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CUBIC MODULAR

IDENTITIES OF RAMANUJAN,

HYPERGEOMETRIC FUNCTIONS AND ANALOGUES

OF THE ARITHMETIC-GEOMETRIC MEAN ITERATION

Frank Garvan

Abstract. There are four values of s for which the hypergeometric function 2F1( 1
2
−

s, 1
2

+ s; 1; ·) can be parametrized in terms of modular forms; namely, s = 0, 1
3

, 1
4

,
1
6

. For the classical s = 0 case, the parametrization is in terms of the Jacobian

theta functions θ3(q), θ4(q) and is related to the arithmetic-geometric mean iteration

of Gauss and Legendre. Analogues of the arithmetic-geometric mean are given for
the remaining cases. The case s = 1

6
and its relationship to the work of Ramanu-

jan is highlighted. The work presented includes various pieces of joint work with

combinations of the following: B. Berndt, S. Bhargava, J. Borwein, P. Borwein and
M. Hirschhorn.

1. The AGM

The arithmetic-geometric mean iteration (or AGM) is an example of a two-term
iteration. Here the means are

M1(a, b) :=
a+ b

2
,(1.1)

and

M2(a, b) :=
√
ab.(1.2)

We iterate the means by

an+1 := M1(an, bn),(1.3)

bn+1 := M2(an, bn),(1.4)

commencing with a0 := a, b0 := b, where a, b are positive numbers. Then, if b ≤ a,
we have

bn ≤ bn+1 ≤ an+1 ≤ an,(1.5)

an+1 − bn+1 =
1
2

(√
an −

√
bn

)2

=
1
2

(
an − bn√
an +

√
bn

)2

.(1.6)
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2 FRANK GARVAN

It follows that an and bn converge to a common limit which we denote by

(1.7) M(a, b) := M1 ⊗M2(a, b) := lim
n→∞

an = lim
n→∞

bn.

We say that a two term iteration has p-th order convergence if

(1.8) |an+1 − bn+1| = O((an − bn)p).

For the AGM we have quadratic convergence. The function M satisfies a number
of nice properties:

M(a, b) = M(b, a),(1.9)

M(λa, λb) = λM(a, b) for λ > 0,(1.10)

M(
a+ b

2
,
√
ab) = M(a, b),(1.11)

M(1, b) =
(
b+ 1

2

)
M(1,

2
√
b

1 + b
).(1.12)

Gauss was the first to see a connection between the AGM and elliptic integrals.
On May 30, 17991 he observed that

1
M(1,

√
2)

and
2
π

∫ 1

0

dt√
1− t4

agreed to at least eleven decimal places. He commented in his diary that this result
“will surely open up a whole new field of analysis.” Indeed, later he showed that,
for 0 < x < 1,

1
M(1, x)

=
2
π

∫ π/2

0

dθ√
1− (1− x2) sin2 θ

(1.13)

= 2F1(
1
2
,

1
2

; 1; 1− x2).

The integral above is usually called the complete elliptic integral of the first kind.
The Gaussian hypergeometric series is defined by

(1.14) 2F1(a, b; c;x) :=
∞∑
n=0

(a)n(b)n
(c)nn!

xn (|x| < 1),

where (a)0 := 1 and for n a positive integer

(1.15) (a)n := a(a+ 1) . . . (a+ n− 1),

so that (1)n = n!. The latter equality in (1.13) follows by expanding (1 − (1 −
x2) sin2 θ)−1/2 and integrating term by term. We will provide a proof of (1.13) be-
low. Thus the AGM provides an efficient algorithm for computing complete elliptic
integrals of the first kind or values of the hypergeometric function 2F1( 1

2 ,
1
2 ; 1; ·).

1This tidbit was pinched from [BB1, p. 5]. See also [Gr, Chapter I].
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The AGM and thus the hypergeometric function 2F1( 1
2 ,

1
2 ; 1; ·) may be para-

metrized in terms of theta functions. The Jacobian theta functions are defined for
|q| < 1 by

θ2(q) :=
∞∑

n=−∞
q(n+ 1

2 )2
,(1.16)

θ3(q) :=
∞∑

n=−∞
qn

2
,(1.17)

θ4(q) :=
∞∑

n=−∞
(−1)nqn

2
.(1.18)

We note that in (1.16) the principal root is taken. We have the following

θ2
3(q2) =

θ2
3(q) + θ2

4(q)
2

,(1.19a)

θ2
4(q2) =

√
θ2

3(q)θ2
4(q),(1.19b)

θ4
3(q) = θ4

4(q) + θ4
2(q) (Jacobi’s identity),(1.19c)

2F1(
1
2
,

1
2

; 1; 1− θ4
4(q)
θ4

3(q)
) = θ2

3(q),(1.20)

(1.21) The function 2F1( 1
2 ,

1
2 ; 1; 1− x2) satisfies

F (x) =
2

1 + x
F (

2
√
x

1 + x
).

