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EXOTIC BAILEY-SLATER SPT-FUNCTIONS II: HECKE-ROGERS-TYPE DOUBLE
SUMS AND BAILEY PAIRS FROM GROUPS A, C, E

FRANK G. GARVAN AND CHRIS JENNINGS-SHAFFER

ABSTRACT. We continue to investigate spt-type functions that arise from Bailey pairs. We prove simple
Ramanujan type congruences for these functions which can be explained by a spt-crank-type function. The
spt-crank-type functions are constructed by adding an extra variable z into the generating functions. We
find these generating functions to have interesting representations as either infinite products or as Hecke-
Rogers-type double series. These series reduce nicely when z is a certain root of unity and allow us to deduce
congruences. Additionally we find dissections when z is a certain root of unity to explain the congruences.
Our double sum and product formulas require Bailey’s Lemma and conjugate Bailey pairs. Our dissection
formulas follow from Bailey’s Lemma and dissections of known ranks and cranks.

1. INTRODUCTION

A partition of n is a non-increasing sequence of positive integers that sum to n. For example, the partitions
of4are4,3+1,2+2,2+14+1and 1+1+1+1. We have a weighted count on partitions given by counting a
partition by the number of times the smallest part appears. We let spt (n) denote this weighted count of the
partitions of n. From the partitions of 4 we see that spt (4) = 10. Andrews introduced the spt function in [2]
and there proved that spt (5n +4) =0 (mod 5), spt (7n +5) =0 (mod 7), and spt (13n +6) =0 (mod 13).

We see a generating function for spt (n) is given by

Slo) = Z;Spt (e =2, (1- q")Qq(qn“;q)oo'

n=1

Here we use the standard product notation,

n—1 o)
(z9), = [[0-2¢), (o =]10-2¢),  [zde=(29/79,
=0 =0
(21, 2659), = (2159) -+ - (2130), (21,26 Do = (215 @) 0 - -+ (285 @) o »
(21,5 2k @l oo = (21500 - - - (285 @) g -

In [4] Andrews, the first author, and Liang defined a two variable generalization of the spt function by
ee} n+1.

S 0o n . 00 z,z_l; n
Sa) =% 3 Nsmm)zmgr =3 — (@0 (@0 Z( q)nq7

(2¢",27'¢"10) . (22750 o (@0,

n=1m=—oc n=1
so that S(1,¢q) = S(q). There they reproved the congruences spt (5n + 4) =0 (mod 5) and spt (7n +5) =0
(mod 7) by examining S((s,q) and S(7,q), where (5 is a primitive fifth root of unity and {7 is a primitive
seventh root of unity. Essential to this is the identity

(1-2)(1—=27")8(2,9) = R(2,9) - C(2,9), (1.1)

where R(z,q) is the generating function of the rank of a partition and C(z,q) is the generating function of
the crank of a partition. One can consult [5] for an account of the rank of a partition and for the crank [I1]
and [3]. To prove (1)) one applies a limiting case of Bailey’s Lemma to a certain Bailey pair.

In [10] the authors used Bailey’s Lemma on four different Bailey pairs to study and prove congruences for
three spt functions for overpartitions and the spt function for partitions with smallest part even and without
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repeated odd parts. An overpartition is a partition in which the first occurence of a part may be overlined,
for example the overpartitions of 3 are 3,3, 2+1,2+1,2+1,24+1,1+14+1,and T+ 1+ 1. We let
spt (n) denote the total number of appearances of the smallest parts among the overpartitions of n whose
smallest part is not overlined, for example spt (3) = 6. The other two spt functions for overpartitions are
given by additionally requiring the smallest part to be odd or requiring the smallest part to be even. We
let M2spt (n) denote the number of smallest parts in the partitions of n without repeated odd parts and
smallest part even. For example the relevant partitions of 6 are 6, 4 + 2, and 2 + 2 and so M2spt (n) = 4. In
all cases we found the two variable generalizations of the spt functions to be the difference of a known rank
function and some sort of crank function and this fact came directly from a Bailey pair. In particular, the
generating functions for the respective two variable generalizations for s_pt (n) and M2spt (n) are

= (20 2 0) (2,2 1,q )oo = (=0, q)
$2(2.q) i ¢ (=) L (4,65 47) Z (z,27%4%), q"
S (zq*m, 27 1%¢%) o (227567 —4,4%¢%),
n=1 ’ ’ 00 ’ ’ oo n=1 ) ) n
oo
S(1,9) = > spt (n)q",
n=1
o0
S2(1,q) = Y  M2spt (n) ¢"
n=1

We let R(z,q) denote the generating function for the Dyson rank of an overpartition and let R2(z,q) denote
the Ms-rank of a partition without repeated odd parts. The Dyson rank of an overpartition is the largest
part minus the number of parts. The Ms-rank of a partition without repeated odd parts is the ceiling of
half the largest part minus the number of parts. We found that

