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Abstract

Letrj(ms) denote the number of cells, colorgdin thes-residue diagram of par-
tition Tt The GBG-rank oftmodsis defined as

s-1 -
GBG-ranKm s) = Z}r,— (T, s)ez?ml.
J:

S+t
()
S+t
wherev(s,t) denotes the number of distinct values that the GBG-rank afae mod
smay assume. The above inequality becomes an equality wisegprime or whers
is composite and < 2ps, whereps is the smallest prime divisor af We show that

the generating functions for 4-cores with prescribed GBG-rank mod 3 value are all
eta-quotients.
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We prove that fors,t) =1

v(st) <

)

1 Introduction
A partition Ttis a nonincreasing sequence
m= ()\1,)\2, ... ,)\V)
of positive integers (parts); > A2 > Az > --- > A, > 0. The norm ofr, denotedt, is
defined as
’T[‘ = zi)\i.
i=
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If |11 = n, we say thattis a partition ofn. The (Young) diagram oftis a convenient way

to representt graphically: the parts aft are shown as rows of unit squares (cells). Given
the diagram ofit we label a cell in the-th row andj-th column by the least nonnegative
integer= j —i mods. The resulting diagram is called aresidue diagram [8]. One can
also label cells in the infinite column O and the infinite row O in the same fashion. The
resulting diagram is called the extendedesidue diagram oft [5]. With eachmtwe can
associate the-dimensional vector

r(m,s) = (ro,ra,...,rs1),

wherer; = r;(,s) (0 <i < s—1) is the number of cells labellédn the s-residue diagram
of Tt We shall also require

n(T[) S) = (n07 Ny,.. .,ns,]_),

wherefor0<i<s—2

M =Ti—rlit1,
and
Ns—1=Ts1—To.
Note that
s—1
n-ls= ;ni =0,
i=
where

ls=(1,1,1,...,1) € Z°.

We recall the notions of rim hook arnecore [8]. If some cell oft shares a vertex or edge
with the rim of the diagram oft, we call this cell a rim cell oft A connected collection of
rim cells of rtis called a rim hook oftif T\(rim hook) is a legitimate partition. A partition
is at-core if it has no rim hooks of length Throughout this paper we usually denote a
generict-core byTt.core We will also use this notation in a different way, but the context
should be clear. Any partitiorthas a uniquely determinéetore which we will also denote
by T&.core This partitionTg.core is called the-core oftt. One can obtaimg.cqre from 1tby the
successive removal of rim hooks of lengtiThet-coreTt.core is independent of the manner
in which hooks removed. The Durfee squaremtlenoted (), is the largest square that
fits inside the diagram aft Reflecting the diagram af about its main diagonal, one gets
the diagram oft* (the conjugate oft). More formally,

T = (AL,A5,...)

with A" being the number of parts of> i. Clearly,

In [3] we defined a new partition statistic of

GBG-rankm,s) := erj(n, s)al, (1.1)
i=
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where -
We refer to this statistic as the GBG-rankmomods. The special case= 2 was studied in
great detail in [3] and [4]. In particular, we have shown in [3] that for any oddL
1— Z}:é(_l)iﬂli (T¢-coret)

4

GBG'ranKTﬁ:_Core, 2) — (12)

and that

-1 1
— VTJ < GBG-ranKTg.core, 2) < {%J’ (1.3)

where|x] is the integer part ok. Our main object here is to prove the following generali-
sations of (1.2) and (1.3).

Theorem 1.1. Lett,se Z-1 and(t,s) = 1. Then

-1 ,J+1,, nj(Tk-coret)
it (o -1
GBG- ; = 14
ranKTﬁl corey S) (1_ Q)s)(l— (J.)ts) ( )
Theorem 1.2.Letv(s,t) denote the number of distinct values that GBG-rarik.@f. mod s
may assume. Then
<t + s>
t
)< ~—~ 15
V(s < S (15)
provided(s,t) = 1.
Theorem 1.3. Letv(s,t) be as in Theorem 1.2 ar{d,t) = 1. Then
(t + s)
V(Svt> = #7 (16)

t+s

iff either s is prime or s is composite andt2ps, where g is the smallest prime divisor
of s.

Our proof of this theorem depends crucially on the following

Lemma 1.4. Let st € Z-q and(s;t) = 1. Letj = (jo, j1,---, Jt-1), ) = (Jo, J1,---, Jt—1) b€
integer valued vectors such that

0<jo<j1<---<ji1<s—1, (1.7)
0<jo<ji<- <ja1<s-1, (1.8)
and
t—1 t—1

; Wl = Z} Wl (1.9)
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-1 t-1
iu)wg = iD)wg. (1.10)

I=1I
iff either s is prime or s is composite such that Pps, where pis the smallest prime divisor
of s.