Equations (1.19ab) provide the parametrizations of the AGM and (1.20) gives the
parametrization of the hypergeometric function. An elementary proof of (1.19abc)
using nothing more than series manipulation can be found in [BB1, pp. 34-35].
Equation (1.21) is a special case of a quadratic transformation due to Gauss [Gau].
We find that (1.21) may be written as

(1.22) 2F1(
1
2
,

1
2

; 1;
(

1− x
1 + x

)2

) =
(
x+ 1

2

)
2F1(

1
2
,

1
2

; 1; 1− x2).

Gauss’ transformation is

(1.23) 2F1(a, b; 2b; 4z(1 + z)−2) = (1 + z)2a
2F1(a, a− b+

1
2

; b+
1
2

; z2).

See [E, p. 111, Eq.(5)]. Equation (1.23) is also Entry 3 in Chapter 11 of Ramanujan’s
second notebook [Be, p. 50]. If we let z = 1−x

1+x in (1.23) we obtain

(1.24) 2F1(a, a− b+
1
2

; b+
1
2

;
(

1− x
1 + x

)2

) =
(
x+ 1

2

)2a

2F1(a, b; 2b; 1− x2),

which is a generalization of (1.22).
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Before proving (1.20) we show how

(1.25) M(1, x) =
1

2F1( 1
2 ,

1
2 ; 1; 1− x2)

,

which gives (1.13), follows from (1.19ab) and (1.20). From (1.19ab) we have

(1.26) M(θ2
3(q), θ2

4(q)) = M(θ2
3(q2), θ2

4(q2)).

Iterating gives

(1.27) M(θ2
3(q), θ2

4(q)) = M(θ2
3(q2n), θ2

4(q2n)).

and letting n→∞ gives

(1.28) M(θ2
3(q), θ2

4(q)) = 1.

From the homogeneity property (1.10) we have

(1.29) M(1, θ
2
4(q)

θ2
3(q)

) =
1

θ2
3(q)

.

Now (1.25) follows by substituting x = θ2
4(q)

θ2
3(q)

in (1.20).
Borwein and Borwein [BB1] have observed the following proposition. This will

complete the proof of (1.13).

Proposition 1.30. Any two of (1.19ab), (1.20), (1.21) implies the third.

Proof. We show how (1.19ab) and (1.21) implies (1.20), and leave the rest as an
exercise for the reader. If we let x = θ2

4(q)/θ2
3(q) then assuming (1.19ab) we find

that

2
√
x

1 + x
=

2θ4(q)/θ3(q)
1 + θ4(q)/θ3(q)

=
θ3(q)θ4(q)

(θ2
3(q) + θ2

4(q))/2
=
θ2

4(q2)
θ2

3(q2)
,(1.31)

and

2
1 + x

=
2

1 + θ2
4(q)/θ2

3(q)
=

θ2
3(q)

(θ2
3(q) + θ2

4(q))/2
=

θ2
3(q)

θ2
3(q2)

.(1.32)

Hence from (1.21) we have

2F1(
1
2
,

1
2

; 1; 1− θ4
4(q)
θ4

3(q)
) =

θ2
3(q)

θ2
3(q2) 2F1(

1
2
,

1
2

; 1; 1− θ4
4(q2)
θ4

3(q2)
)

(1.33)

...

=
θ2

3(q)
θ2

3(q2m) 2F1(
1
2
,

1
2

; 1; 1− θ4
4(q2m)
θ4

3(q2m)
),

on iterating. Finally (1.20) follows after letting m→∞. �
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For the hypergeometric functions

(1.34) Fs(x) := 2F1(
1
2
− s, 1

2
+ s; 1;x)

there are three other values of s for which similar results hold. These values are
s = 1

6 , 1
4 , 1

3 . The hypergeometric functions given explicitly are

F0(x) = 2F1(
1
2
,

1
2

; 1;x) =
∞∑
n=0

(2n)!2

n!4
( x

24

)n
,(1.35)

F1/6(x) = 2F1(
1
3
,

2
3

; 1;x) =
∞∑
n=0

(3n)!
n!3

( x
33

)n
,(1.36)

F1/4(x) = 2F1(
1
4
,

3
4

; 1;x) =
∞∑
n=0

(4n)!
(2n)!n!2

( x
43

)n
,(1.37)

F1/3(x) = 2F1(
1
6
,

5
6

; 1;x) =
∞∑
n=0

(6n)!
(3n)! (2n)!n!

( x

3324

)n
.(1.38)

There are analogues of the AGM in each case.

Theorem 1.39. ( [BB2],[BB3],[BB4],[BBG2]) For s = 0, 1
6 , 1

4 , 1
3 there exist (al-

gebraic) means M1 and M2 such that

(1.40) M1 ⊗M2(1, x) =
1

[Fs(1− xµ)]ν

with quadratic convergence, and cubic convergence (except for s = 1
3). The means

M1, M2 are given explicitly in §4. Here ν = 1 or 2 and

(1.41) µ =
2

ν(1− 2s)
.