(1 - Z)(l - Z_l)g(zv q) = E(Zv q) — (_q; q)oo C(z,9),
(1—-2)(1 = 271S2(z,9) = R2(2,9) — (—¢;¢°)  C(2, ).
With this in mind we now consider a spt-crank-type function to be a function of the form

_Pla) > (z,27%4), ¢" B,

1.
(2,275 @) 2

where P(q) is an infinite product and § comes from a Bailey pair relative to (1,¢). We consider a spt-type
function to be the z = 1 case of a spt-crank-type function. We recall that a pair of sequences («, 3) is a
Bailey pair relative to (a, q) if

k=0 q q n—k ((Lq q)nJrk

The authors are in the process of studying all such spt-type functions that arise from the Bailey pairs
of Slater from [I8] and [I9]. In [I2] the second author introduced the spt functions corresponding to the
pairs A(1), A(3), A(5), and A(7) and proved congruences for these functions by dissecting the spt-crank-type
functions when z is a certain root of unity. In this paper we again consider the Bailey pairs from group A as
well as the Bailey pairs C(1), C(5), E(2), and E(4). In a coming paper we handle Bailey pairs from groups
B, F, G, and J.

Our study of these spt-type functions can be described as follows. We take a bailey pair (X, 3%), where
each 3:X has integer coefficients as a series in ¢, and define the corresponding two variable spt-crank-type
function

SX(z,q):( Z ﬂX " Z Z Mx(m,n)z

00 n=1 n=1m=—oo



By setting z = 1 we get the spt-type function

Sx(q) = Sx(1,q) Z( > Mx(m%)) ¢" =Y spty (n)q"
n=1

m=—0o0

We prove simple linear congruences for the spty (n) by considering Sx (¢, ¢) where ¢ is a primitive root of
unity. For ¢ a positive integer we define

Mx(k,t,n)= > Mx(m,n).

m=k (mod t)

We note that

When (; is a t*" root of unity, we have

x(Girq) i(Z_:Mthn )g”.

The last equation is of great importance because if ¢ is prime and ¢; is a primitive ¢** root of unity, then the
minimal polynomial for ¢; is 1+ 2 + 22 + -+ 4+ 2'~1. Thus if the coefficient of ¢’ in Sx (s, q) is zero, then
2;10 Mx (k,t, N)CF is zero and so Mx (0,¢t, N) = Mx(1,t,N) =--- = Mx(t — 1,¢,N). But then we would
have that spty (N) =t Mx(0,¢, N) and so clearly spty (N) =0 (mod ¢). That is to say, if the coefficient of
N'in Sx((, q) is zero, then spty (N) = 0 (mod t). Thus not only do we have the congruence spty (N) = 0
(mod t), but also the stronger combinatorial result that all of the Mx (r,t, N) are equal.

We return to this idea after defining our new spt-type functions and listing their congruences in the next
section. There we introduce new spt-crank-type functions corresponding to the Bailey pairs C(1), C(5),
E(2), and E(4) of [18] as well as revisit the Bailey pairs A(1), A(3), A(5), A(7). Not only do we prove
congruences for these functions by dissection formulas for Sx({,q), but we find single series and product
identities for Sas(z,q), Sa7(z,q), Scs(z,q), and Sga(z,q), and find interesting Hecke-Rogers-type double
sum formulas for Sa1(z,q), Sas(z,q), Sci1(z,q), and Sgs(z,q). These series identities can be used to prove
most, but not all, of the congruences whereas the dissections prove all of them.

The first author [9] was first to find Hecke-Rogers-type double series for spt-crank-type functions. In
particular we have,

- " n—m m—n [ —4 12 1 (3n2-m?2
(Z,Z 17‘]7(])005(2’(1):22(1_2 p) )22 3 <7> (E) q12( P} 1)7

(L+2) (227 @) Sa) = D (FL)m (L= 2 M (A g2l 2ml g TR

o0 n

(227 0%0%)  S2(2,—q) = ) Y (—1)"(1 - )2 me B 2

n=0m=0

Here (—) is the Kronecker symbol. Such identities are interesting not only because of their use in proving
congruences for smallest parts functions, but also because many mock theta functions are special cases of
the ranks related to the spt-crank-type functions.

In Section 2 we give preliminaries and state our main results which include congruences for various spt-type
functions, single series and Hecke-Rogers-type double series, and product identities for various spt-crank-type
functions. In Section 3 we use the machinery of Bailey pairs to prove all the series identities. In Section 4
we evaluate various spt-crank-type fucntions at roots of unity and obtain various results for the Mx (r,t,n)
coefficients. In Section 5 we relate our spt-crank-type functions with rank and crank type functions and
derive various dissection identities at various roots of unity. In Section 6 we finish with some concluding
remarks.