Then

The rest of this paper is organised as follows. In Section 2, we collect some necessary
background on-cores and prove Theorems 1.1 and 1.2. Section 1.3 is devoted to the proof
of Lemma 1.4 and Theorem 1.3. Section 4 deals with 4-cores with prescribed values of
GBG-rank mod 3. There we will provide new combinatorial interpretation and proof of the
Hirschhorn-Sellers identities for 4-cores [7]. We conclude with remarks connecting this
development and that of [11] and [2].

2 Properties of the GBG-rank

We begin with some definitions from [5]. A regiann the extended-residue diagram of
Ttis the set of all cellsi, j) satisfyingt(r —1) < j—i <tr. A cell of Ttis called exposed
if it is at the end of a row oft One can construdtbi-infinite wordsWp, W, ..., W_; of
two lettersN, E as follows: Therth letter of W is E if there is an exposed cell labelléd
in the regionr of 11, otherwise theath letter of W is N. It is easy to see that the word set
{Wo, W4, ...,.W_1} fixesTtuniquely. It was shown in [5] that is at-core iff each word of
Ttis of the form:

Region: ----.. Nicy N Nigp Nigp oeeees
\/\/0; ...... E E N N ..... . (2_1)

Region o -1 0 1 2 3 ...
Wo: oo E E E E N -
We: o e E N N N N ..
Wo: oo E N N N N .. ’

while the associated and n vectors arer = (ro,r1,r2) = (3,1,2), n = (ng,ng,Ny) =
(2,—1,-1), respectively. In general, the map

@O(Tk-core) = N(Te-core t) = (No, Ny, ..., Nk_1)
is a bijection from the set dfcores to the set
{nez':n-1=0}

Next, we mention three more useful facts from [5].
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(A) We have )
‘Tﬁ-core‘ = E\n\2+bt-n, (2.2)
whereb; = (0,1,2,...,t —1).
(B) We have
Z N =— N = |D(Tk-core)|, (2.3)
iePy ieP_q

whereP, ={i€Z:0<i<t—1,an >0}, a = —1,1, and|D(Tk-core)| denotes the number
of cells on the main diagonal of the Durfee square.
(C) Under conjugationy(Tg.core) transforms as

(o, N1, N, ..., k1) — (—Mk_1,—Nt_2,...,—No). (2.4)

We begin our proof of the Theorem 1.1 by observing that under conjugation GBG-rank
transforms as

s—1 s—1

GBG-ranKm,s) = %riwisz> GBG-ranKTr',s) = Zrioogi. (2.5)
i= =
Next, we use that
GBG-ranKt s) = GBG-ranKty, s) + GBG-ranKmy, s) — D. (2.6)

Here, is obtained from the diagram of_.ore by removing all cells strictly below the main
diagonal offg-core. Similarly, T, is obtained fronTg.cqre by removing the cells strictly to the
right of the main diagonal.

Recalling (2.1) and (2.3) we find that

n i+t(k-1) D w’s+1(1_u)tni)
- — i__ = s
GBG-rankKmy, s) iezlk; J;) wl T o 2 0 eI (2.7)

Analogously,

D of (11— wg™)
GBG-ranKTs,s) = —— — S , (2.8)
oY a2 - w-w)
where we made use of (2.4).
Clearly, (2.5) and (2.8) imply that
1+i - n;
GBG-rankmps) — 0%y W(1-okh) 2.9)

1-ws ¢ "y (1—ws) (1)
Next, we combine (2.6), (2.7) and (2.9) to find that

w%ﬂ(l_wtsni) _t—l wéJri(thni _ 1)
T-w)(I-a) & l-w)(l-o)

GBG-ranKTk-core, S) = — ZJ (
ieP_.UJPL

as desired.
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Our proof of Theorem 1.2 involves three observations, which we now proceed to dis-
CusSS.

Observation 1 Let g(s,t) denote the number of vectdrs- (jo, j1,-.., ji—1) such that

0<jo<j1<jo<---<j1<s
t-1
Z jk=rmods
K=o

Then
V(S,t) < Aty (S,t), (210)
2

provided(s,t) = 1.

