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Abstract

Let r j(π,s) denote the number of cells, coloredj, in thes-residue diagram of par-
tition π. The GBG-rank ofπ mods is defined as

GBG-rank(π,s) =
s−1

∑
j=0

r j(π,s)e
2πi
s j .

We prove that for(s, t) = 1

ν(s, t)≤

(
s+ t

s

)
s+ t

,

whereν(s, t) denotes the number of distinct values that the GBG-rank of at-core mod
s may assume. The above inequality becomes an equality whens is prime or whens
is composite andt ≤ 2ps, whereps is the smallest prime divisor ofs. We show that
the generating functions for 4-cores with prescribed GBG-rank mod 3 value are all
eta-quotients.
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1 Introduction

A partition π is a nonincreasing sequence

π = (λ1,λ2, . . . ,λν)

of positive integers (parts)λ1 ≥ λ2 ≥ λ3 ≥ ·· · ≥ λν > 0. The norm ofπ, denoted|π|, is
defined as

|π|= ∑
i=1

λi .
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If |π| = n, we say thatπ is a partition ofn. The (Young) diagram ofπ is a convenient way
to representπ graphically: the parts ofπ are shown as rows of unit squares (cells). Given
the diagram ofπ we label a cell in thei-th row and j-th column by the least nonnegative
integer≡ j − i mods. The resulting diagram is called ans-residue diagram [8]. One can
also label cells in the infinite column 0 and the infinite row 0 in the same fashion. The
resulting diagram is called the extendeds-residue diagram ofπ [5]. With eachπ we can
associate thes-dimensional vector

r(π,s) = (r0, r1, . . . , rs−1),

wherer i = r i(π,s) (0≤ i ≤ s−1) is the number of cells labelledi in thes-residue diagram
of π. We shall also require

n(π,s) = (n0,n1, . . . ,ns−1),

where for 0≤ i ≤ s−2
ni = r i− r i+1,

and
ns−1 = rs−1− r0.

Note that

n · ls =
s−1

∑
i=0

ni = 0,

where
ls = (1,1,1, . . . ,1) ∈ Zs.

We recall the notions of rim hook andt-core [8]. If some cell ofπ shares a vertex or edge
with the rim of the diagram ofπ, we call this cell a rim cell ofπ. A connected collection of
rim cells ofπ is called a rim hook ofπ if π\(rim hook) is a legitimate partition. A partition
is a t-core if it has no rim hooks of lengtht. Throughout this paper we usually denote a
generict-core byπt-core. We will also use this notation in a different way, but the context
should be clear. Any partitionπ has a uniquely determinedt-core which we will also denote
by πt-core. This partitionπt-core is called thet-core ofπ. One can obtainπt-core from π by the
successive removal of rim hooks of lengtht. Thet-coreπt-core is independent of the manner
in which hooks removed. The Durfee square ofπ, denotedD(π), is the largest square that
fits inside the diagram ofπ. Reflecting the diagram ofπ about its main diagonal, one gets
the diagram ofπ∗ (the conjugate ofπ). More formally,

π∗ = (λ∗1,λ
∗
2, . . .)

with λ∗i being the number of parts ofπ≥ i. Clearly,

D(π) = D(π∗).

In [3] we defined a new partition statistic ofπ

GBG-rank(π,s) :=
s−1

∑
j=0

r j(π,s)ω j
s, (1.1)
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where
ωs = e

2πi
s .

We refer to this statistic as the GBG-rank ofπ mods. The special cases= 2 was studied in
great detail in [3] and [4]. In particular, we have shown in [3] that for any oddt > 1

GBG-rank(πt-core,2) =
1−∑t−1

i=0(−1)i+ni(πt-core,t)

4
(1.2)

and that

−
⌊

t−1
4

⌋
≤GBG-rank(πt-core,2)≤

⌊
t +1

4

⌋
, (1.3)

wherebxc is the integer part ofx. Our main object here is to prove the following generali-
sations of (1.2) and (1.3).