2. PRELIMINARIES AND STATEMENT OF RESULTS

The following are Bailey pairs relative to (1, q)

1 ifn=0
6k —k 6k%+k if n = 3k
gAlz; QAo ) T T Ta ifn=3
" (69, " — Ok +Okt1 ifn=3k+1 "
— g0k ok if n=3k—1
1 ifn=0
n 6k%—2k 6k% 42k 1 "
a3 _ _ 4 A3 — q ) +q if n =3k
" (69 " —gOF 2k ifn=3k+1"
— g2k if n=3k-1
1 ifn=0
545 — ¢ QA5 q%%f+q%”* if n =3k
N () P n —g3k Ttk ifn=3k+1 "~
3Rk ifn—=3k—1
1 ifn=0
[3” B qnln wr q3k2—2k + q3k2+2k if n = 3k
" (459)s, s T PRk ifn=3k+1 "’
_q3k2—4k+1 ifn=3k_1
1 ifn=0
1
C C 2_ .
"h:@ia_G?T’ agt =9 (DFPV R4 g) ifn=2k
T AR 0 ifn=2k+1
q(nzfn)/Q 1 lf'fL = O
2 .
W= (4:9%), (5:9),, o’ =9 (kMR + %) ifn=2k :
GE )\ D 0 ifm = 2k + 1
E2 _ (_1)11 aE2: 1 ifn=0
" (%), " 2-1)" ifn>1 "
54:L7 af4: 1 . , %fn:()
(a*d?),, (=1)"q" (1 +¢*) ifn>1

For each Bailey pair we define a two variable series spt-crank-type series as follows,

(G0 (22750, > (@)
S , — o] T — o] ,
aeg) (zvz‘i;q)a>2§; (¢ @), ;;;(zq",Z‘1Q";QLm
Saalzq) = T Do i ¢ (227 q), i " (*"ig)
A (2,27 500 = (@30)y, = (2q", 271" 0)
o] n“+n —1. o] n2+n 2n+1.
44q q z,2 g q "t
SA5(Z,Q) = ( 71).00 Z ( )" = Z n (71 n. )OO’
(sz 7q)oo n=1 (qaq)2n n=1 (Zq 7Z q 7q>oo
Sar(eng) = e iq“ (=27"549),, :i " (¢*"5a)
AT (2275 0) = (@9, = (2q" 271" q) o
Scﬂzq):(mqﬂmxmqkoiiq"kwfﬁqxl:Siq"@%WHqﬂw(f*Hﬁm
’ (z:274%40) = (@6, (@9, = (24", 274" 9) o ’
n?in _ n?4n
Ses(e.q) = (6% (69 i ¢ (»2%4q), _ i gz (%), (Q"H?q)m’

(2,275 @) (24", 274" )

4



2. .2 oo nnzz—l. oo 1\n,n (2n+2. 2
SE2(27q):(Z(qz,q)oo Z( 1) q (, ,q)nzz( D"q" (¢ ,q)OO7 @)

ha)e 7% Q)n = (2q", 271" )

2. .2 e} 2n —1. oo 2n+2
(¢ 4%) q ( 1q°)
Spa(z,q) = = = 2.8
&9) (2,275 0) 5 ,; (¢*;4%) Z:: zq” 271" q) (28)
Setting z = 1 gives the following spt-type functions
oo qn
Sai(q spt = ,
Z a ,; 1= (") ("),
e 2n
q
Sas(q) = spt s (n) ¢" = ,
@ ; 43 (") ,; (1=¢)2 (g 9) . ("5 9),
> e n%+4n
q
Sas(q) = sptas (n) ¢" = ,
@ ; 43 (") ,; 1= (") ("),
(o] [o ] TL2
q
Sar(q) = ) _sptar (n)q" = :
nz::l ! ,; (L=g")2(q""0) (¢"T5q),
o0 o0 qn
Sc1(q) = spteg (n) ¢ = ,
) g o1 (n) Z:j = @ 0. @S )
g’ +n)/2

Secs(q) = Z sptos (n) ¢ =
n=1

< (1—g")2(¢""59), (6272 ¢%)
(=1)"q" (=¢"5q)
(1—¢")2 ("5 q)

M2 103

Sp2(q) = Z Pty (1) ¢" =

n=1
e o] 2n n+1.
" (4" q)
SE4 Spt = x|
Z B ( n;l (1—q¢")2(¢"59),

For group A, the interpretatlon is a bit more natural in terms of partition pairs rather than a smallest parts
function, however we give the smallest parts interpretation for each of these generating functions.

For a partition 7 we let s(m) denote the smallest part, £(7) the largest part, and |r| the sum of parts. We
say a pair of partitions (7, m2) is a partition pair of n if |m| + |m2] = n. We let PP denote the set of all
partition pairs (71, 72) such that m is non-empty and all parts of 79 are larger than s(m1) but no more than
25(m1). We let P denote the set of all partitions 7 such that all odd parts of 7 are less than 2s(). We let
P denote the set of all overpartitions 7 where the smallest part of 7 is not overlined.

We note that

n

_ 7

(1-4¢m)?
and so in the generating functions we can interpret this as contributing the smallest part and weighted by
the number of times the smallest part appears.

