theorem

2.2. Each cusp in the list is represented by [a,c] [1,0].

> >

(24)(24)

> >
(23)(23)

(9)(9)

> >

This MAPLE procedure uses the functions Acmake, Scmake and newxy.
EXAMPLE:

C10:=cuspmake1(10);

for L in C10 do lprint(L,cuspwid1(L[1],L[2],10));od;
[0, 1], 10
[1, 0], 1
[1, 2], 5
[1, 3], 10
[1, 4], 5
[1, 5], 2
[2, 5], 2
[3, 10], 1

We have the following table of cusps for

Cusp Cusp-width

1

5

10

5

2

2

1

CUSPSANDWIDMAKE(N) , and
corresponding widths. Output has the form [CUSPLIST,WIDTHLIST].
EXAMPLE:
CUSPSANDWIDMAKE1(10);

2.6 Orders at cusps

of generalized eta-products. We define the theta-function

(25)(25)

(26)(26)
> >

> >

(27)(27)

(9)(9)

> >

 (2.8)

for . [6, p.277]. The classical
Dedekind eta-function can be written as

and the generalized Dedekind eta-function can be written as

 = (2.10)

Biagioli [6] has calculated the invariant order of at any cusp. Using (2.10)
this gives a method for calculating the invariant order at any cusp of a generalized
eta-product.

Theorem 2.3 ([6](Lemma 3.2, p.285)). The order at the cusp

(assuming) of the theta function (defined above and assuming

(2.11)

where and [] is the greatest integer function.

 at the cusp , assuming and .

 at the cusp ,

assuming and .
EXAMPLE:
getacuspord(50,1,4,29);

1
600

We see that

Let be a generalized eta-product corresponding to the getalist L. The following MAPLE procedure
calculates the invariant order
getaprodcuspord(L,cusp)
L at the given cusp. The cusp is either a rational or oo (infinity).
EXAMPLE:

GL:=[[4,1,16],[4,2,-4]];

getaprodcuspord(GL,1/2);

We see that

> >

(9)(9)

(28)(28)

> >

(29)(29)
> >

(30)(30)

Following [6, p.275], [19, p.91] we consider the order of a function with respect
to a congruence subgroup at the cusp and denote this by

ORD ord (2.12)
getaprodcuspORDS(L,S,W)

where is the generalized eta-product corresponding to the getalist L, (list of inequivalent cusps
of) and W is a list of corresponding fan-widths.

EXAMPLE:
CW4:=CUSPSANDWIDMAKE1(4);

GL:=[[4,1,16],[4,2,-4]];

getaprodcuspORDS(GL,CW4[1],CW4[2]);

We know that the generalized eta-product

is a modular function on . We calculated ORD

ORD

0

0 1

Observe that the total order of with respect to is 0:

ORD ORD = 0 + 1 - 1 = 0,

in agreement with the valence formula. See Theorem 2.4 below. Here is the set of inequivalent cusps
of

2.7 Proving theta-function identities
Our method for proving theta-function or generalized eta-product identities depends on
Theorem 2.4 (The Valence Formula [19](p.98)). Let be a modular
form of weight with respect to a subgroup of finite index in

(9)(9)

Then

ORD (2.13)

where is the index of in

ORD ORD ,

 is a fundamental region for and ORD is given in equation (2.12).

Remark 2.1. For , ORD is defined in terms of the invariant order

ord which is interpreted in the usual sense. See [19, p.91] for details of this
and the notation used.
Since any generalized eta-product has weight and has no zeros and no poles
on the upper-half plane we have
Corollary 2.5 Let , , ... be generalized eta-products
that are modular functions on Let be a set of inequivalent cusps for Define the

constant

ORD (2.14)

and consider
 (2.15)

where each Then

if and only if
ORD (2.16)

To prove an alleged theta-function identity, we first rewrite it in the form
 (2.17)

where each and each is a generalized eta-product of level We use the following
algorithhm:
STEP 1. Use Theorem 2.1 to check that is a generalized eta-product on for each

STEP 2. Use Theorem 2.2 to find a set of inequivalent cusps for and the fan width of each

cusp.
STEP 3. Use Theorem 2.3 to calculate the invariant order of each generalized etaproduct at each
cusp of .