Theorem 1.1. Let t,s∈ Z>1 and(t,s) = 1. Then

GBG-rank(πt-core,s) =
∑t−1

j=0 ω j+1
s (ωtn j (πt-core,t)

s −1)

(1−ωs)(1−ωt
s)

(1.4)

Theorem 1.2.Letν(s, t) denote the number of distinct values that GBG-rank ofπt-core mod s
may assume. Then

ν(s, t)≤

(
t +s

t

)
t +s

, (1.5)

provided(s, t) = 1.

Theorem 1.3. Let ν(s, t) be as in Theorem 1.2 and(s, t) = 1. Then

ν(s, t) =

(
t +s

t

)
t +s

, (1.6)

iff either s is prime or s is composite and t< 2ps, where ps is the smallest prime divisor
of s.

Our proof of this theorem depends crucially on the following

Lemma 1.4. Let s, t ∈ Z>1 and(s, t) = 1. Let j = ( j0, j1, . . . , jt−1), j̃ = ( j̃0, j̃1, . . . , j̃t−1) be
integer valued vectors such that

0≤ j0≤ j1≤ ·· · ≤ jt−1≤ s−1, (1.7)

0≤ j̃0≤ j̃1≤ ·· · ≤ j̃t−1≤ s−1, (1.8)

and
t−1

∑
i=0

ω j i
s =

t−1

∑
i=0

ω j̃ i
s (1.9)
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t−1

∏
i=0

ω j i
s =

t−1

∏
i=0

ω j̃ i
s . (1.10)

Then
j = j̃ ,

iff either s is prime or s is composite such that t< 2ps, where ps is the smallest prime divisor
of s.

The rest of this paper is organised as follows. In Section 2, we collect some necessary
background ont-cores and prove Theorems 1.1 and 1.2. Section 1.3 is devoted to the proof
of Lemma 1.4 and Theorem 1.3. Section 4 deals with 4-cores with prescribed values of
GBG-rank mod 3. There we will provide new combinatorial interpretation and proof of the
Hirschhorn-Sellers identities for 4-cores [7]. We conclude with remarks connecting this
development and that of [11] and [2].

2 Properties of the GBG-rank

We begin with some definitions from [5]. A regionr in the extendedt-residue diagram of
π is the set of all cells(i, j) satisfyingt(r −1) ≤ j − i < tr. A cell of π is called exposed
if it is at the end of a row ofπ. One can constructt bi-infinite wordsW0,W1, . . . ,Wt−1 of
two lettersN,E as follows: Therth letter ofWi is E if there is an exposed cell labelledi
in the regionr of π, otherwise therth letter ofWi is N. It is easy to see that the word set
{W0,W1, . . . ,Wt−1} fixesπ uniquely. It was shown in [5] thatπ is at-core iff each word of
π is of the form:

Region : · · · · · · ni−1 ni ni+1 ni+2 · · · · · ·
W0 : · · · · · · E E N N · · · · · · . (2.1)

For example, the word image ofπ3-core= (4,2) is

Region : · · · · · · −1 0 1 2 3 · · · · · ·
W0 : · · · · · · E E E E N · · · · · ·
W1 : · · · · · · E N N N N · · · · · ·
W2 : · · · · · · E N N N N · · · · · · ,

while the associatedr and n vectors arer = (r0, r1, r2) = (3,1,2), n = (n0,n1,n2) =
(2,−1,−1), respectively. In general, the map

φ(πt-core) = n(πt-core, t) = (n0,n1, . . . ,nt−1)

is a bijection from the set oft-cores to the set

{n ∈ Zt : n ·1 = 0}.

Next, we mention three more useful facts from [5].



The GBG-rank andt-cores I. Counting and 4-cores 53

(A) We have ∣∣πt-core
∣∣=

t
2
|n|2 +bt ·n, (2.2)

wherebt = (0,1,2, . . . , t−1).
(B) We have

∑
i∈P1

ni =− ∑
i∈P−1

ni = |D(πt-core)|, (2.3)

wherePα = {i ∈ Z : 0≤ i ≤ t−1,αni > 0}, α =−1,1, and|D(πt-core)| denotes the number
of cells on the main diagonal of the Durfee square.