We see spt 4 (n) is the number of partition pairs (m1,m2) € PP of n, counted by the number of times
s(my) occurs. Similarly spt 45 (n) is the number of partition pairs (71, 72) € PP of n, counted by the number
of times s(m1) occurs past the first. We see spt 45 (n) is the number of partition pairs (w1, 72) € PP of n,
counted by the number of times s(m1) occurs past the first s(m;) times. Lastly, spt4; (n) is the number of
partition pairs (71, m2) € PP of n, counted by the number of times s(m1) occurs past the first s(m) — 1
times. _

For group C, we have that spts; (n) is the number of partitions m € P of n, counted by the number of
times s(m) occurs. An interpretation for sptqg (n) is not immediately clear from the generating function.
However, in Corollary 2.7 we find that sptes (n) is sptoq (n) — spt (n/2), where spt (n/2) is zero if n is odd.

For group E, sptp, (n) is number of overpartitions m € P of n, counted by the number of times s(7)
occurs past the first. We see spt g, (n) number of overpartitions m € P of n with s(m) even, counted by the
number of times s(7) occurs, minus the number of overpartitions 7 € P of n with s(7) odd, counted by
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the number of times s(m) occurs. We note sptg, (n) = spt (n) — @. Also spt g, (n) = spty (n) — spty (n),
where spt, (n) and spt, (n) are two spt functions studied in [I0]; in fact Sg2(2,q) = Sa2(z,q) — S1(2, q) where
Sa(z,q) and S;(z,q) are the two variable generalizations of the generating functions for spt, (n) and spt; (n)
that we studied in [I0].

These functions satisfy the following congruences.

Theorem 2.1.

spt4; (3n) =0 (mod 3),
sptas (3n+1) =0 (mod 3),
sptas (bn+1) =0 (mod 5),
sptas (bn+4) =0 (mod 5),
Sptas (Tn+1) =0 (mod 7),
sptar (bn+4) =0 (mod 5),
spter (Bn+3) =0  (mod 5),
sptes (Bn+3) =0 (mod 5),

sptge (3n) =0 (mod 3),

sptg, (B3n+1)=0 (mod 3).

We use the two variable series to prove these congruences as explained in the introduction. We can
prove Theorem 2.1] by showing the following terms are zero: ¢*" in Sa1((3,q), ¢+ in Sa3((3,q), ¢®"H!
in Sa3(Cs,q), ¢°"* in Sas(Cs,q), ¢ in Sas(Cr,q), ¢ in Saz(Cs,q), ¢ in Sci1(Cs,q), ¢ in
Scs(Cs,q), ™ in SEa((3,q), and ¢*" ™t in Sg4((3,q). For convenience, if F(x) is a series in z, then we let
[zN]F(x) denote the coefficient of 2V in F(x).

That these coefficients are zero is a stronger result than just the congruences alone. These coefficients
being zero gives a manner in which to split up the numbers spty (an + b) to see the congruences. In each
case, this would allow us to define a so called spt-crank based off of the Mx (m,n). An initial interpretation
of the Mx(m,n) would be in terms of weighted vector partitions, to find an interpretation in terms of
smallest parts would take considerable work. One can find an example of this process in Section 3 of [10],
we do not pursue this idea here. We do note, however, that since Sg2(2,q) = S2(2,q) — Si(z, ¢), we do have
a combinatorial interpretation of Mga(m,n) as being the difference of the corresponding spt-cranks defined
in [I0]. Also an interpretation in terms of a crank defined on partition pairs for Mai(m,n), Mas(m,n),
Mas(m,n), and M a7(m,n) was given by the second author in [12].

We prove the following series representations for the Sx(z,q).

Theorem 2.2.
(L42) (2,275 q)_. Sa1(z,q)

_ 1t Z(l D TC L Pt <(_1)k+1qk(k—1)/2 T Z(_l)n+k+1q@+@+2lm(l i qn)) 7

(40 = e
(2.9)
(1+Z) (272_1;Q)OOSA3(27Q)
1 & _ _ n k(k+1) | n(n—3) . "
_ ( . ) ZZ(l _Zk 1)(1 _Zk)zl k(_l) +k+1q72 + 42k 1(1 _q2 -‘rl)7 (210)
G oo 121 n=o
_ > _ (3 1)
(1+2) (2.2750)  Sas(z0) = D (FDF(1—25)(1 = 2F kg e (2.11)
k=—oc0
_ > . k(3k—1)
(1+2) (2,27 q) Sar(z,g) = D (D)1 —2M1—2"zFg 7, (2.12)
k=—o0

(1+2) (z, 27k q)oo Sc1(z,q)



oo o0

e S (L (L )RR (g 2Ry (g,

(49w = =

(1+2) (2,271 9)  Ses(z,9) = Z (1— 2P (1 — 2Ryt k(- 1)hg,

(1 +Z) (272_1;(]) SE2(Z q oo Z 1 — Z k_l)zl_kq@,
(1+Z) (2, Z’l;q) Spa(z,q)