Proof. Supposes,t) = 1. Itis clear that the number of values of the GBG-rank-obres
modsis the number of distinct values of

S

+i4tn;
2o
i=

wheren € Z' andn - 1; = 0. Given any such-vector we reduce the exponents-1+-tn;
mods and reorder to obtainjavector such that

t-1 t-1
Z jk= Z)l+i+tni = @ (mods).
K=0 i=

It follows that

V(st) < au (St). O
2

Observation 2 We have

s-1
r;ar(s,t) = <t+f 1). (2.11)
This result is well known and we omit the proof. Finally, we need
Observation 3 If (s,t) = 1then
ao(sit) =ay(st) =-- =as1(st). (2.12)

Proof. There exists an integdrsuch thafl -t = 1 mods, becaussandt are coprime. This

implies that
t—1 t-1

(i+T)=1+4+ jimods.
|ZO | i;) |
Consequentlyg, (s,t) = a+1(s,t), as desired. Combining (2.10), (2.11) and (2.12) we see

that
<s—1+t) <s+t>
t t
(s1) < wa S s+t

and we have Theorem 1.2. O
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3 Roots of Unity and the Number of Values of the GBG-rank

It is clear from our proof of Theorem 1.2 that

)

S+t

v(sit) =

iff eachj = (jo, j1,---, jt—1) such that

is associated with a distinct complex numrggéoog. Lemma 1.4 tells us when this is
exactly the case. This means that Theorem 1.3 is an immediate corollary of this Lemma.
To prove it we need to consider six cases.

Casel. sis prime,(s,;t) = 1.
Note that
Dg(X) i= 14X+ X2+ X1

is a minimal polynomial otos overQ. Let us now define

t—1

p1(X) == _;(xj‘ —xii, (3.1)

wherej andj] satisfy the constraints (1.7) - (1.10). Itis clear that

pl(l) =0,
and that de@pi(x)) < s. But (x— 1)®g(x) dividesp1(X). This implies thatp;(x) is identi-

cally zero ang =, as desired.

Case2. sis composite(s,t) = 1 andt < 2ps, whereps is the smallest prime divisor
of s.
Once again (1.9) implies that
p1(0ds) = 0.

Moreover, thesth cyclotomic polynomial, defined as

@)= ] (x—ad), (3.2)
(151

is a minimal polynomial otos over@Q. This means that

pr(wf’) =0, (3.3)
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for any 1< m< ssuch thats,m) = 1. In particular, we have that
p1(wk) =0, 1<k<ps—1 (3.4)
At this point, it is expedient to rewrite (3.4) as
he(@l, ..., wi-1) = hy(wlo, ... wit1),  1<k<ps—1, (3.5)
where
hi (X1, X2, ... %) = X5+ X5+ -+ X,
Next, we use Newton’s theorem on symmetric polynomials to convert (3.5)pgtol
identities _ _ 3 3
Ok(, ..., ol1) = o (... k1), 1<k<ps—1, (3.6)

where thekth elementary symmetric polynomiadg’s in X1, X2, ..., % are defined in a stan-
dard way as

O-k(X17X2,...,Xt): z Xilxiz"’xika 1§kSt (37)

1<ii<ip<...<ik<t

Note that we can rewrite (1.10) now as

oy (W, ..., wit1) = gy (b, ..., k1), (3.8)
But
01Ok = Otk, (3.9)
where
Op(X1, X2, -, %) = Ok(X 1%, X 1),

This fortunate fact enables us to convert (3.6) ipte- 1 identities

ck(wéo,...,oogfl):ok(coi",..., 1)) t—ps+1<k<t-—1 (3.10)
Butt < 2ps, and sof — ps+ 1 < ps. This means that we have the followih@lentities
O(wl, ... wi-1) = g (wl, ... wi1),  1<k<t. (3.11)

Consequently,
t—1 t—1

[ o) = [ o).

Recalling thaj,] satisfy (1.7) and (1.8), we conclude that j.

Let us summarize. I$is a prime or ifsis a composite number such that 2ps, then
j =], provided tha(s,t) = 1 andj,j satisfy (1.7)—(1.10).