STEP 4. Calculate

(9)(9)

> >

(31)(31)

ORD

STEP 5. Show that
ORD

where

Corollary 2.5 then imples that and hence the theta-function identity (2.17).
To calculate the constant in (2.14) and STEP 4 we use
mintotORDS(L,n) B in equation (2.14) where L the
array of ORDS:

ORD ORD ORD
where
ORD ORD ORD

and are the inequivalent cusps of Each ORD is computed using
getprodcuspORDS.
EXAMPLE:

 (2.18)

where

We rewrite this identity as

 (2.19)

Let
 (2.20)

where

STEP 1. We check that each function is a modular function on
f1:=mul(GETA(25,j), j=1..12):
f2:=GETA(25,10)/GETA(25,5):
f3:=1/f2:

(37)(37)

> >

> >

> >

> >

> >
> >

(33)(33)

(39)(39)

(38)(38)

(34)(34)

> >

> >

(9)(9)

> >

> >

> >

(31)(31)

> >
(36)(36)

(35)(35)

(32)(32)

> >

GP1:=GETAP2getalist(f1):
GP2:=GETAP2getalist(f2):
GP3:=GETAP2getalist(f3):
Gamma1ModFunc(GP1,25),Gamma1ModFunc(GP2,25),Gamma1ModFunc(GP3,25)
;

STEP 2. We find a set of inequivalent cusps for and their fan widths
CW25:=CUSPSANDWIDMAKE1(25):
cusps25:=CW25[1];

widths25:=CW25[2];

STEP 3. We compute ORD for each and cusp of
ORDS1:=getaprodcuspORDS(GP1,cusps25,widths25);

ORDS2:=getaprodcuspORDS(GP2,cusps25,widths25);

ORDS3:=getaprodcuspORDS(GP3,cusps25,widths25);

STEP 4. We calculate the constant in (2.14).
mintotORDS([ORDS1,ORDS2,ORDS3],3);

STEP 5. To prove the identity (2.18) we need to verify that
ORD

JACL:=map(getalist2jacprod,[GP1,GP2,GP3]):
JACID:=JACL[1]-JACL[2]+JACL[3]+1:
QJ:=jac2series(JACID,100):
series(QJ,q,100);

This completes the proof of the identity (2.18). We only had to show that the coefficient of was zero
in the q-expansion of for We actually did it for as a check.

provemodfuncid(JACID,N) in equation (2.14)
and prints details of the verification and proof of the identity corresponding to
JACID, which is a linear combination of symbolic JAC-functions, and N is the
level. If xprint=true then more details of the verification are printed. When this function is called
there is a query asking whether to verify the identity. Enter yes to carry out the verification.
EXAMPLE:
provemodfuncid(JACID,25);

"TERM ", 1, "of ", 4, " *****************"
"TERM ", 2, "of ", 4, " *****************"

(41)(41)

(39)(39)

(9)(9)

> >

> >

(40)(40)

(31)(31)

> >

"TERM ", 3, "of ", 4, " *****************"
"TERM ", 4, "of ", 4, " *****************"
"mintotord = ", -9
"TO PROVE the identity we need to show that v[oo](ID) > ", 9
*** There were NO errors.
*** o Each term was modular function on
 Gamma1(25).
*** o We also checked that the total order of
 each term was zero.
*** o We also checked that the power of q was correct in
 each term.
"*** WARNING: some terms were constants. ***"
"See array CONTERMS."
To prove the identity we will need to verify if up to
q^(9).
Do you want to prove the identity? (yes/no)
You entered yes.
We verify the identity to O(q^(59)).
RESULT: The identity holds to O(q^(59)).
CONCLUSION: This proves the identity since we had only
 to show that v[oo](ID) > 9.

9
provemodfuncidBATCH(JACID,N) provemodfuncid
that prints less detail and does not query.
EXAMPLE:
provemodfuncidBATCH(JACID,25);

*** There were NO errors. Each term was modular function on
 Gamma1(25). Also -mintotord=9. To prove the identity
 we need to check up to O(q^(11)).
 To be on the safe side we check up to O(q^(59)).
*** The identity below is PROVED!

1
printJACIDORDStable() and lower
bound for after provemodfuncid is run. Formatted output from our example
is given below in Table 1. By summing the last column we see that , which
confirms an earlier calculation using mintotORDS.
printJACIDORDStable();

printJACIDORDStable()
 Print a table of ORDS for each term in a jacprod-identity
 using global data produced by the function provemodfuncid.
 Table is stored in the matrix bigmat which is returned.