(C) Under conjugation,φ(πt-core) transforms as

(n0,n1,n2, . . . ,nt−1)→ (−nt−1,−nt−2, . . . ,−n0). (2.4)

We begin our proof of the Theorem 1.1 by observing that under conjugation GBG-rank
transforms as

GBG-rank(π,s) =
s−1

∑
i=0

r iωi
s =⇒GBG-rank(π∗,s) =

s−1

∑
i=0

r iω−i
s . (2.5)

Next, we use that

GBG-rank(π,s) = GBG-rank(π1,s)+GBG-rank(π2,s)−D. (2.6)

Here,π1 is obtained from the diagram ofπt-coreby removing all cells strictly below the main
diagonal ofπt-core. Similarly,π2 is obtained fromπt-coreby removing the cells strictly to the
right of the main diagonal.

Recalling (2.1) and (2.3) we find that

GBG-rank(π1,s) = ∑
i∈P1

ni

∑
k=1

i+t(k−1)

∑
j=0

ω j
s =

D
1−ωs

− ∑
i∈P1

ωi+1
s (1−ωtni

s )
(1−ωs)(1−ωt

s)
. (2.7)

Analogously,

GBG-rank(π∗2,s) =
D

1−ωs
− ∑

i∈P−1

ωt−i
s (1−ω−tni

s )
(1−ωs)(1−ωt

s)
, (2.8)

where we made use of (2.4).
Clearly, (2.5) and (2.8) imply that

GBG-rank(π2,s) =− Dωs

1−ωs
− ∑

i∈P−1

ω1+i
s (1−ωtni

s )
(1−ωs)(1−ωt

s)
. (2.9)

Next, we combine (2.6), (2.7) and (2.9) to find that

GBG-rank(πt-core,s) =− ∑
i∈P−1

⋃
P1

ω1+i
s (1−ωtni

s )
(1−ωs)(1−ωt

s)
=

t−1

∑
i=0

ω1+i
s (ωtni

s −1)
(1−ωs)(1−ωt

s)
,

as desired.
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Our proof of Theorem 1.2 involves three observations, which we now proceed to dis-
cuss.

Observation 1. Let ar(s, t) denote the number of vectorsj = ( j0, j1, . . . , jt−1) such that

0≤ j0≤ j1≤ j2≤ ·· · ≤ jt−1 < s,

t−1

∑
k=0

jk ≡ r mod s.

Then
ν(s, t)≤ at(t+1)

2
(s, t), (2.10)

provided(s, t) = 1.

Proof. Suppose(s, t) = 1. It is clear that the number of values of the GBG-rank oft-cores
mods is the number of distinct values of

t−1

∑
i=0

ω1+i+tni
s ,

wheren ∈ Zt andn ·1t = 0. Given any suchn-vector we reduce the exponents 1+ i + tni

mods and reorder to obtain aj -vector such that

t−1

∑
k=0

jk ≡
t−1

∑
i=0

1+ i + tni ≡ t(t+1)
2 (mod s).

It follows that
ν(s, t)≤ at(t+1)

2
(s, t).

Observation 2. We have
s−1

∑
r=0

ar(s, t) =
(

t +s−1
t

)
. (2.11)

This result is well known and we omit the proof. Finally, we need

Observation 3. If (s, t) = 1 then

a0(s, t) = a1(s, t) = · · ·= as−1(s, t). (2.12)

Proof. There exists an integerT such thatT ·t ≡ 1 mods, becausesandt are coprime. This
implies that

t−1

∑
i=0

( j i +T)≡ 1+
t−1

∑
i=0

j i mods.

Consequently,ar(s, t) = ar+1(s, t), as desired. Combining (2.10), (2.11) and (2.12) we see
that

ν(s, t)≤ at(t+1)
2

=

(
s−1+ t

t

)
s

=

(
s+ t

t

)
s+ t

,

and we have Theorem 1.2.
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3 Roots of Unity and the Number of Values of the GBG-rank

It is clear from our proof of Theorem 1.2 that

ν(s, t) =

(
s+ t

t

)
s+ t

.

iff each j = ( j0, j1, . . . , jt−1) such that

0≤ j0≤ j1≤ ·· · ≤ jt−1 < s,

t−1

∏
i=0

ω j i
s = ω

t(t+1)
2

s

is associated with a distinct complex number∑t−1
i=0 ω j i

s . Lemma 1.4 tells us when this is
exactly the case. This means that Theorem 1.3 is an immediate corollary of this Lemma.
To prove it we need to consider six cases.