It remains to show thgt= ] does not have to be true sfis a composite number and
t > 2ps. To this end consider

(0,0,...,0,1,1,3,3) € Z',
(0,0,...,0,0,0,2,2) € Z',

._.l._.
Il
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if s=4,t >4,

:=(0,0,...,0,1,1,4,4) ¢ Z,
:=(0,0,...,0,0,2,3,5) ¢ Z,

if s=6,t >4 and

:=(0,0,...,0,3,3,6,6) ¢ Z',
:=(0,0,...,0,1,2,4,5,7,8) € Z',

if s=9,t > 6, respectively. Itis not hard to verify thiaj satisfy (1.7)—(1.10) and that£ |
in these cases. It remains to consider the last case wli®secomposite numbet 4,6,9,
t > 2ps. In this cases > 3ps. And, as a result,

3+E(p5*1) <s

Ps

Let us now consider

: s s s s
ji= (o,o,_,.,o,2,2,2+E,2+—,...,2+—(ps—1),2+a(ps—l)) e,

S S pS S

> S S s S i
= (o,o,...,o,1,3,1+ L3 o Lk (e 1).34 (b 1)) e 7t
Again, it is straightforward to check thaf satisfy (1.7)—(1.10) and thatZ . This com-
pletes our proof of Lemma 1.4.
It is clear that Theorem 1.3 follows from the above.
To illustrate the usefulness of Theorem 1.3, consider the following exanspte3,
t = 4. In this case we should have exacffi;®) /(4 + 3) = 5 distinct values of GBG-rank
(Tu-core 3). To determine these distinct values we substitute the followingectors
(0,—-1,1,0), (0,0,0,0), (—1,0,0,1), (0,0,—1,1), (—1,1,0,0) into (1.4) to obtain-1,0,1,
—uy, — W4, respectively. To verify this we note that there are exactly 27 vectors such that

neZi and n-13=0mod 3

In Table 1 we list all these vectors together with the associated GBG-rank mod 3 values,
determined by (1.4). These vectors will come in handy later.

4 The GBG-rank of 4-cores mod3
Let G;(q) denote the generating function fiocores.
G(a) = 5 qmeore, (4.2)
Tg-core
Let P be the set of all partitions ari@-core be the set of ali-cores. There is a well-known
bijection N
@©:P— B-corexPxPxP...xP
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n vectors GBG-rank values
n; = (0,—1,1,0) 1
nz = (0,0,0,0) 0
ns = (1,1,-2,0) 0
ng=(—1,-1,1,1) 0
ns = (0,—1,—1,2) 0
ne = (1,—1,0,0) 0
ny = (0,1,-2,1) 0
Ng = (2,—1,—1,0) 0
ne = (0,0,1,—1) 0
Nio = (0 1 —1,0) 0
N1 = ( 10,1 O) 0
Ni2 = (l 1 l 1) 0
N1z = (0 —-1.0, 1) 0
N4 = (1 1,0, 2) 1
Ni5 = ( 1 1 -1 1) 1
Nig = (2 0,—-1, 1) 1
Nni7 = (1 0 O l) 1
Nig = (1 1-1, 1) 1
Nig = ( 1, O 0 l) 1
Noo = (l 0 -1 0) —03
Ny = (1 0 2 l) —3
Noo = (1 -1,-1 1) —W3
No3 = (0 0,-1 1) —03
Nog = ( 11, 0,0) —(,0%
N2s = ( 1, 1a1>_1) —(.0%
Nog = ( 1,2,0, 1) —0%
nz7=(0,1,0,—-1) — 03
Table 1:

which goes back to D.E. Littlewood [10]

@(1) = (Tk-core To, T, ..., Tk_1)
such that

t—1
[T = |Te-cord +t_%|ﬁ|-

The multipartition(To, Ty, ..., Tg_1) is called thet-quotient ofrt. An immediate corollary
of the Littlewood bijection is

Gi(q) = (4.2)

where

E(q) = ﬂ(l—qj)- (4.3)



The GBG-rank and-cores |. Counting and 4-cores 59

The functionE(q) is related to Dedekind’s eta-functioy{t) by

n(¥) = g#E(q),

where q = exp(2rit) and [(t) > 0. Quotients of the function&(q?) are calledeta
guotients. On the other hand, formula (2.2) implies [5] that

Gg)= Y gty (4.4)
neZt,
n-1;=0
so that E(q)
‘§|n\2+n-b[ — —q 45
nezzt_q E(a) ()
n-l[:O

The above identity was first obtained by Klyachko [9], who observed that it is a special
case of Macdonald’s identity for the root systémi. An elementary proof of (4.5) can be
found in [3]. Next we define

9e(q) = > of4-core (4.6)
TY-core
GBG-rankmny_core3)=c

In other words,gc(q) is the generating function for 4-cores with a given vatuef the
GBG-rank mod 3. From the discussion at the end of the last section it is clear that

E4(q4)
E(Q) 9-1(a) +90(a) + 91(9) +g-5(A) +9_2(a).- (4.7)

It turns out that eacbc(q) is anetaquotient.