Z Z (1— "1 = 2%)2 1—k(_1)k+n+1q%+n27n+2kn71(1 — P,
q q © k=1n=0

(2.13)

(2.14)

(2.15)

(2.16)

By letting z be the appropriate root of unity, we use Theorem to prove all of the congruences in
Theorem 2] except for spt 45 (5n+3) = 0 (mod 5) and spte; (5n +3) = 0 (mod 5). From Theorem
we will also deduce the following Hecke-Rogers-type double series for Sa1(z,q), Sas(z,q), Sc1(z,q), and

SE4(Z, q).
Corollary 2.3.

o [k/2]

2_k—3n2—n
+2)(2,27,q:¢ 1(2,9) -2 — 27 qk =
1 1 S n+k: k—2|n| 1 2|n|—k+1

h=0n=— [k/z]
oo [k/2] .
(142) (57010 Sas(e0) = 3 D2 (-1 H(1 = 721 220ty =
k=1 n=1
0o 1k/2)

_ Z Z n+k Zk—2n)(1 . Z2n_k+1)q@

k=1 n=0
oo [k/3] )
(1 + Z) (ij—qu;q) 501 Z q Z Z n+k 23n—/€+1)(1 o Z]g_gn)qk ;k
k=1 n=0
oo [£/3] .
_ Z Z n+k Z3n—k+1)(1 _ Zk—3n)q 2+ —3n%—
k=1 n=0
oo [k/3] G
+ Z Z n-‘rk Z3n—k)(1 _ Zk—3n+1)q >
k=1 n=1
oo [k/3]

_ Z Z n+k Z3n—k)(1 _ Zk—3n+1)q"22J—3n2—n

k=1 n=1
o0 k/2 2
(1 + z) (Z,zfl,q;q) SE4 z q Z Z n+k zzn*k)(l _ Zk72n+1)qk 2—k 2
k=1 n=1
o [k/2]

_ Z Z n+k Z2nfk+1)(1 _ Zk72n)qk22+k 7n2.

k=1 n=0

Using the Jacobi Triple Product Identity in the forms

oo

(zq.27 0% q%) = > (—1)"2"g",
(22 ' q0) = Y (=) 2"g" I

(2.17)

(2.18)

(2.19)

(2.20)



we see Theorem gives the remarkable fact that Sai(z,q), Sas(z,q),
written entirely in terms of products.

Corollary 2.4.

1

Ses(z,q), and Sga(z,q) can be

Sus(eng) = P00 @)o (0270 05 0) . (@19)u
(1+2) (22759 (1+Z) (z z 17 Do (2,2750)
Sar(z,q) = e 0 i)y | (o S (@0 ;
(1+2) (2,275 9) T 2) (Z Z‘l, Do (22759)
Sos(e.q) = (anZ‘lim?;q?)oo TN
(z,27Yq) (=¢,2,27Yq) o
Spal.q) = (—Zq,jflq,q;q)oo B (q?;_q?)oo
(Z,Z 17_Q;Q)oo (272 1§Q)oo

We prove the following dissections of S¢1(¢s, q), Scs(Cs,q), Sr2(C3,q), an

d Sg4(¢5,q). The dissections for

SA1(<37 q)7 SA3(<37 q)7 SA3(<57 q)7 SA5(<57 q)7 SA5(<77 q)7 and SA7(C57 q) can be found in [12]

Theorem 2.5.
(1—¢)(1=¢ 1 Se1(Gs,9)

_ (q50; q50)oo [qQO; q50} . (q50; q50)oo [q25; q50} B 2(<5 N Cgl)qf) (q50; q50)oo [qS’ q50} -
[¢10; ¢°]%, 4% 4%°] [¢'%;¢%°]
GG -2 o (=)ngminty (%07 10" 6]
+ qlo (¢°; 250)00 ; 1 — gP0n+10 - qG(C5 G 1) [¢2; q50]2
(q50; q50)oo [q15; q50] B (q50; q50)OO [q25; qSO]OO
2 (4% q25] ~ G+ G (415 ¢%5]
2¢5 + 24 +1 (=)D (07%56%°) 1 o (6%6) [ 6]
b (g% % Z 1 ¢o0n+20 +q* [1%; ¢50] +2(G+ G e’ [410; ¢25]
50 50. .50 5. .50
+d" G+ G ( 0’350]) - 2¢* la 7q[q5),°;2£? i ]°°,
(1-G)1-¢ )505(C5= q)
_ (@) 0% 6] (@™56) (6% 6] a6 + G (2% 4%) , [0% 0]
[q1%; 452, [6°;4%°] [¢"%; 4]
50. .50 10. 50 50. .50 15. 50 50. .50 25. .50
a6 (0%0%°) (6% 6] L (6%%6%) [0"%:6%] 1y @50 160
- (<5 + CS)q [ 50]; + 2q [q5’ q25]00 - (<5 + C5 )q [qlo; q25]00
(q50 ) . (q50; q50) I:q15; q50]
+(G+G -1V = — 26+ G e > 2
g% ¢°] (45 ¢%5]
50 50 50. .50 5. .50
q 7% q iq
(¢'%;¢* ) (qg;q ) ('%¢") 2
S (C aq) = —q > )
ps (0% ¢%) oo (q q)(q %) o
1 (g% @) (4% %) (q ;q'® Oo 1)ngon*+on
SE4(<3aq) - 5 - 2 (q 3. qlS) (q q ) q OO n_z_oo 9n+3