Case1. s is prime,(s, t) = 1.
Note that

Φs(x) := 1+x+x2 + · · ·+xs−1

is a minimal polynomial ofωs overQ. Let us now define

p1(x) :=
t−1

∑
i=0

(x j i −x j̃ i ), (3.1)

wherej andj̃ satisfy the constraints (1.7) - (1.10). It is clear that

p1(ωs) = 0,

p1(1) = 0,

and that deg(p1(x)) < s. But (x−1)Φs(x) dividesp1(x). This implies thatp1(x) is identi-
cally zero andj = j̃ , as desired.

Case2. s is composite,(s, t) = 1 andt < 2ps, whereps is the smallest prime divisor
of s.

Once again (1.9) implies that
p1(ωs) = 0.

Moreover, thesth cyclotomic polynomial, defined as

Φs(x) := ∏
0< j<s,
( j,s)=1

(x−ω j
s), (3.2)

is a minimal polynomial ofωs overQ. This means that

p1(ωm
s ) = 0, (3.3)



56 Alexander Berkovich and Frank G. Garvan

for any 1≤m< s such that(s,m) = 1. In particular, we have that

p1(ωk
s) = 0, 1≤ k≤ ps−1. (3.4)

At this point, it is expedient to rewrite (3.4) as

hk(ω j0
s , . . . ,ω

jt−1
s ) = hk(ω j̃0

s , . . . ,ω
j̃t−1
s ), 1≤ k≤ ps−1, (3.5)

where
hk(x1,x2, . . . ,xt) = xk

1 +xk
2 + · · ·+xk

t .

Next, we use Newton’s theorem on symmetric polynomials to convert (3.5) intops− 1
identities

σk(ω j0
s , . . . ,ω

jt−1
s ) = σk(ω j̃0

s , . . . ,ω
j̃t−1
s ), 1≤ k≤ ps−1, (3.6)

where thekth elementary symmetric polynomialsσk’s in x1,x2, . . . ,xt are defined in a stan-
dard way as

σk(x1,x2, . . . ,xt) = ∑
1≤i1≤i2<...<ik≤t

xi1xi2 · · ·xik, 1≤ k≤ t. (3.7)

Note that we can rewrite (1.10) now as

σt(ω j0
s , . . . ,ω

jt−1
s ) = σt(ω j̃0

s , . . . ,ω
j̃t−1
s ). (3.8)

But
σtσ∗k = σt−k, (3.9)

where
σ∗k(x1,x2, . . . ,xt) = σk(x−1

1 ,x−1
2 , . . . ,x−1

t ).

This fortunate fact enables us to convert (3.6) intops−1 identities

σk(ω j0
s , . . . ,ω

jt−1
s ) = σk(ω j̃0

s , . . . ,ω
j̃t−1
s ), t− ps+1≤ k≤ t−1. (3.10)

But t < 2ps, and so,t− ps+1≤ ps. This means that we have the followingt identities

σk(ω j0
s , . . . ,ω

jt−1
s ) = σk(ω j̃0

s , . . . ,ω
j̃t−1
s ), 1≤ k≤ t. (3.11)

Consequently,
t−1

∏
i=0

(x−ω j i
s ) =

t−1

∏
i=0

(x−ω j̃ i
s ).

