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A NUMBER THEORETIC CRANK ASSOCIATED

WITH OPEN BOSONIC STRINGS

Frank G. Garvan*

Abstract. A Dyson-type crank is given which explains Moreno’s congruence for the

number of open bosonic strings. This crank is in terms of 24-coloured partitions.

1. Introduction. Let q = e2πiz, where Im(z) > 0 so that |q| < 1. The well-known
discriminant modular form ∆(z) has q-expansion

(1.1) (2π)−12∆(z) =
∞∑
n=1

τ(n)qn = q
∏
n=1

(1− qn)24.

The reciprocal of this function is essentially the sring function associated to the affine
Lie algebra A(1)

24 [12, p.137], [13, §3.2]. We let τ̃(n) denote the n-th Fourier coefficient
of this function so that

(1.2) ∆̃(z) =
∞∑

n=−1

τ̃(n)qn =
1

q
∏∞
n=1(1− qn)24

.

As noted by Moreno and Rocha-Caridi [13, p.144] ∆̃(z) has a physical interpretation
from the light cone formulation of string theory. In fact, the number of open string
states with mass M such that α′M2 = n is τ̃(n), where α′ is the Regge slope [11, p.117].
The coefficients τ̃(n) can also be interpreted in terms of the weight multiplicities of the
vertex algebra associated to the unique Lorentzian lattice of signature (25, 1) and the
No-Ghost Theorem of Brower, Goddard and Thorn [11, p.102]. Moreno and Rocha-
Caridi [13] also found Hardy-Ramanujan-Rademacher expansions for string functions
associated with affine Lie algebras and thus found such an expansion for τ̃(n). In [14]
Moreno explored congruence and combinatorial properties of τ̃(n).
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The coefficients τ̃(n) have a natural combinatorial interpretation in terms of coloured
partitions. The coefficients pr(n) are defined by

(1.3)
∑
n≥0

pr(n)qn =
∞∏
n=1

(1− qn)r.

For negative r, say r = −d, pr(n) counts the number of partitions of n taken from d
copies of the natural numbers. We call such partitions d-coloured partitions. In view
of (1.2) we see that τ̃(n) counts 24-coloured partitions:

(1.4) τ̃(n) = p−24(n+ 1).

It is this interpretation of τ̃(n) that we use in this paper.
Moreno [14, Thm 12] proved the following congruence

(1.5) p−24(n) ≡ 0 mod 5 for n ≡ 1 mod 5 and n 6= 1,

and asked for a combinatorial interpretation analogous to Dyson’s [2], [3] interpretation
of Ramanujan’s [15] congruences for the partition function p(n) (= p−1(n)). We give
such an interpretation below in Theorem 1. We also explain similar congruences
modulo 2, 3 and 25. Our combinatorial interpretation is terms of the crank of 24-
coloured partitions and is described in the next section. Our method is elementary
and was first introduced in [5]. We note other interpretations of partition congruences
have been found in [1], [6], [7], [8], [9] and [10].

2. The crank for 24-coloured partitions.
As well as (1.5) the following congruences hold

p−24(n) ≡ 0 mod 2 for n 6≡ 0 mod 8,(2.1)

p−24(n) ≡ 0 mod 3 for n 6≡ 0 mod 3,(2.2)

p−24(n) ≡ 0 mod 25 for n ≡ 3 or 4 mod 5,(2.3)

p−24(n) ≡ 0 mod 7 for n ≡ 1 mod 7 and n 6= 1.(2.4)

The congruences (2.1) and (2.2) are trivial. The proof of (2.4) is analogous to Moreno’s
proof of (1.5) and also follows from [4, Lemma(3.12)]. (2.3) has a very simple proof.

∑
n≥0

p−24(n)qn =
∞∏
m=1

(1− qm)
(1− qm)25

(2.5)

≡
∞∏
m=1

(1− qm)
(1− q5m)5

mod 25

=
∑∞
∞(−1)nqn(3n−1)/2∏∞
m=1(1− q5m)5

.

The result follows since n(3n− 1)/2 6≡ 3, 4 mod 5.
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We now define a crank that explains (1.5), (2.1), (2.2), (2.3) but not (2.4). In this
section we concentrate on the more interesting congruences (1.5), (2.3) and leave the
remaining congruences (2.1) and (2.2) to §3. We number the 24 colours 1, 2, . . . , 24.
For a 24-coloured partition π̃ let

ci(π̃) := the number of parts of π̃ coloured i.

We define the crank of π̃ as

(2.6) crank(π̃) :=
24∑
i=1

ici(π̃).

Let N24(m,n) denote the number of 24-coloured partitions π̃ of n with crank m and let
N24(k, t, n) denote the number of 24-coloured partitions π̃ of n with crank congruent
to k modulo t. Unfortunately it is not true that

(2.7) N24(−m,n) = N24(m,n).

We could have defined our crank differently so that (2.7) holds. However, this other
crank explains (1.5) and (2.3) but fails to explain (2.1) and (2.2). Luckily an analog
of (2.7) holds for N24(k, t, n) for the values of t we are concerned with. By considering
each of the following two recolouring involutions:

Involution1 : i 7→ 25− i for 1 ≤ i ≤ 24
Involution2 : i 7→ 24− i for 1 ≤ i ≤ 23 and 24 7→ 24,

we have

(2.8) N24(−k, t, n) = N24(k, t, n) when t is a divisor of 24 or 25.

Then we have

Theorem 1. For n ≡ 1, 3 or 4 mod 5 and n 6= 1 we have

(2.9) N24(k, 25, n) = 1
5N24(k, 5, n).