From these identities we see Sc1 (s, ¢) has no ¢°"+3

¢>" terms, and Sg4(C3,q) has no ¢3! terms. This gives another proof of the
8

terms, Scs(Cs, ¢) hasno ¢

5n+3 terms, Sga((3, q) has no

congruences for spt5 (5n + 3),



Sptgs (3n), and spt g, (3n 4 1), and the only proof of the congruence for sptyq (5n + 3). The dissection from
[12] gives the only proof of the congruence for spt 45 (5n + 1).

We note that Theorems and 28] both prove the congruences, but the identities are inherently different.
In Theorem we have identities that are valid for all z, but it may be difficult to nicely identify all terms
in the ¢-dissection when z = (y. In Theorem 2.5] the identities are for z being a fixed root of unity and all
terms in the dissection are explicitely determined. The dissection formulas come as a consequence of each
Sx(z,¢q) being the difference of a rank-type function and a crank-type function. A consequence of the proofs
of Theorem and Corollary [Z3] are the following product identities.

Corollary 2.6.

ad _ e n k(k—1) , n(n—3) n n
(G2 =) ((—1)’”1(1’“(’“ R I G ) L B R O )>, (2.21)

k=1 n=1
_ Z Z 1)+ "(";”Jr@wkn—l(l Y (2.22)
k=1n=0
(q; Q) Z Z k+1 k(k;1)+7n(3371) +3kn(1 _ q2k—1)(1 _ qk-i-n)7 (223)
k=1n=0
(q; q) Z Z k+n+1 k(k+1)+n n+2kn71(1 _ q2n+1), (224)
k=1n=0
0 [k/3]

(49)%, =SS (kg et g gy, (2.25)

k=1n=—[(k—1)/3]
oo [k/2]

(49) oo =5 % (g (2.26)

k=0 n=—[k/2]

We note that ([2.26]) is known. It was derived by Andrews in [I], Bressoud in [7], and recently reproved by
the first author in [9]. Some consequences of the proof of Theorem are the following relations between
Sc1(z,q) and Scs(z, q).

Corollary 2.7. For all n and m,
Ng(m,n
Mer(m,2n+1

= Mc1(m, 2n) — Mes(m, 2n),
= Mcs(m,2n + 1),
spt (n) = spto1(2n) — sptes(2n),
spteq(2n + 1) = sptos(2n + 1).
In Section 3 we prove the series identities of Theorem 2.2 as well as Corollaries 2.3, 2.4 and In Section

4 we use Theorem to prove the appropriate terms are zero to deduce the congruences in Theorem 2.1
In Section 5 we prove the dissection formulas of Theorem

\_/\_/\_/\_/

3. PROOF OF THE SERIES IDENTITIES

To prove the identities for Sa1(z,q), Sas(z,q), Sc1(z, q), and Sg4(z, q) we need the following preliminary
result.

Proposition 3.1.
(1+2) (z,z_l;q) S’Al(z q)

Z PR k+1 ((_1)k+1qk(k—1)/2

00 k=1

S ), "

9

—(1+2) (g9



(1+2) (2,27 54q) S’A3(z q)

—(1+42) (¢;q Z Z 2h g kL 1)n+k+1q7k(k;1)+7n("{3) F2hn—1(] _ g2l (3.2)
°° k=1n=0

(1+2) (z, P q)oo 5’01(z, q)
—(1+Z)(' Do (6:0°)

o ZZ g 1R 1)k+1qw+%+3kn(l — PR = g, (3.3)
00 k=1n=0
(1+2) (2,275 4q)  Spalz, q)
—(1+42) (q q Z Z (2F 4 2! 1)k+n+1q%+n2—n+2kn—1(l — &, (3.4)
°° k=1n=0

From this we deduce equations (Z21)), (Z22), (223), and 2:24) of Corollary[2:6l These product identities
along with Proposition Blimply equations (Z9)), (Z10), (ZI3)), and ZI6) of Theorem22l Equations 211)),
212), @14), and I3 do not require this additional step.

The proofs of the identities in Theorem 2.2 and Proposition Bl are to verify the coefficients of each power
of z match. We do this by rearranging Sx(z, q), extracting the coefficient of z*, which is a series in ¢, and
then using one of two general Bailey pairs with either a limiting case of Bailey’s Lemma or an identity from
Bailey’s Transform with a suitable conjugate Bailey pair. We recall that (a, 8) form a Bailey pair relative
to (a,q) if

n

on = ,;) (a9:9)p 1 (49) 0

Qg

and Bailey’s Lemma, which can be found in [6], gives if (a, 3) is a Bailey pair relative to (a, q) then

n
0 n p15p27 (aq) Qp
aq aq/p1,aq/p2;q pip
Z(Plvpz;‘J)n< > B = (aq/ / “Z = .