Recalling thatj , j̃ satisfy (1.7) and (1.8), we conclude thatj = j̃ .
Let us summarize. Ifs is a prime or ifs is a composite number such thatt < 2ps, then

j = j̃ , provided that(s, t) = 1 andj , j̃ satisfy (1.7)–(1.10).
It remains to show thatj = j̃ does not have to be true ifs is a composite number and

t ≥ 2ps. To this end consider

j : = (0,0, . . . ,0,1,1,3,3) ∈ Zt ,

j̃ : = (0,0, . . . ,0,0,0,2,2) ∈ Zt ,
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if s= 4, t ≥ 4,

j : = (0,0, . . . ,0,1,1,4,4) ∈ Zt ,

j̃ : = (0,0, . . . ,0,0,2,3,5) ∈ Zt ,

if s= 6, t ≥ 4 and

j : = (0,0, . . . ,0,3,3,6,6) ∈ Zt ,

j̃ : = (0,0, . . . ,0,1,2,4,5,7,8) ∈ Zt ,

if s= 9, t ≥ 6, respectively. It is not hard to verify thatj , j̃ satisfy (1.7)–(1.10) and thatj 6= j̃
in these cases. It remains to consider the last case wheres is a composite number6= 4,6,9,
t ≥ 2ps. In this cases> 3ps. And, as a result,

3+
s
ps

(ps−1)< s.

Let us now consider

j : =
(

0,0, . . . ,0,2,2,2+
s
ps
,2+

s
ps
, . . . ,2+

s
ps

(ps−1),2+
s
ps

(ps−1)
)
∈ Zt ,

j̃ : =
(

0,0, . . . ,0,1,3,1+
s
ps
,3+

s
ps
, . . . ,1+

s
ps

(ps−1),3+
s
ps

(ps−1)
)
∈ Zt .

Again, it is straightforward to check thatj , j̃ satisfy (1.7)–(1.10) and thatj 6= j̃ . This com-
pletes our proof of Lemma 1.4.

It is clear that Theorem 1.3 follows from the above.
To illustrate the usefulness of Theorem 1.3, consider the following example:s = 3,

t = 4. In this case we should have exactly
(4+3

3

)
/(4+ 3) = 5 distinct values of GBG-rank

(π4-core,3). To determine these distinct values we substitute the followingn-vectors
(0,−1,1,0), (0,0,0,0), (−1,0,0,1), (0,0,−1,1), (−1,1,0,0) into (1.4) to obtain−1,0,1,
−ω3,−ω2

3, respectively. To verify this we note that there are exactly 27 vectors such that

n ∈ Z4
3 and n ·14≡ 0 mod 3.

In Table 1 we list all these vectors together with the associated GBG-rank mod 3 values,
determined by (1.4). These vectors will come in handy later.

4 The GBG-rank of 4-cores mod3

Let Gt(q) denote the generating function fort-cores.

Gt(q) := ∑
πt-core

q|πt-core|. (4.1)

Let P be the set of all partitions andPt-corebe the set of allt-cores. There is a well-known
bijection

φ̃ : P→ Pt-core×P×P×P. . .×P
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n vectors GBG-rank values
n1 = (0,−1,1,0) -1
n2 = (0,0,0,0) 0
n3 = (1,1,−2,0) 0
n4 = (−1,−1,1,1) 0
n5 = (0,−1,−1,2) 0
n6 = (1,−1,0,0) 0
n7 = (0,1,−2,1) 0
n8 = (2,−1,−1,0) 0
n9 = (0,0,1,−1) 0
n10 = (0,1,−1,0) 0
n11 = (−1,0,1,0) 0
n12 = (1,−1,1,−1) 0
n13 = (0,−1,0,1) 0
n14 = (1,1,0,−2) 1
n15 = (−1,1,−1,1) 1
n16 = (2,0,−1,−1) 1
n17 = (1,0,0,−1) 1
n18 = (1,1,−1,−1) 1
n19 = (−1,0,0,1) 1
n20 = (1,0,−1,0) −ω3

n21 = (1,0,−2,1) −ω3

n22 = (1,−1,−1,1) −ω3

n23 = (0,0,−1,1) −ω3

n24 = (−1,1,0,0) −ω2
3

n25 = (−1,1,1,−1) −ω2
3

n26 = (−1,2,0,−1) −ω2
3

n27 = (0,1,0,−1) −ω2
3

Table 1:

which goes back to D.E. Littlewood [10]

φ̃(π) = (πt-core, π̂0, π̂1, . . . , π̂t−1)

such that

|π|= |πt-core|+ t
t−1

∑
i=0

|π̂i |.