A table of µ, ν and the contributors to the theorem is given below.

s Quadratic convergence Cubic convergence
0 Gauss Borwein-Borwein-Garvan

(µ = 2, ν = 1) (µ = 2, ν = 1)
1
6 Borwein-Borwein-Garvan Borwein-Borwein

(µ = 3, ν = 1) (µ = 3, ν = 1)
1
4 Borwein-Borwein Borwein-Borwein-Garvan

(µ = ν = 2) (µ = 4, ν = 1)
1
3 Borwein-Borwein-Garvan

(µ = 3, ν = 2)

It should be noted that in Theorem 1.39 above we are not saying that there do not
exist means with cubic convergence for the case s = 1

3 . On the contrary, we have
found such means. However, they are too horrible to include.
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Since [BBG2] we have found that M1 ⊗M2(x, 1) can also be written in terms of
the hypergeometric function. We define

(1.42) Gs(x) := 2F1(
1
2
− s, 1

2
− s; 1;x).

We need Pffaf’s [P], [E, p. 109 Eq.(6)] transformation

(1.43) 2F1(a, b; c; z) = (1− z)−a 2F1(a, c− b; c; z/(z − 1)).

From (1.43) we have

(1.44)
[

2F1(a, 1− a; 1; 1− 1
xµ

)
]ν

= xaµν [2F1(a, a; 1; 1− xµ)]ν .

Corollary 1.45. For s = 0, 1
6 , 1

4 , 1
3 let M1 = M1,s, M2 = M2,s be as in Theorem

1.39. Then

(1.46) M1 ⊗M2(x, 1) =
1

[Gs(1− xµ)]ν
.

Proof. By homogeneity we have

M1 ⊗M2(x, 1) = xM1 ⊗M2(1,
1
x

)

=
x

[Fs(1− x−µ)]ν
(by Theorem 1.39)

=
1

[Gs(1− xµ)]ν

by (1.44) with a = 1
2 − s and noting that aµν = 1 by (1.41). �

2. A cubic analogue of the AGM

The AGM converges quadratically and the limit M(1, x) can be written in terms
of the hypergeometric function 2F1( 1

2 ,
1
2 ; 1; 1− x2).

(2.1) M(1, x) = 1
/
F0(1− x2) ,

where Fs(·) is defined in (1.35). Borwein and Borwein [BB3],[BB4] discovered a
cubic analogue of the AGM. Their iteration converged cubically and the limit was
identified as 1

/
F1/6(1− x3) . Their iteration is defined as follows. The means are

M1(a, b) :=
a+ 2b

3
,(2.2)

M2(a, b) := 3

√
b(a2 + ab+ b2)

3
.(2.3)

As with the AGM we iterate the means by

an+1 := M1(an, bn),(2.4)

bn+1 := M2(an, bn),(2.5)
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commencing with a0 := a, b0 := b, where a, b are positive numbers. Then, if b ≤ a,
we have

an − an+1 =
2
3

(an − bn),(2.6)

b3n+1 − b3n =
bn(an + 2bn)(an − bn)

3
,(2.7)

a3
n+1 − b3n+1 =

(an − bn)3

3
,(2.8)

and

bn ≤ bn+1 ≤ an+1 ≤ an.(2.9)

It follows that an and bn converge cubically to a common limit which we denote
by

(2.10) M1 ⊗M2(a, b) := lim
n→∞

an = lim
n→∞

bn.

Then for 0 < x < 1

(2.11)
1

M1 ⊗M2(1, x)
= F1/6(1− x3) = 2F1(

1
3
,

2
3

; 1; 1− x3).

See [BB3, Theorem 1 p. 28]. In [BB4] Borwein and Borwein were able to find
analogues of (1.19)–(1.21). We define

a(q) :=
∞∑

n,m=−∞
qn

2+nm+m2
,

(2.12)

b(q) :=
∞∑

n,m=−∞
ωn−mqn

2+nm+m2
(where ω = exp(2πi/3)),

(2.13)

c(q) :=
∞∑

n,m=−∞
q(n+ 1

3 )2+(n+ 1
3 )(m+ 1

3 )+(m+ 1
3 )2
.

(2.14)

We have the following analogues of (1.19)–(1.21):

a(q3) =
a(q) + 2b(q)

3
,(2.15a)

b(q3) = 3

√
b(q)(a2(q) + a(q)b(q) + b2(q))

3
,(2.15b)

a3(q) = b3(q) + c3(q),(2.15c)

2F1(
1
3
,

2
3

; 1; 1− b3(q)
a3(q)

) = a(q),(2.16)

(2.17) The function 2F1( 1
3 ,

2
3 ; 1; 1− x3) satisfies

F (x) =
3

1 + 2x
F

(
3

1 + 2x
3

√
x(1 + x+ x2

3

)
.
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Equations (2.15ab) provide the parametrizations of the cubic analogue of the
AGM and (2.16) gives the parametrization of the corresponding hypergeometric
function. In [BBG1] we found elementary proofs of (2.15abc) which we sketch
below. As in the classical case (see Proposition 1.30) any two of (2.15ab), (2.16),
(2.17) implies the third. So (2.16) will follow from (2.15ab) and (2.17). We find
that (2.17) may be written as

(2.18) 2F1(
1
3
,

2
3

; 1; 1− x3) =
3

1 + 2x 2F1(
1
3
,

2
3

; 1;
(

1− x
1 + 2x

)3

).