ORDS Table for the jacprod identity
_G =

where
_F[1] =

_F[2] =

(9)(9)

> >

(41)(41)

(39)(39)

(31)(31)

_F[3] =

_F[4] =
1

(9)(9)

> >

(41)(41)

(39)(39)

(31)(31)

(41)(41)

(39)(39)

(9)(9)

> >

(31)(31)

The last column of the table gives a lower bound for
ORDS of _G. By summing this last column (except for oo)
we see that the identity can be proved by showing that
the coefficients of
q^0, q^1, ... q^10 are all zero.
This confirms the calculation done by provemodfuncid.

bigmat

3 Generalized Ramanujan-Robins identities
As an application of our thetaids package we show how to find and prove
generalized eta-product identities due to Ramanujan and Robins, and some natural
extensions. In Section 1 we defined the functions and
principal real Dirichlet character mod satisfying Robins [20] proved the following

identity (1.3) (or (1.6)):
 (3.1)

where

Equation (3.1) is a restatement of (1.8). In this case and is the Legendre symbol.

We will also consider

 (3.3)

We note that

where is a root of unity. Using the notation (1.10) (with N = 5 and) we may rewrite

respectively.
We have written a number of specialised functions for the purpose of finding and
proving identities for these more general - and -functions. We have collected
these functions into the new ramarobinsids package. Go to

http://qseries.org/fgarvan/qmaple/ramarobinsids
and follow the directions on that page. This package requires both the qseries
and thetaids packages.
3.1 Some MAPLE functions

> >

> >

> >

(41)(41)

(39)(39)

(45)(45)

(46)(46)

(49)(49)

> >

(44)(44)

(42)(42)

(47)(47)

(9)(9)

> >

> >

> >

> >

(31)(31)

(48)(48)

(43)(43)

> >

> >

Geta(g,d,n) in symbolic JAC-form.

GetaB(g,d,n) Geta(g,d,n) without the factor.

GetaL(L,d,n) JAC-form
with replaced by .

GetaBL(L,d,n) GetaL(g,d,n) without the q-factor.

GetaEXP(g,d,n) q in .
GetaLEXP(L,d,n) q for the generalized eta-product corresponding to
GetaL(L,d,n).
MGeta(g,d,n) analogue of Geta(g,d,n)

MGetaL(g,d,n) analogue of GetaL(g,d,n)
Eeta(n) in JAC-form
EXAMPLE:
with(ramarobinsids):
Geta(1,5,2);

GetaB(1,5,2);

GetaEXP(1,5,2);
1
30

GetaL([1,3,4],13,1);

3

GetaLB([1,3,4],13,1);

3

GetaLEXP([1,3,4],13,1);
1
4

MGeta(1,5,2);

MGetaL([1,3,4],13,1);

(54)(54)

(56)(56)

> >

(51)(51)

> >

> >

> >

> >

(41)(41)

(39)(39)

> >

(50)(50)

> >

(52)(52)

(53)(53)

> >

> >

> >

(9)(9)

> >

> >

> >

> >

(57)(57)

> >

(31)(31)

> >

(55)(55)
> >

> >

Eeta(3);

CHECKRAMIDF(SYMF,ACC,T)
of - and -functions is an eta-product. This assumes that G(n), H(n), GM(n),
HM(n) have already been defined. GM and HM are the analogues of G, H. The
SYMF symbolic form is written in terms of _G, _H, _GM, _HM. ACC is an upperbound
on the absolute value of exponents allowed in the formal product, T is
highest power of q considered. This procedure returns a list of exponents in the
formal product if it is a likely eta-product otherwise it returns NULL. A number of
global variables are also assigned. The main ones are
_JFUNC: JAC-expression of SYMF.
LQD: lowest power of q.
RID: the conjectured eta-product.
ebase: base of the conjectured eta-product.
SYMID: symbolic form of the identity.