The multipartition(π̂0, π̂1, . . . , π̂t−1) is called thet-quotient ofπ. An immediate corollary
of the Littlewood bijection is

Gt(q) =
Et(qt)
E(q)

, (4.2)

where
E(q) := ∏

j≥1
(1−q j). (4.3)
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The functionE(q) is related to Dedekind’s eta-functionη(τ) by

η(τ) = q
1
24E(q),

where q = exp(2πiτ) and ℑ(τ) > 0. Quotients of the functionsE(qa) are calledeta-
quotients. On the other hand, formula (2.2) implies [5] that

Gt(q) = ∑
n∈Zt ,
n·1t=0

q
t
2 |n|

2+n·bt , (4.4)

so that

∑
n∈Zt ,
n·1t=0

q
t
2 |n|

2+n·bt =
Et(qt)
E(q)

. (4.5)

The above identity was first obtained by Klyachko [9], who observed that it is a special
case of Macdonald’s identity for the root systemAt−1. An elementary proof of (4.5) can be
found in [3]. Next we define

gc(q) = ∑
π4-core,

GBG-rank(π4-core,3)=c

q|π4-core| (4.6)

In other words,gc(q) is the generating function for 4-cores with a given valuec of the
GBG-rank mod 3. From the discussion at the end of the last section it is clear that

E4(q4)
E(q)

= g−1(q)+g0(q)+g1(q)+g−ω3(q)+g−ω2
3
(q). (4.7)

It turns out that eachgc(q) is aneta-quotient.

g−1(q) = q5E4(q36)
E(q9)

, (4.8)

g0(q) =
E6(q6)E2(q18)

E3(q3)E(q12)E(q36)
, (4.9)

g1(q) = q
E2(q9)E4(q12)

E(q3)E(q6)E(q18)
, (4.10)

g−ω3(q) = q2E2(q9)E(q12)E(q36)
E(q3)

, (4.11)

g−ω2
3
(q) = q2E2(q9)E(q12)E(q36)

E(q3)
. (4.12)

Hence

E4(q4)
E(q)

=
E6(q6)E2(q18)

E3(q3)E(q12)E(q36)
+q

E2(q9)E4(q12)
E(q3)E(q6)E(q18)

+2q2E2(q9)E(q12)E(q36)
E(q3)

+q5E4(q36)
E(q9)

. (4.13)
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We note that the identity
g−ω3(q) = g−ω2

3
(q)

follows from (2.5) and the fact thatπ is a t-core if and only if the conjugateπ∗ is a t-
core. The identities equivalent to (4.13) were first proven by Hirschhorn and Sellers [7].
However, the combinatorial identities (4.7)–(4.12) given here are brand new. The proof of
(4.8) is rather simple. Indeed, data in Table 1, implies that

g−1(q) = ∑
n·14=0,

n≡n1mod 3

q2|n|2+b4·n

= q5 ∑
ñ·14=ñ0+ñ1+ñ2+ñ3=0

q9(2|ñ|2−ñ1+2ñ2+ñ3)

= q5 ∑
ñ·14=0

q9(2|ñ|2+ñ0+2ñ3+3ñ2)

= q5E4(q36)
E(q9)

(4.14)

where in the last step we relabelled the summation variables and used (4.5) witht = 4 and
q→ q9.

In what follows we shall require the Jacobi triple product identity ([6],II.28)

∞

∑
n=−∞

(−1)nqn2
zn = E(q2)[zq;q2]∞, (4.15)

where

[z;q]∞ :=
∞

∏
j=0

(1−zqj)
(

1− q1+ j

z

)
and the formula ([6],ex.5.21)[

ux,
u
x
,vy,

v
y
;q

]
∞

=
[
uy,

u
y
,vx,

v
x

;q

]
∞

+
v
x

[
xy,

x
y
,uv,

u
v

;q

]
∞
, (4.16)

where

[z1,z2, . . . ,zn;q]∞ :=
n

∏
j=1

[zi ;q]∞.