It was a surprise that this cubic transformation was missed by the classical analysts
of last century. It should be noted however that an identity equivalent to (2.18)
appears on page 258 of Ramanujan’s second notebook [R]. Recall that the classical
analogue (1.22) is a special case of Gauss’ transformation (1.23) which is an identity
involving two parameters. With the aid of the computer algebra package MAPLE

we have found a one-parameter generalization of (2.18):

(2.19) 2F1(a, a+
1
3

;
a

2
+

5
6

;
(

1− x
1 + 2x

)3

) =
(

2x+ 1
3

)3a

2F1(a, a+
1
3

;
3a
2

+
1
2

; 1−x3).

With a little help from MAPLE the proof of (2.19) is straightforward. We have
found that both sides of (2.19) satisfy the following second order linear differential
equation:

2x(1− x3)(1 + 2x)2y′′ − (1 + 2x)[(4x3 − 1)(3a+ 2x+ 1) + 18ax] y′
(2.20)

− 6a(3a+ 1)(1− x)2y = 0.

Since x = 1 is a regular singular point the result (2.19) follows easily.
We have found an analogue of (2.19) for the s = 1

4 case.

2F1(a, a+
1
2

;
2a
3

+
5
6

;
(

1− x
1 + 3x

)2

) =
(

3x+ 1
4

)2a

2F1(a, a+
1
2

;
4a
3

+
2
3

; 1− x2).

This identity can be proved easily from known quadratic transformations.
We now sketch the proof of (2.15abc). In the classical analogue it is well known

that each of the theta functions θ2(q), θ3(q) and θ4(q) have infinite product ex-
pansions. In the cubic analogue we found that b(q) and c(q) have infinite product
expansions. We have the following proposition.

Proposition 2.21.

b(q) =
3
2
a(q3)− 1

2
a(q),(2.22)

c(q) =
1
2
a(q

1
3 )− 1

2
a(q),(2.23)

b(q) =
∞∏
n=1

(1− qn)3

(1− q3n)
,(2.24)

c(q) = 3q
1
3

∞∏
n=1

(1− q3n)3

(1− qn)
.(2.25)
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The proofs of (2.22), (2.23) follow easily from (2.12)–(2.14) by series manipula-
tion. See [BBG1, Lemma 2.1]. From (2.22) we obtain

(2.26) a(q3) =
a(q) + 2b(q)

3
,

which is (2.15a). From (2.22) and (2.23) we have

(2.27) c(q3) =
1
2
a(q)− 1

2
a(q3) =

1
3

(a(q)− b(q)).

Now (2.15c) implies

b(q3) = 3
√
a3(q3)− b3(q3) = 3

√(
a(q) + 2b(q)

3

)3

−
(
a(q)− b(q)

3

)3

(2.28)

= 3

√
b(q)(a2(q) + a(q)b(q) + b2(q))

3
,

which is (2.15b). We will sketch the proof of (2.15c) below.
It is interesting to note that the infinite product on the right side of (2.25) is the

generating function for partitions that are 3-cores [GSK]. A t-core is a partition that
has no hook lengths divisible by t. The use of t-cores is important in the study of
p-modular representations of the symmetric group Sn. In [GSK] we found combina-
torial proofs of two generating function identities for t-cores. Combining these two
identities gives a generalization of (2.25). See (2.31) below. There is an analogous
generalization of (2.24) although it has no known combinatorial interpretation.

Proposition 2.29. Let t > 1 be an integer and let ω = exp(2πi/t). Then

∑
m0+m1+···+mt−1=0

ωm1+2m2+···+(t−1)mt−1q
1
2 (m2

0+···+m2
t−1) =

∞∏
n=1

(1− qn)t

(1− qtn)
,

(2.30)

∑
m0+m1+···+mt−1=0

q
t
2 (m2

0+···+m2
t−1)+m1+2m2+···+(t−1)mt−1 =

∞∏
n=1

(1− qtn)t

(1− qn)
.

(2.31)

Proof. We need the following result due to Euler (which is a corollary of the q-
binomial theorem [A, p. 19]).

(2.32) (x; q)∞ =
∞∏
n=1

(1− xqn−1) =
∞∑
k=0

(−1)kxkq(
k
2)

(q)k
,

where as usual (a)∞ = (a; q)∞ :=
∏∞
n=1(1 − aqn−1), (a)n = (a; q)n := (a; q)∞

/(aqn; q)∞ =
∏n
k=1(1− aqk−1). Observe that

(xt; qt)∞ = (x; q)∞(xω; q)∞(xω2; q)∞ . . . (xωt−1; q)∞,



10 FRANK GARVAN

so that (2.32) gives

∞∑
k=0

(−1)kxtkqt(
k
2)

(qt; qt)k

=
∑

n0,n1,...,nt−1≥0

(−x)n0+···+nt−1ωn1+2n2···+(t−1)nt−1q(
n0
2 )+···+(nt−1

2 )

(q)n0 . . . (q)nt−1

.