EXAMPLE:
with(qseries):
with(thetaids):
with(ramarobinsids):
G:=j->1/GetaL([1,3,4],13,j):
H:=j->1/GetaL([2,5,6],13,j):
GM:=j->1/MGetaL([1,3,4],13,j):
HM:=j->1/MGetaL([2,5,6],13,j):
GE:=j->-GetaLEXP([1,3,4],13,j):
HE:=j->-GetaLEXP([2,5,6],13,j):
GHID:=(_G(1)*_G(2)+_H(1)*_H(2))/(_G(2)*_H(1)-_G(1)*_H(2));

CHECKRAMIDF(GHID,10,50);

ebase;
26

_JFUNC;

LDQ;

RID;

SYMID;

> >

> >
> >

> >

> >

> >

> >

(60)(60)

(41)(41)

(39)(39)

(50)(50)

> >

> >

(9)(9)

> >

> >

(58)(58)

(57)(57)

(31)(31)

(59)(59)

> >

etamake(jac2series(_JFUNC,1001),q,1001);

It seems that

 (3.4)

when and , at least up to

EXAMPLE:
RRID1:=_JFUNC-Eeta(13)^2*Eeta(2)^2/Eeta(26)^2/Eeta(1)^2:
JRID1:=processjacid(RRID1):
jmxperiod;

26
provemodfuncidBATCH(JRID1,26);

*** There were NO errors. Each term was modular function on
 Gamma1(26). Also -mintotord=18. To prove the identity
 we need to check up to O(q^(20)).
 To be on the safe side we check up to O(q^(70)).
*** The identity below is PROVED!

1
Thus identity (3.4) is proved.
The search for and proof of such identities may be automated.

H(q)
We consider ten types of identities.We write a MAPLE function to search for and

prove identities of each type. Here we assume and We continue

to use the notation (1.10).
In this section

EXAMPLE:
with(qseries):
with(thetaids):
with(ramarobinsids):
G:=j->1/GetaL([1],5,j):
H:=j->1/GetaL([2],5,j):

> >

(41)(41)

(39)(39)

> >

> >

> >

> >

> >

(57)(57)

(31)(31)

> >

> >
(62)(62)

> >

(50)(50)

(63)(63)

(9)(9)

> >

(61)(61)

> >

GM:=j->1/MGetaL([1],5,j):
HM:=j->1/MGetaL([2],5,j):
GE:=j->-GetaLEXP([1],5,j):
HE:=j->-GetaLEXP([2],5,j):

3.2.1 Type 1
We consider identities of the form

where is an eta-product and are positive relatively prime integers.
findtype1(T)

where and

using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product,
and if so uses provemodfuncidBATCH to prove it. Condition (3.5)
eliminates the case of fractional powers of q, which in our case means mod 5.
The procedure also returns a list of [a,b,c] which give identities .
EXAMPLE:
proveit:=true: noprint:=false:
qthreshold:=6000:
findtype1(11);

*** There were NO errors. Each term was modular function on
 Gamma1(30). Also -mintotord=8. To prove the identity
 we need to check up to O(q^(10)).
 To be on the safe side we check up to O(q^(68)).
*** The identity below is PROVED!
[6, 1, -1]

"n=", 10
*** There were NO errors. Each term was modular function on
 Gamma1(55). Also -mintotord=40. To prove the identity
 we need to check up to O(q^(42)).
 To be on the safe side we check up to O(q^(150)).
*** The identity below is PROVED!
[11, 1, -1]

PROVEDFL1;

myramtype1:=findtype1(36);
*** There were NO errors. Each term was modular function on
 Gamma1(30). Also -mintotord=8. To prove the identity
 we need to check up to O(q^(10)).
 To be on the safe side we check up to O(q^(68)).
*** The identity below is PROVED!
[6, 1, -1]

> >

(41)(41)

(39)(39)

(50)(50)

> >

(63)(63)

(9)(9)

> >

(57)(57)

(31)(31)

"n=", 10
*** There were NO errors. Each term was modular function on
 Gamma1(55). Also -mintotord=40. To prove the identity
 we need to check up to O(q^(42)).
 To be on the safe side we check up to O(q^(150)).
*** The identity below is PROVED!
[11, 1, -1]

*** There were NO errors. Each term was modular function on
 Gamma1(70). Also -mintotord=48. To prove the identity
 we need to check up to O(q^(50)).
 To be on the safe side we check up to O(q^(188)).
*** The identity below is PROVED!
[7, 2, -1]