Settingu = q5, v = q3, x = q2, y = q and replacingq by q12 in (4.16) we find that

[q2,q3;q12]∞([q5;q12]∞−q[q;q12]∞) = [q,q5,q6;q12]∞. (4.17)

Analogously, (4.16) withu = q5, v = q2, x = q, y = 1 andq→ q12 becomes

[q5;q12]∞ +q[q;q12]∞ =
[q2,q2,q4,q6;q12]∞

[q,q3,q5;q12]∞
. (4.18)

Finally, settingu = q6, v = q4, x = q3, y = 1 andq→ q12 in (4.16) yields

[q3,q4;q12]2∞ = [q,q5,q6,q6;q12]∞ +q[q2,q3;q12]2∞. (4.19)
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Next, we use again Table 1 to rewrite (4.9) as

13

∑
j=2

∑
n·14=0,

n≡n j mod 3

q2|n|2+b4·n = R1(q), (4.20)

where

R1(q) =
E6(q6)E2(q18)

E3(q3)E(q12)E(q36)
. (4.21)

Remarkably, (4.20) is the constant term inz of the following identity

13

∑
j=2

sj(z,q) = R1(q)
∞

∑
n=−∞

q9n(n+1)
2 zn, (4.22)

where
sj(z,q) := ∑

n≡n j mod 3

q2|n|2+b4·nz
n·14

3 , j = 1,2, . . . ,27. (4.23)

Using simple changes of variables, it is straightforward to check that

zq9si(zq9,q) = sj(z,q), (4.24)

holds true for the following(i, j) pairs: (2,3), (3,4), (4,5), (5,2), (6,7), (7,8), (8,9),
(9,6), (10,11), (11,12), (12,13), (13,10), and that

zq9
∞

∑
n=−∞

q9n(n+1)
2 (zq9)n =

∞

∑
n=−∞

q9n(n+1)
2 zn. (4.25)

Consequently, both sides of (4.22) satisfy the same first order functional equation

zq9 f (zq9,q) = f (z,q). (4.26)

Thus to prove (4.22) it is sufficient to verify it at one nontrivial point, sayz= z0 := −q−6.
It is not hard to check that

s4(z0,q) = s8(z0,q) = s11(z0,q) = 0, (4.27)

and that
s3(z0,q)+s9(z0,q) = s5(z0,q)+s12(z0,q) = 0. (4.28)

We see that (4.22) withz= z0 becomes

s2(z0,q)+s6(z0,q)+s7(z0,q)+s10(z0,q)+s13(z0,q) = R1(q)
∞

∑
n=−∞

q9n(n+1)
2 zn

0. (4.29)

Upon making repeated use of (4.15) and replacingq3 by q we find that (4.9) is equivalent
to

[q4,q5,q5,q6;q12]∞ +q[q2,q3,q4;q12]∞([q5;q12]∞−q[q;q12]∞)
+q[q,q4,q5,q6;q12]∞ +q2[q,q,q4,q6;q12]∞

=
E2(q6)E6(q2)

E5(q12)E(q4)E2(q)
. (4.30)
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eq We can simplify (4.30) with the aid of (4.17) as

[q4,q6;q12]∞([q5;q12]∞ +q[q;q12]∞)2 =
E2(q6)E6(q2)

E5(q12)E(q4)E2(q)
. (4.31)

Next, we use (4.18) to reduce (4.31) to the following easily verifiable identity

[q2;q12]4∞[q4,q6;q12]3∞
[q,q3,q5;q12]2∞

=
E2(q6)E6(q2)

E5(q12)E(q4)E2(q)
. (4.32)

This completes our proof of (4.22), (4.20). We have (4.9), as desired.
The proof of (4.10) is analogous. Again, we view this identity as the constant term inz

of the following
19

∑
j=14

sj(z,q) = R2(q)
∞

∑
n=−∞

q9n(n+1)
2 zn, (4.33)

where

R2(q) = q
E2(q9)E4(q12)

E(q3)E(q6)E(q18)
. (4.34)