By picking out the coefficient of x2tk on both sides we find that

1
(qt; qt)2k

=
∑

n0+···+nt−1=2tk

ωn1+2n2+···+(t−1)nt−1q(
n0
2 )+···+(nt−1

2 )−t(2k
2 )

(q)n0 . . . (q)nt−1

.

By letting mi = ni − 2k for 0 ≤ i ≤ t− 1 we find that

1
(qt; qt)2k

=
∑

m0+···+mt−1=0

ωm1+2m2+···+(t−1)mt−1q
1
2 (m2

0+···+m2
t−1)

(q)m0+k . . . (q)mt−1+k
.

Letting k →∞ gives

(q)t∞
(qt; qt)∞

=
∑

m0+···+mt−1=0

ωm1+2m2+···+(t−1)mt−1q
1
2 (m2

0+···+m2
t−1),

which is (2.30). The proof of (2.31) is analogous and begins with the observation
that

(x; q)∞ = (x; qt)∞(xq; qt)∞(xq2; qt)∞ . . . (xqt−1; qt)∞. �

Putting t = 3 in (2.30) gives

∞∏
n=1

(1− qn)3

(1− q3n)
=

∑
m0+m1+m2=0

ωm1−m2q
1
2 (m2

0+m2
1+m2

2)

=
∞∑

m1,m2=−∞
ωm1−m2qm

2
1+m1m2+m2

2 ,

which is (2.24) by (2.13). Equation (2.25) can be proved from (2.31) with t = 3 or
by applying Jacobi’s imaginary transformation.

We now give a proof of (2.15c) the cubic analogue of Jacobi’s identity (1.19c).
From (2.22) and (2.23) we have

(2.33) b(q) = a(q3)− c(q3).

The key observation is that, in view of (2.12) and (2.15), the right side of (2.33)
gives the 3-dissection of the series expansion of b(q); i.e. the q-series expansion
of b(q) has no terms of the form q3n+2, a(q3) gives all terms of the form q3n and
−c(q3) gives all terms of the form q3n+1. Hence we have

b(q)b(ωq)b(ω2q) = [a(q3)− c(q3)][a(q3)− ωc(q3)][a(q3)− ω2c(q3)]
(2.34)

= a3(q3)− c3(q3).
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However it can be easily shown from (2.24) that

(2.35) b(q)b(ωq)b(ω2q) = b3(q3)

and (2.15c) follows.
We now discuss the s = 1

6 case of Corollary 1.45. Using Pfaff’s transformation
(1.43) and (2.16) we have

a(q) = 2F1(
1
3
,

2
3

; 1; 1− b3(q)
a3(q)

)(2.36)

=
a(q)
b(q) 2F1(

1
3
,

1
3

; 1; 1− a3(q)
b3(q)

)

so that

(2.37) 2F1(
1
3
,

1
3

; 1; 1− a3(q)
b3(q)

) = b(q),

which is a striking analogue of (2.16). It is interesting to note that we may param-
etrize the hypergeometric function 2F1( 1

3 ,
1
3 ; 1; ·) neatly in terms of the Dedekind

eta-function η(τ). As usual we define

η(τ) := q1/24
∞∏
n=1

(1− qn), (q = exp(2πiτ)).

Then using (2.15c), (2.24) and (2.25) we may find that (2.37) may be written as

(2.38)1
2F1(

1
3
,

1
3

; 1;−27
η12(3τ)
η12(τ)

) =
η3(τ)
η(3τ)

.

3. z-analogues and a cubic analogue of the

incomplete elliptic integral of the first kind

The four Jacobian theta functions are

θ1(z, q) := −i
∞∑

n=−∞
(−1)nzn+ 1

2 q(n+ 1
2 )2
,(3.1)

θ2(z, q) :=
∞∑

n=−∞
zn+ 1

2 q(n+ 1
2 )2
,(3.2)

θ3(z, q) :=
∞∑

n=−∞
znqn

2
,(3.3)

θ4(z, q) :=
∞∑

n=−∞
(−1)nznqn

2
.(3.4)

1 Oliver Atkin first alerted me to this identity. This subsequently led to considering its rela-

tionship to the cubic analogue of the AGM and to discovering Corollary 1.45.
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We observe that θ1(1, q) = 0, θ2(1, q) = θ2(q), θ3(1, q) = θ3(q), and θ4(1, q) = θ4(q).
It is well-known that many identities involving the θi(q) have generalizations in
terms of the θi(z, q). For instance, a generalization of Jacobi’s identity (1.19c),
which was important in the analysis of the AGM, is

(3.5) θ2
3(q) θ2

3(z, q) = θ2
2(q) θ2

2(z, q) + θ2
4(q) θ2

4(z, q).