4/ ~36
gi(@) =0 EE(gg ) (4.8)
_ E%(0®)E?(g"®)
D= B E (2B ) @9
_ EXgY)E*®)
D= I e (FIE (o) (@20
E%(¢°)E(q*)E(g®)
9 ws(a) = £ , (4.11)
_ pEA@)E(@)E(®)
0 w2(q) =0 £ : (4.12)
Hence
E%q")  E®(Q®)E*(0"®) N E*(q°)E*(g™?)
E@  EAPEGDE)  E(PE®EQGSD)
2(A9 12 36 4/~36
+2qu @ )EE(Zg))E(q )+q5EEEgg)). (4.13)
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We note that the identity
9-ws(0) = 9_2(0)
follows from (2.5) and the fact that is at-core if and only if the conjugate’ is at-
core. The identities equivalent to (4.13) were first proven by Hirschhorn and Sellers [7].

However, the combinatorial identities (4.7)—(4.12) given here are brand new. The proof of
(4.8) is rather simple. Indeed, data in Table 1, implies that

2 .

ga(@= Yy b
n-14=0,
n=nimod 3

_ q5 q9(2\ﬁ\27ﬁ1+2ﬁ2+ﬁ3)
- 14=FRg+n1+FAr+Az=0

:q5 g q9(2|ﬁ\2+ﬁo+2ﬁ3+3ﬁ2)
fi-13=0

_ s E*(a*)
E(a?)
where in the last step we relabelled the summation variables and used (4.5 =ntland

q— .
In what follows we shall require the Jacobi triple product identity ([6],11.28)

(4.14)

(o)

S (-4 7 = E()[2G e, (4.15)

where _ . ]
(Z g := JEL(l— zd) <1— q7>

and the formula ([6],ex.5.21)
u v vl x u
= [uy,y,vxx,qL+X[xxy,uwv,q] , (4.16)

[o0] (o)

ax Loy V-
X7X,Vy,y,q
where

n

(21,22, .., 70,00 := [ ][Z; U oo
[l

Settingu = @, v= g, x= ¢, y = q and replacingj by ' in (4.16) we find that

07, 0% 0Mes ([0°; 00 — A[0; G 0) = [0, 0, 0% 0o (4.17)

Analogously, (4.16) withu = ¢®, v= 0%, x=q, y = 1 andq — g*? becomes

. . o, o2, o, 0% e
6 0%+l 612 = | OF q5;q12]m] : (4.18)

Finally, settingu = qf, v=q* x=q% y =1 andq — g*2in (4.16) yields

g®,a* a2 = [a9,6°, o, a% 9" + q6?, g% g1F2. (4.19)
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Next, we use again Table 1 to rewrite (4.9) as

13
5 3 @ —R(), (4.20)
j=2 n-14=0

n=n;mod 3

where

E°(q°)E?(9")
Ri(q) = . 4.21
9= B PE@E @2y

Remarkably, (4.20) is the constant terneiof the following identity

13

nn+l
si(z,q) = g 2 2 (4.22)
2, (@3
where , )
siza) =y AN rbang st j=12...27 (4.23)
n=njmod 3

Using simple changes of variables, it is straightforward to check that

zd’s (2, 0) = sj(z.9), (4.24)
holds true for the following(i, j) pairs: (2,3), (3,4), (4,5), (5,2), (6,7), (7,8), (8,9),
(9,6), (10,11), (11,12), (12,13), (13,10), and that

© n(n+1) nn+1)
zd Yy o7 (zd)"= z oz 2 (4.25)

Nn=—o0 N=—o0

Consequently, both sides of (4.22) satisfy the same first order functional equation

zdf(z,q) = f(z,9). (4.26)

Thus to prove (4.22) it is sufficient to verify it at one nontrivial point, gay 7o := —q°.
It is not hard to check that

s4(20,9) = s8(20,9) = S11(20,9) =0, (4.27)

and that
S3(20,0) +S9(20,9) = $5(20,9) + S12(20,7) = 0. (4.28)

We see that (4.22) with= zy becomes

n(n+1)
9=75— 2

$2(20,9) + S6(20,0) + S7(20, 9) + S10(20,G) + S13(20,0) = Z q (4.29)

n=—oo

61

Upon making repeated use of (4.15) and replacjhgy g we find that (4.9) is equivalent

to
%, &, 0%, &% 0w + A, &, 0 G ([6°; G0 — [0 7))
+0[a,9%, &, 6% "% + o%[0,9, 9%, 6% 9"
2/~0\E6/ A2
__E@ElD) (4.30)
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eq We can simplify (4.30) with the aid of (4.17) as

2(AO\E6/( A2
[a*,6% "e ([0° 0™ + 0l 47 )? = 55541(2?5) 54()?52) @ (4.31)

Next, we use (4.18) to reduce (4.31) to the following easily verifiable identity
[0 0"aa*,a% 0% EX(A®)ES()
[a, 0% % a*2)2, E>(q"2)E(a*)E2(q)
This completes our proof of (4.22), (4.20). We have (4.9), as desired.