= p1p2 (aq,aq/p1p2:4)oe f=  (ad/pr,aq/p2;q),

Lemma 3.2. If a and 8 are a Bailey pair relative to (a,q) then

Za"q”2ﬁn e Za 7" o, (3.5)
n=0

79 OOnO

i(—\/@;q)na”/QQ”Q/zﬁn Evaza), Z n/2gn* 2, (3.6)

= (aq; 4) o

i g, = (4% ¢%) . Z l—a)

= (g, =43 0) o ag®")

Z q"ﬂ Z Z n n n+1)/2+2n7‘+7‘ - (38)

aqqq‘)on 0r=0

Z ¢*" B = (aq,q;9) o, (Z 7oy + Z Z )ran gt/ (g 4 aq2r)0”> ,

(-1)"q" an, (3.7)

n=1r=0
(3.9)
2 2n _ n n +n+2n7‘+2r 2n+2
aq; n = 1- a,. (3.10
;(qq)"q ’ (43900 (aq 7)o (1 +4q) nz%z% =g ar (310)
If a and B are a Bailey pair relative to (a%q,q) then

- n aq q n _ n(on nr-+rmr n-+r

2, (-0 0) 6" = WZZG3 g (L — ag™ T a. (3.11)
n=0 OO n=0r=0

10



Proof. Equation (B3) is the well known identity obtained by letting pi,p2 — oo in Bailey’s lemma. For
(B.8) we let py = oo and pp = —,/aq in Bailey’s Lemma, simplifying then gives the result. For ([B.1) we let
p1 = +v/a and ps = —/a in Bailey’s Lemma, simplifying then gives the result. Equations B.8), (39), B.10),
and (BII) are parts 1, 11, 12, and 13 of Theorem 1 from [14]. These identities are from conjugate Bailey
pairs rather than specializations of p; and ps. O

The following are two Bailey pairs relative to (a, g), both of which follow immediately from the definition
of a Bailey pair:

1
 (a) = 7 3.12
o) (aq, q;q) (312
1 n=0
an(a)={ 0 n>1 " (3.13)
and
. 1
Br(a) = TR (3.14)
1 n=20
ar(a)=¢ —ag n=1 . (3.15)
0 n > 2
In rearranging each Sx(z, q), we use Proposition 4.1 of [9], which is
S (¢:9)
(142) (525g), = 3 (~1pH! Won (g pityiginea, (3.16)
( )n j:Z_n (Q§Q)n+j (Q§Q)n_j+1
Proof of (31]). By (318) we have
_ N (L+2) (2,27 549), "
(1+2) (227 h0)  Sar(z0) = (G 0)s D (_ )
n=1 (qaq)2n
2 (21)iH12I(1 = g2 gntil—3)/241
) > Z ZL=a7 g (3.17)

(q7Q)n+j (QaQ)n_jJ,-l

n=1j=—n

Since S(z7',q) = S(2,q), we find that the coefficient of 277 in (1+ z) (2,27 ';¢) _ Sa1(z,¢) is the same
as the coefficient of z/*t!. We next find these coefficients for j > 1. We will use the Bailey pair o and 8 from

BI2) and @EI3) and apply G3).
For j =1, we take j = 1 in BI7) and so [z](1 + 2) (z,z’l;q)oo Sai1(z,q) is given by

N T )l AU « S GO
(@0 ,; (€D i1 (G0), (@9)s ; (¢*:9), (¢:9),

— . q - — .
- (Qaq)oo; (q27Q)n (Q7q)n (q7Q)oo
Deo D 0" Bnla) = (¢:0)
n=0

- {0 SN0 ()

2 .
(@ ¢:0 =,

o0

1 n_n "("+1)
= > D" —(ga)

2.
(*:0) 2=

11



For j > 2, the calculations are similar. We have [27](1 + 2) (z, 2z~ L q)oo Sai1(z,q) is given by

0 1)+ (1 — 2= 1)gntili=3)/2+1
—q
(a9 Oo § g
n=j—1 (q q)nJ,»J (q q)'n, J+1
. . e © qn
= (1= ¥ NPV (gr9) . D

"0 (¢; q)n+2j71 (¢:9),,

(=11 = ¥ =12 (g5) Z
(q Q)gj_1 — 2J7q q

(— 1)a+1(1_ng l)qJ(J 1/2 (¢:q) . anﬁ o 1
(Qaq)2j—1

(~1)7 (1= ¥ )iV

(4:a)2j-1 (9%, 4:0) 0

(=1)H5(1 — 21— D/2 &

. Z(_l)nqn(nfl)/2+2jn. (318)
(4:9) o0 =

We note this formula agrees at j = 1 with the coefficient of z, except for the missing — (¢; q)
We rearrange these terms slightly. We have