It would seem natural to look for z-analogues of our functions a(q), b(q), c(q) which
were needed to parametrize the cubic analogue of the AGM. In [HGB] we defined

a(z, q) :=
∞∑

m,n=−∞
zm−nqm

2+mn+n2
,(3.6)

b(z, q) :=
∞∑

m,n=−∞
ωm−nznqm

2+mn+n2
,(3.7)

c(z, q) :=
∞∑

m,n=−∞
zm−nq(m+ 1

3 )2+(m+ 1
3 )(n+ 1

3 )+(n+ 1
3 )2
.(3.8)

Then

a(zq, q) := z−2q−1 a(z, q),(3.9)

b(zq3, q) := z−2q−3 b(z, q),(3.10)

c(zq, q) := z−2q−1 c(z, q).(3.11)

This means that each of our functions a(z, q), b(z, q), c(z, q) is quasi doubly-periodic
[WW, p. 463] when z is replaced by exp(2iz). This is analogous to the situation for
the θi(z, q). Hence we may use the techniques of the theory of elliptic functions to
prove identities. As in the z = 1 case we found that b(z, q) and c(z, q) have product
forms.

b(z, q) :=
∞∏
n=1

(1− zqn)(1− z−1qn)(1− qn)(1− q3n)
(1− zq3n)(1− z−1q3n)

,

(3.12)

c(z, q) := q1/3(1 + z + z−1)
∞∏
n=1

(1− z3q3n)(1− z−3q3n)(1− qn)(1− q3n)
(1− zqn)(1− z−1qn)

.

(3.13)

We found a nice z-analogue of the cubic identity (2.15c).

(3.14) a3(z, q) = b2(q) b(z3, q) + c3(z, q).

Another nice identity we found was

(3.15) a(z, q) a(z2, q2) = b(z3, q) b(q2) + c(z, q) c(z2, q2),

which is a z-analogue of the following identity due to Ramanujan:

(3.16) a(q) a(q2) = b(q) b(q2) + c(q) c(q2).
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We amusingly compare this with the cubic modular equation for the theta functions.

(3.17) θ3(q) θ3(q3) = θ2(q) θ2(q3) + θ4(q) θ4(q3).

It is well-known that the inverse function of the incomplete elliptic integral of
the first kind [WW, Chap. XXII] can be identified in terms of the Jacobian theta
functions, and that this inverse function has a nice Fourier series expansion. On
the bottom of page 257 of Ramanujan’s second notebook [R] there is an identity
(see (3.20) below) which gives the Fourier series of the inverse function of a cubic
analogue of the incomplete elliptic integral of the first kind. Our proof of this
identity depends crucially on identities for b(z, q) and certain other z-analogues.

Theorem 3.18. ( [BeBhG]) For 0 ≤ q < 1, 0 ≤ ϕ ≤ π/2, let a = a(q), c = c(q)
and h = c3

a3 and define

a z =
∫ ϕ

0
2F1(

1
3
,

2
3

;
1
2

;h sin2 t) dt.(3.19)

Then

ϕ = z + 3
∞∑
n=1

sin(2nz) qn

n(1 + qn + q2n)
.(3.20)

Before giving the idea of the proof we consider a classical analogue. Equation
(3.20) is reminiscent of the Fourier series expansion of the Jacobian elliptic function
amu [WW, p. 511]. Indeed, we have the following classical analogue.

Theorem 3.21. ( [S2]) Let a = θ2
3(q), c = θ2

2(q) and k2 = c2

a2 and define

a z =
∫ ϕ

0
2F1(

1
2
,

1
2

;
1
2

; k2 sin2 t) dt.(3.22)

Then

ϕ = z + 2
∞∑
n=1

sin(2nz) qn

n(1 + qn)
.(3.23)

Proof. We have

(3.24) 2F1(
1
2

+
1
2
a,

1
2
− 1

2
a;

1
2

; sin2 z) =
cos az
cos z

([E, p. 101, Eq(11)]),

so that

2F1(
1
2
,

1
2

;
1
2

;x) =
1√

1− x
(|x| < 1).

Hence,

a z = z ϑ2
3 =

∫ ϕ

0
2F1(

1
2
,

1
2

;
1
2

; k2 sin2 θ) dθ (where ϑ3 = θ3(q))

=
∫ ϕ

0

dθ√
1− k2 sin2 θ

=
∫ sinϕ

0

dt√
(1− t2)(1− k2t2)

,
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by letting t = sin θ. This last integral is the incomplete elliptic integral of the first
kind. Thus, from the definition of sn (z, k) ([WW, p. 492]) we have

sinϕ = sn (ϑ2
3z).

Now,

dϕ

dz
= ϕ2

3

cn (ϕ2
3z) dn (ϕ2

3z)
cosϕ

(by [WW, Eq(I) p. 492])

= ϕ2
3 dn (ϕ2

3z) (by [WW, Eq(II) p. 493])

= 1 + 4
∞∑
n=1

cos(2nz) qn

1 + qn
([WW, p. 511]).