*** There were NO errors. Each term was modular function on
 Gamma1(80). Also -mintotord=64. To prove the identity
 we need to check up to O(q^(66)).
 To be on the safe side we check up to O(q^(224)).
*** The identity below is PROVED!
[16, 1, -1]

"n=", 20
*** There were NO errors. Each term was modular function on
 Gamma1(120). Also -mintotord=128. To prove the identity
 we need to check up to O(q^(130)).
 To be on the safe side we check up to O(q^(368)).
*** The identity below is PROVED!
[8, 3, -1]

"n=", 30
*** There were NO errors. Each term was modular function on
 Gamma1(180). Also -mintotord=288. To prove the identity
 we need to check up to O(q^(290)).
 To be on the safe side we check up to O(q^(648)).
*** The identity below is PROVED!
[9, 4, -1]

*** There were NO errors. Each term was modular function on
 Gamma1(180). Also -mintotord=288. To prove the identity
 we need to check up to O(q^(290)).
 To be on the safe side we check up to O(q^(648)).
*** The identity below is PROVED!
[36, 1, -1]

> >

> >

(65)(65)

(41)(41)

(39)(39)

(50)(50)

> >

> >

(63)(63)

(9)(9)

> >

> >

(57)(57)

(31)(31)

(64)(64)

read xprogs:
PROVEDFL1;

for j from 1 to nops(PROVEDFL1) do printtype1(PROVEDFL1[j],3,5+j)
;od;

We have included the relevant groups and values of (see (2.14) and
(2.16)). These identities are known and are equations (3.9), (3.5), (3.10), (3.6),
(3.12), (3.14), and (3.15) in [5] respectively.

3.2.2 Type 2

We consider identities of the form

where is an eta-product and are positive relatively prime integers.
findtype2(T)

where and

using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. Condition (3.13) eliminates the case of fractional powers
of q, which in our case means mod 5. The procedure also returns a list of [a,b,c] which
give identities .

> >

> >

(41)(41)

(39)(39)

(67)(67)

(50)(50)

> >

> >

(63)(63)

(9)(9)

> >

(68)(68)

(57)(57)

(31)(31)

> >

> >
(66)(66)

noprint:=true:
findtype2(24);

PROVEDFL2;

for j from 1 to nops(PROVEDFL2) do printtype2(PROVEDFL2[j],3,13+
j);od;

These identities are known and are equations (3.4), (3.3), (3.8), (3.7), (3.11), and
(3.13) in [5] respectively.

3.2.3 Type 3

We consider identities of the form

which are not a quotient of Type 1 and 2 identities, and where is an eta-product, are
positive relatively prime integers, and
findtype3(T)

where
 and

GE GE HE HE

GE HE HE GE (3.20)

and [is not an element of the list myramtype1

(found earlier by findtype1), using CHECKRAMIDF to check whether the expression corresponds to

> >
(69)(69)

> >

> >

(41)(41)

(39)(39)

> >

(50)(50)

(72)(72)

(71)(71)

> >

> >

(63)(63)

(9)(9)

> >

(57)(57)

(70)(70)

(31)(31)

a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns
lists
[] which correspond to identities.
xprint;

false

qthreshold;
6000

findtype3(126);

for j from 1 to nops(PROVEDFL3) do printtype3(PROVEDFL3[j],3,20+
j);od;

> >

(41)(41)

(39)(39)

(72)(72)

> >

> >

(57)(57)

(31)(31)

(73)(73)
> >

> >

(50)(50)

(63)(63)

(74)(74)

(9)(9)

> >

The equations marked * (see pdf) appear to be new. The other equations correspond to (3.16),
(3.18), (3.35), (3.22), (3.41), (3.40) and (3.39) in [5], and (1.24) in [20] respectively.
We have corrected the statement of equation [20, (1.24)].

3.2.4 Type 4

We consider identities of the form

where is an eta-product and are positive relatively prime integers, and at least one of a,b is
even.
findtype4(T)

where and

and at least one of a,b is even, using CHECKRAMIDF to check whether the expression corresponds to a
likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns a
list of [a,b,c] which give identities .
findtype4(24);

read xprogs:
printtype4(PROVEDFL4[1],3,35);

3.2.5 Type 5

We consider identities of the form

where is an eta-product and are positive relatively prime integers, and at least one of a,b is
even.
findtype5(T)

where and

and at least one of a,b is even, using CHECKRAMIDF to check whether the expression corresponds to a
likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns a
list of [a,b,c] which give identities .