Again, (4.24) holds true for the following(i, j) pairs: (14,15), (15,16), (16,17), (17,14),
(18,19), (19,18).
And so, both sides of (4.33) satisfy (4.26). Again it remains to show that (4.33) holds at
one nontrivial point, sayz1 =−q−3. Observing that

s14(z1,q) = s15(z1,q) = s19(z1,q) = 0, (4.35)

we find that (4.33) withz= z1 becomes

s16(z1,q)+s17(z1,q)+s18(z1,q) = R2(q)
∞

∑
n=−∞

q9n(n+1)
2 zn

1, (4.36)

Again, making repeated use of (4.15) and replacingq3 by q, we can rewrite (4.36) as

[q3,q4,q6;q12]∞([q5;q12]∞−q[q;q12]∞)+q[q2,q3,q3,q4;q12]∞

=
E4(q4)E2(q3)

E4(q12)E(q6)E(q2)
. (4.37)

If we multiply both sides of (4.37) by
[q2;q12]∞
[q4;q12]∞

and take advantage of (4.17) we find that

[q,q5,q6,q6;q12]∞ +q[q2,q3;q12]2∞ =
E4(q4)E2(q3)

E4(q12)E(q6)E(q2)
[q2;q12]∞
[q4;q12]∞

, (4.38)

which is easy to recognize as (4.19). This completes our proof of (4.33) and (4.10).
To prove (4.11), (4.12) we will follow a well trodden path and observe that these iden-

tities are just constant terms inz of

23+4α

∑
j=20+4α

sj(z,q) = q2E2(q9)E(q12)E(q36)
E(q3)

·
∞

∑
n=−∞

q9n(n+1)
2 zn, (4.39)
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with α = 0 and 1, respectively.
To prove that both sides of (4.39) satisfy (4.26) we verify that (4.24) holds for the

following (i, j) pairs: (20+ 4α,21+ 4α), (21+ 4α,22+ 4α), (22+ 4α,23+ 4α), (23+
4α,20+4α) with α = 0,1. It remains to verify (4.39) at

z̃α =−q6(1−2α), α = 0,1.

Taking into account that
sj+4α(z̃α,q) = 0

for j = 20,21,22 andα = 0,1, we find that

s23+4α(z̃α,q) = (−1)α+1q4+6αE2(q9)E(q12)E(q36),

which is easy to prove with the aid of (4.15).
This completes our proof of (4.11) and (4.12).

5 Concluding Remarks

Making use of the Littlewood decomposition ofπt-core into itss-core ands-quotient,

φ̃(πt-core) = (πs-core, π̂0, π̂1, . . . , π̂s−1),

together with
1+ ωs+ ω2

s + · · ·+ ωs−1
s = 0,

it is not hard to see that

GBG-rank(πt-core,s) = GBG-rank(πs-core,s).

In a recent paper [11], Olsson proved a somewhat unexpected result:

Theorem 5.1. Let s, t be relatively prime positive integers. Then the s-core of a t-core is,
again, a t-core.

A partition is called an(s, t)-core if it is simultaneously ans-core and at-core.
In [2], Anderson established

Theorem 5.2. Let s, t be relatively prime positive integers. Then the number of(s, t)-cores
is
(s+t

s

)
/(s+ t).

Remarkably, the three observations above imply our Theorem 1.2. Moreover, our The-
orem 1.3 implies

Corollary 5.3. Let s, t be relatively prime positive integers. Then no two distinct(s, t)-
cores share the same value of GBG-rank mod s, when s is prime, or when s is composite
and t< 2ps, where ps is the smallest prime divisor of s.

On the other hand, when the conditions onsandt in the corollary above are not met, two
distinct (s, t)-cores may, in fact, share the same value of GBG-rank mods. For example,
consider two relatively prime integerss andt such that 2| s, s> 2, t > 1+ s

2, t 6= s+ 1. In
this case partition[1

s
2−1,2,1+ s

2] and empty partition[ ] are two distinct(s, t)-cores such
that

GBG-rank
([

1
s
2−1,2,1+

s
2

]
,s
)

= GBG-rank([ ],s) = 0.

Here we are using the partition notation of Andrews [1, p.1].
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