The identity (3.23) follows by integrating with respect to z. �

The idea of the proof of Theorem 3.18. Putting a = 1
3 and x = sin z in (3.24) we

find

(3.25) 2F1(
1
3
,

2
3

;
1
2

;x2) = (1− x2)−1/2 cos(
1
3

sin−1 x),

which is an algebraic function. Indeed, if we let S = S(x) := 2F1( 1
3 ,

2
3 ; 1

2 ;x2) then
we find that

(3.26) 4S3(1− x2)− 3S − 1 = 0.

Thus, if we define

(3.27) Φ(θ) := θ + 3
∞∑
n=1

sin(2nθ) qn

n(1 + qn + q2n)
,

then in order to prove (3.20) we need to show that

(3.28) sin2 Φ =
1

4h

[
4− 1

a3

(
dΦ
dθ

)3

− 3
a2

(
dΦ
dθ

)2
]
.

Letting Ψ = Ψ(θ) be the right side of (3.28) we find that (3.28) will follow from

(3.29)
[
dΨ
dθ

]2

= 4Ψ(1−Ψ)
[
dΦ
dθ

]2

.

It turns out that dΦ
dθ has an analytic continuation to an elliptic function (with

q = exp(2πiτ) as usual). Hence (3.29) can be proved using the techniques of
elliptic functions. See [BeBhG] for the details.

Li-Chien Shen [S1] has found a proof of Theorem 3.18 that involves only the
classical elliptic functions. In [S2], he has also found a partial analogue for the
hypergeometric function 2F1( 1

4 ,
3
4 ; 1

2 ;α sin2 t).

Theorem 3.30. ( [S2]) Let a =
√

θ4
3(q)+θ4

4(q)
2 , c = θ2

2(q)√
2

and α = c4

a4 and define

a z =
∫ ϕ

0
2F1(

1
4
,

3
4

;
1
2

;α sin2 t) dt.(3.31)

Then

cosϕ = cn (u, k) dn (u, k),(3.32)

where u = θ2
3(q2)z and k = θ2

2(q2)

θ2
3(q2)

.
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4. Hypergeometric analogues of the AGM

In this section we make explicit the means M1 and M2 of Theorem 1.39. Full
details and proofs appear in [BB2], [BBG2].

Quadratic s = 0 (Gauss). If M1(a, b) := a+b
2 and M2(a, b) :=

√
ab then

M1 ⊗M2(1, x) =
1

2F1( 1
2 ,

1
2 ; 1; 1− x2)

.

Cubic s = 0 [BBG2]. If

U = U(a, b) :=
√
a2 − 3

√
4a2b2(a2 − b2)

M1(a, b) :=
U +

√
3a2 − U2 + (4ab2 − 2a3)/U

3
=: A

M2(a, b) := M1(b, a) =
bA+ ab

3A− a
,

then

M1 ⊗M2(1, x) =
1

2F1( 1
2 ,

1
2 ; 1; 1− x2)

.

Quadratic s = 1
6 [BBG2]. If

M1(a, b) :=
3
√

2b3 − a3 + 2
√
b6 − a3b3 + 3

√
2b3 − a3 − 2

√
b6 − a3b3

2
,

M2(a, b) :=
3
√
b3 +

√
b6 − a3b3 + 3

√
b3 −

√
b6 − a3b3

2
,

then

M1 ⊗M2(1, x) =
1

2F1( 1
3 ,

2
3 ; 1; 1− x3)

.

Cubic s = 1
6 [BB3],[BB4],[BBG1],[BBG2]. If

M1(a, b) :=
a+ 2b

3
,

M2(a, b) := 3

√
b(a2 + ab+ b2)

3
,

then

M1 ⊗M2(1, x) =
1

2F1( 1
3 ,

2
3 ; 1; 1− x3)

.
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Quadratic s = 1
4 [BB2]. If

M1(a, b) :=
a+ 3b

4
,

M2(a, b) :=

√
b(a+ b)

2
,

then

M1 ⊗M2(1, x) =
1

2F 2
1 ( 1

4 ,
3
4 ; 1; 1− x2)

.

Cubic s = 1
4 [BBG2]. If

M1(a, b) :=

√
a2b+ 3B(b2 −B2)

b
,

B := M2(a, b) :=
U +

√
3b2 − U2 − (2a2b)/U

3
,

U :=
√
b2 + 3

√
b2(a4 − b4),where

then

M1 ⊗M2(1, x) =
1

2F1( 1
4 ,

3
4 ; 1; 1− x4)

.

Quadratic s = 1
3 [BBG2]. If

A := M1(a, b)

:=
(

5
16
(
a6 + 8b6 − 8a3b3 + 4b3/2(b3 − a3)1/2a3 − 8b9/2(b3 − a3)1/2

)1/3
+

5
16
(
a6 + 8b6 − 8a3b3 − 4b3/2(b3 − a3)1/2a3 + 8b9/2(b3 − a3)1/2

)1/3
+

3
8
a2

)1/2

,

M2(a, b) :=
(

22b3A2 − 2a2b3 − 11a3A2 − 22a2A3 + a5 + 32A5

4(16A2 − 11a2)

)1/3

,

then

M1 ⊗M2(1, x) =
1

2F 2
1 ( 1

6 ,
5
6 ; 1; 1− x3)

.