This provides a natural way of dividing the 24-coloured partitions of n into 5 equal
classes for n ≡ 1, 3 or 4 mod 5 and n 6= 1.

Corollary 1. For 0 ≤ j ≤ 4, let M24(j, n) denote the number of 24-coloured partitions
of n with crank congruent to 5j, 5j + 1, 5j + 2, 5j + 3, or 5j + 4 mod 25. Then

(2.10) M24(j, n) = 1
5p−24(n)

when n ≡ 1, 3 or 4 mod 5 and n 6= 1.

For n ≡ 3 or 4 mod 5 more is true.
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Theorem 2. For n ≡ 3 or 4 mod 5 we have

(2.11) N24(k, 5, n) = 1
5p−24(n) 0 ≤ k ≤ 4.

Combining the results of Theorems 1 and 2 we find that the residue of the crank
mod 25 divides the partitions of n (for n ≡ 3 or 4 mod 5) into 25 equal classes.

Theorem 3. For n ≡ 3 or 4 mod 5 we have

(2.12) N24(k, 25, n) = 1
25p−24(n) 0 ≤ k ≤ 24.

Proof of Theorem 1. Let ζ = e2πi/25 so that ζ25 = 1 and 1 + ζ5 + ζ10 + ζ15 + ζ20 = 0.
The generating function for N24(m,n) is

(2.13)
∑
n≥0

24n∑
m=0

N24(m,n)zmqn =
24∏
i=1

(ziq; q)−1
∞ ,

where (a; q)∞ =
∏∞
m=1(1 − aqm−1), |q| < 1. Substituting z = ζ in (2.13) and

proceeding as in [6, §2] we find that

(2.14)
∑
n≥0

(
24∑
k=0

N24(k, 25, n)ζk
)
qn =

∞∏
n=1

(1− qn)
(1− q25n)

.

But the coefficient of qn in the left side of (2.14) is

(n0 − n5) + (n1 − n4)ζ + (n2 − n3)ζ2 + (n3 − n2)ζ3 + (n4 − n1)ζ4

+ (n6 − n4)ζ6 + (n7 − n3)ζ7 + (n8 − n2)ζ8 + (n9 − n1)ζ9

+(n10 − n5)ζ10 + (n11 − n4)ζ11 + (n12 − n3)ζ12 + (n12 − n2)ζ13 + (n11 − n1)ζ14

+(n10 − n5)ζ15 + (n9 − n4)ζ16 + (n8 − n3)ζ17 + (n7 − n2)ζ18 + (n6 − n1)ζ19,

where ni = ni(n) = N24(i, 25, n). The result then follows from
(2.15)
∞∏
n=1

(1− qn)
(1− q25n)

=
∞∏
n=1

(1− q25n−15)(1− q25n−10)
(1− q25n−20)(1− q25n−5)

−q−q2
∞∏
n=1

(1− q25n−20)(1− q25n−5)
(1− q25n−15)(1− q25n−10)

,

which is [6, Lemma (3.18)], was known to Ramanujan and has been generalised by
Atkin and Swinnerton-Dyer [2, Lemma 6]. �

Proof of Theorem 2. Let η = e2πi/5. We substitute z = η into (2.13) to find

(2.16)
∑
n≥0

(
4∑
k=0

N24(k, 5, n)ηk
)
qn =

∞∏
n=1

(1− qn)
(1− q5n)5

.

Since the series expansion of
∏∞
n=1(1− qn) has no terms with exponent congruent to

either 3 or 4 modulo 5, as in the proof of (2.3), the result follows. �

Now Theorem 3 follows immediately from Theorems 1 and 2.
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3. Remarks. We remark that our crank also explains the congruences (2.1) and
(2.2). We omit the proof.

Theorem 4. We have

3∑
k=0

N24(k, 8, n) = 1
2p−24(n) for n 6≡ 0 mod 8,(4.1)

and

N24(k, 3, n) = 1
3p−24(n) for n 6≡ 0 mod 3 and 0 ≤ k ≤ 2.(4.2)

Unfortunately our crank fails to explain the mod 7 congruence (2.4).
For restricted n stronger congruences than (2.1), (2.2) hold:

p−24(n) ≡ 0 mod 27 for n ≡ 1 mod 2 and n 6= 1,(4.3)

p−24(n) ≡ 0 mod 33 for n 6≡ 0 mod 3 and n 6= 1.(4.4)

(4.3) follows from the following q-series identity

(4.5)
∑
n≥0

p−24(2n+ 1)qn = 24
∞∏
n=1

(1− q2n)24

(1− qn)48
+ 211q

∞∏
n=1

(1− q2n)48

(1− qn)72
,

which follows from a certain well known quadratic modular equation ([16], page 470).
(4.4) follows first by observing that the generating function for p−24(n) is congruent to
(q; q)3

∞(q9; q9)−9
∞ mod 27 and then by using Jacobi’s identity for (q; q)3

∞ ([2], (3.6)).
Our crank fails to explain either (4.3) or (4.4). For (4.4) the best we can do is

(4.6) N24(k, 8, n) = 1
8p−24(n) for n ≡ 1 mod 2 and 0 ≤ k ≤ 7.

We can explain a weaker form of (4.4) but with a different crank. If we define crank′

by

(4.7) crank′(π̃) :=
24∑
i=1

(i+ 1)ci(π̃)

and define N ′24 in the obvious way then
(4.8)

N24(k, 27, n) = 1
27p−24(n) for n 6≡ 0 mod 3 and n 6≡ 1 mod 9, 0 ≤ k ≤ 26.

We omit the proof.
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