> >

> >

(41)(41)

(39)(39)

> >

(72)(72)

(80)(80)

> >

> >
(75)(75)

> >

(77)(77)

> >

(57)(57)

> >

(31)(31)

(79)(79)

(50)(50)

> >

(78)(78)

> >

(63)(63)

(9)(9)

(76)(76)

> >

findtype5(24);

printtype5(PROVEDFL5[1],3,37);

printtype5(PROVEDFL5[2],3,38);

These correspond to equations (3.26) and (3.27) in [5].

3.2.6 Type 6

We consider identities of the form

where is an eta-product and are positive relatively prime integers.
findtype6(T)

where
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. The procedure also returns a list of [a,b,c] which give
identities .

read xprogs:
Warning, `L` is implicitly declared local to procedure
`printtypelist`
findtype6(24);

WARNING: There were 41 ebasethreshold problems.
 See the global array EBL.

NOTE: This may mean there identities giving theta-functions that are not eta-products.
PROVEDFL6;

read xprogs:
printtypelist(printtype6,PROVEDFL6,3,39);

These are equivalent to equations (3.25) and (3.24) in [5].

3.2.7 Type 7

> >

(41)(41)

(39)(39)

> >

(72)(72)

> >

> >

(75)(75)

(57)(57)

(31)(31)

(84)(84)

(81)(81)

(50)(50)

(83)(83)

> >

> >

> >

(63)(63)

(9)(9)

> >

(82)(82)

We consider identities of the form

where is an eta-product and are positive relatively prime integers.
findtype7(T)

where and both a, b are odd,
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. The procedure also returns a list of [a,b,c] which give
identities .
findtype7(24);

printtypelist(printtype7,PROVEDFL7,3,41);

This corresponds to (3.29) in [5].

3.2.8 Type 8

We consider identities of the form

where is an eta-product, and is an integer.
findtype8(T)

where and
using CHECKRAMIDF to check whether the expression corresponds to a likely eta-product, and if so
uses provemodfuncidBATCH to prove it. The procedure also returns a list of [a,c] which give
identities.
findtype8(24);

WARNING: There were 2 ebasethreshold problems.
 See the global array EBL.

printtypelist(printtype8,PROVEDFL8,3,42);

3.2.9 Type 9

We consider identities of the form

where is an eta-product, and are positive integers, and or .
findtype8()

> >

> >

> >

(41)(41)

(39)(39)

(72)(72)

> >

(75)(75)

(85)(85)

(57)(57)

(31)(31)

> >

> >

(88)(88)

(50)(50)

> >

> >

(63)(63)

(9)(9)

> >

(87)(87)

(86)(86)

is a likely eta-product for or with the smallest such positive integers,
using CHECKRAMIDF, and if so uses provemodfuncidBATCH to prove it. The procedure also
returns a list of [a,b,x] which give identities.
findtype9();

printtypelist(printtype9,PROVEDFL9,3,43);

This is equation (3.1) in [5].

3.2.10 Type 10

We consider identities of the form

in which the numerator is not a Type 1 identity, and where is an eta-product, are
positive relatively prime integers, and
findtype10(T)

where
 and

GE HE HE GE

GE HE HE GE (3.44)

and [is not an element of the list myramtype1

(found earlier by findtype1), using CHECKRAMIDF to check whether the expression corresponds to
a likely eta-product, and if so uses provemodfuncidBATCH to prove it. The procedure also returns
lists
[] which correspond to identities.
qthreshold:=3000:
findtype10(120);

printtypelist(printtype10,PROVEDFL10,3,45);

> >

(88)(88)

(41)(41)

(39)(39)

(50)(50)

(72)(72)

> >

> >

(63)(63)

(75)(75)

(9)(9)

> >

(57)(57)

(31)(31)

Equation is (3.38) in [5]. The other type 10 identities appear to be new.

4 More Generalized Ramanujan-Robins identities

We consider generalized Ramanujan-Robins identities
 for , that

satisfy Dirichlet Character Table Generator
[14] useful. See the website

http: //www.di-mgt.com.au/dirichlet-character-generator.html