The proof of (4.10) is analogous. Again, we view this identity as the constant texm in
of the following

(4.32)

19
o0 0 433
J;4sj (za) = nzmq (4.33)
were o o EAPEY ) >
20 = P EPE@) @39

Again, (4.24) holds true for the following, j) pairs: (14,15), (15,16), (16,17), (17,14),
(18,19), (19,18).

And so, both sides of (4.33) satisfy (4.26). Again it remains to show that (4.33) holds at
one nontrivial point, say; = —q 3. Observing that

S14(21,9) = S15(21,0) = S19(21,0) =0, (4.35)
we find that (4.33) witlz = z; becomes

n(n+1
S16(21,0) +S17(21,0) + s18(21,0) = Z q z Z, (4.36)

n=—oo

Again, making repeated use of (4.15) and replacjhgy g, we can rewrite (4.36) as

—q[0; ") +qo?,0°, &%, 0% 9"

_ EYgYEA(Q®)
E4(q")E(q®)E(q?)

6%, 0%, 0% 02w ([0 2o

(4.37)

12
If we multiply both sides of (4.37) b q4 312} and take advantage of (4.17) we find that

5 6 b E*(a")E?(@®)  [0%a"
4o 6o+l 070 = e E(E () [

(4.38)

which is easy to recognize as (4.19). This completes our proof of (4.33) and (4.10).
To prove (4.11), (4.12) we will follow a well trodden path and observe that these iden-
tities are just constant terms zrof

23t E2(@)E(I?)EG®) & ot
si(zq) = 7 2 (4.39)
j:%%cx : E(qS n_z—oo
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with a = 0 and 1, respectively.

To prove that both sides of (4.39) satisfy (4.26) we verify that (4.24) holds for the
following (i, j) pairs: (204 4a,21+4a), (21+ 40,22+ 4a), (224 40,23+ 40), (23+
40,20+ 4a) with a = 0, 1. It remains to verify (4.39) at

ZX — _qG(l—Zq)’ o= O, 1.
Taking into account that
Sj+4d (2(]’ q) =0
for j =20,21,22 anda = 0,1, we find that
23140 (Za,0) = (1) "™ EX () E(0)E (™),

which is easy to prove with the aid of (4.15).
This completes our proof of (4.11) and (4.12).

5 Concluding Remarks

Making use of the Littlewood decomposition mf e into its s-core ands-quotient,

EP(TE-core) = (Tscore To, Ty, .. '7ﬁ:5—1)7
together with

1+os+ 0w+ +wit=0,

it is not hard to see that
G BG'ra.nKTE.Core7 S) — GBG'ranKTrs.(;ore, S) .
In a recent paper [11], Olsson proved a somewhat unexpected result:

Theorem 5.1. Let st be relatively prime positive integers. Then the s-core of a t-core is,
again, at-core.

A partition is called ar{s,t)-core if it is simultaneously as-core and d-core.
In [2], Anderson established

Theorem 5.2. Let st be relatively prime positive integers. Then the numbédsgf-cores
is (S:t)/(s+t).

Remarkably, the three observations above imply our Theorem 1.2. Moreover, our The-
orem 1.3 implies

Corollary 5.3. Let st be relatively prime positive integers. Then no two distifgt)-
cores share the same value of GBG-rank mod s, when s is prime, or when s is compaosite
and t< 2ps, where pis the smallest prime divisor of s.

On the other hand, when the conditionssamndt in the corollary above are not met, two
distinct (s,t)-cores may, in fact, share the same value of GBG-rank sndebr example,
consider two relatively prime integessandt such that3s,s>2,t > 1+ 3, t#s+1. In
this case partitio12—1,2,1+ 5] and empty partitiorj | are two distinct(s, t)-cores such
that

GBG-ranl( [13*1,2, 1+ 1;’} ,s) — GBG-rank] |,s) = 0.

Here we are using the partition notation of Andrews [1, p.1].
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