We now sketch why the four values s = 0, 1
6 , 1

4 , 1
3 occur in Theorem 1.39 and how

to discover symbolically the modular forms that are involved in the parametriza-
tion of the corresponding hypergeometric function. The approach we take is very
classical. It is well-known that modular functions arise by inverting the ratio of
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solutions to certain hypergeometric differential equations. See [Gr]. Accordingly,
we let

u1(x) := 2F1(
1
2
− s, 1

2
+ s; 1;x)

(4.1)

and

u2(x) :=
(
−cos(πs)

π

)
lnxu1(x)

(4.2)

+
cos(πs)
π

∞∑
n=0

( 1
2 − s)n( 1

2 + s)n
(n!)2

(
2ψ(n+ 1)− ψ( 1

2 + s+ n)− ψ( 1
2 − s+ n)

)
xn

= 2F1(
1
2
− s, 1

2
+ s; 1; 1− x)

for 0 < x < 1. These form a fundamental set of solutions to the hypergeometric
differential equation

x(1− x) y′′ + (1− 2x) y′ − ( 1
2 − s)(

1
2 + s) y = 0.

We let

q(x) := exp
(
− π

cos(πs)
u2(x)
u1(x)

)
(4.3)

= x exp(−G(x)),

where
(4.4)

G(x) :=

∑∞
n=0

(
1
2−s)n(

1
2 +s)n

(n!)2

(
2ψ(n+ 1)− ψ( 1

2 + s+ n)− ψ( 1
2 − s+ n)

)
xn

u1(x)
.

Now q(x) is analytic and one-to-one in a neighbourhood of x = 0. Hence we let
Xs(q) denote the inverse function which is analytic in a neighbourhood of q = 0. If
we let

(4.5) q = exp
(

iπτ

cos(πs)

)
and consider Xs as a function of τ then we find that

Xs(τ + λ) = Xs(τ)(4.6)
where

λ := 2 cos(πs),(4.7)
and

Xs

(
−1
τ

)
= 1−Xs(τ).(4.8)
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Now we consider the Hecke group G(λ) ([O, p. xiii]) which is the group generated
by

τ 7−→ τ + λ, τ 7−→ −1/τ.

It follows that g(τ) := Xs(τ)(1 − Xs(τ)) is a G(λ)-invariant function. Now we
define

(4.9) a(τ) = as(τ) := Fs(Xs(τ)).

We have

(4.10) a(τ + λ) = a(τ),

and by using (4.1), (4.2), (4.3) and (4.5) it can be shown that

(4.11) a

(
−1
τ

)
=
(τ
i

)
a(τ).

Hence a(τ) is a modular form of dimension −1 (or weight k = 1) and multiplier
C = 1 for G(λ). Following [O, p. xiii] we denote the space of such forms by
M(λ, k, C). From [O, Chapter I], M(λ, k, C) is finite dimensional when 0 ≤ λ ≤ 2
and in addition M(λ, k, C) 6= 0 when λ = 2 cos(πs) and s = 0 or s = 1

n and n is
an integer greater than 2. The problem is to find algebraic relations between the
functions a(τ), a(pτ), Xs(τ) and Xs(pτ) for fixed p > 1. Such relations with luck
lead to p-th order mean iterations. For s = 0, 1

6 , 1
4 , 1

3 it turns out that a(τ) or
some integral power of a(τ) corresponds to a modular form on a certain congruence
subgroup of Γ = SL2(Z). We define

(4.12) b(τ) := bs(τ) = [1−Xs(τ)](
1
2−s) as(τ)

so that

(4.13) Xs(τ) = 1−
(
bs(τ)
as(τ)

)1/( 1
2−s)

.

Now suppose s = 0, 1
6 , 1

4 , or 1
3 . The functions as(τ), bs(τ), as(pτ), bs(pτ) or

some integral power of these functions will be modular forms on some congruence
subgroup for fixed p > 1. Now writing as functions of q, the forms as(q), bs(q)
parametrize the hypergeometric function Fs(·) by construction. To find quadratic
and cubic means we find for p = 2, 3 homogeneous relations (or modular equations)
of the form

P (as(q), bs(q), as(qp), bs(qp)) ≡ 0.

Solving these relations gives explicit means. Such relations always exist. This is
seen as follows. Let P have degree k. Then it is well-known that

The dimension of the space of modular forms (above) of weight k ∼ c1 k

(for some nonzero constant c1, see [CO])
and

the number of monomials ak1
s (q) ak2

s (qp)bk−k1−k2
s (q) ∼

1
2
k2.

Hence there will always be a relation for large enough k. The relations may be
proved by identifying the functions as(q), bs(q) from their q-series expansions and
then using the theory of modular forms. Alternatively, each relation may be proved
by rewriting it as a hypergeometric function identity and using the techniques of
differential equations to prove it. All of this can be done symbolically, and has been
carried out in [BBG2] where more details are given.
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