(2;9) o Z )" n(nfl)/2+2jn

(_1)j+1(1 _ q2jfl)qj(jfl)/2 Z(_l)nqn(nfl)/2+2jn

— Z(_1)n+j+1qj(j—l)/2+n(n—l)/2+2jn + Z(_l)n-i-j 7(3+3)/24n(n—1)/242jn—1

q
n=0
— Z(_1)n+j+1qj(j—l)/2+n(n—1)/2+2jn+Z(_ n+]+1q 7(7—1)/24n(n—-3)/24+2jn
n=1

( )JJrl (G— 1)/2+Z n+]+1 gg 1)/24n(n— 3)/2+2jn(1+q )

Thus we have

(1+2) (2,27 559) Sar(z,9) = =(1+2) (4;9) D (@ 4 2 (—1)i g2
00 j=1
ZZ Zj —|—Zl j 1)n+]+1q i(G—1)/24n(n— 3)/2+2jn(1+q )
0 j=1n=1
which completes the proof of ([B.1). O
Proof of (33). By (B.10) we have
oo ntl 1)3H+123(1 — g%—1)g2nti(i—3)/2+1
- 9" )g
(1+2) (2,27 q) _ Sas(z,q) . (3.19)
( ) ;];n (q7Q)n+j (Q§Q)n_j+1

Similar to before we find that the coefficients of 277 and 2™/ are the same in (1+ 2) (z,27;q) _ Sas(z,q)

We again use the Bailey pair o and 8 from [B.12]) and B.I3]) but this time apply (8:9). Starting with j > 2,
we have

[27](1 + 2) (z,z_l;q)oo Sas(z,q)

g, 3 CUI g g
’ Oon:j—l (6D s (G D1
12




e 2n
= (1)1 = g7 @I (gq)
Z,% (¢ Dry2j1 (G0,
(=111 - g 1)(13(”1’/2 G0 "
(45 0)9;- = (@Y. ¢:q),
(1)1 — g% 1)(13(”1’/2 ' (49)
(4:9)954
)
(¢?
)

VL] _ 2010 (G +1)/2—1 o0
_ (=1 ((1 )qJ qJ(J )/) (4 9) o <1+Z(_1)nq(2j1)(n1)+n(n+1)/2(1+q2j1)>
4:9)251 q* 7q q
(—1)7H1(1 — g2~ 1)gdut1/2-1

_ \ <1+Z n nn 1)/242jn— 2_]+1(1_|_q2_] 1)) )

(6 9)

For j =1, we instead have
[Z)(1+2) (2,27 5q)  Sas(2,9)
(_1)j+1(1 _ q2j—1)qj(j+1)/2—1
(4 @)oo

—(:9) o +

<1+Z n nn 1)/242jn— 2]+1(1+q2] 1)) )

We rearrange these terms by

(_1)j+1(1 2] 1) j(G+1)/2—-1 <1+Z n nn 1)/242jn— 2]+1(1+q2j 1))

8

= (—1)TH1gdUHD/2=1 4 (L1)igdlG+8)/2=2 Z(_l)n-i-j-i-lqj(j—S)/2+n(n—l)/2+2jn(1 — Y72

= (1)t J(G+1)/2—-1 +(_1)jqj(j+5)/2—2+ _1)n+j+1qj(j—S)/2+n(n—l)/2+2jn

Mo

(= 1)+ gI+0)/ZHn(n=1)/2+2jn=2

Mg

+

1

3(G+5)/2+n(n—1)/2+2jn—2

7

( 1)n+j+1 i(5—3)/24n(n— 1)/2+2jn+ Z n+jq

n=-—1

3
Il
A

( 1)n+g+1 J(G+1)/24n(n—3)/2+2jn— 1(1

E'qg

_ q2n+1)'

3
Il
o

Thus

(1+2) (2,27 5q)  Sas(z,q) = —(1 + Z) (4 @)oo

ZZ Z] —|—Zl ] 1)n+]+1q i(G+1)/24n(n—3)/24+2jn— 1(1_q2n+1)7
00 j=1n=0

which is (32). O

Proof of (211]). We have

+1
o n ]+1Z] 1_q2] l)qn +n+j(5—3)/2+1

—1. 2
(1+2) (z, z ,q) Sas(z,q) Z Z (q; q)n+j (g; q)n_j_H

n=1j=-—n

(3.20)

The coefficients of 277 and z'*7 are the same in (1+2) (2,27 ¢) _ Sas(z,q). We again use the same Bailey

pair « and 8 as before but this time apply (B3.3]).

13



Starting with j > 2, we have
[2](142) (2,27 15q)  Sas(z,q)
s (_1)j+1(1 _ q2jfl)qn2+n+j(j73)/2+l

= (q7 q)oo Z (q, q)nﬂ- (Q7 q)n*jJFl

n=5—1

oo

= (~1P(1 = NI (). Z T

n? —n+2nj

G D ppoj—1 (G0,

. . 35255
_ (—1) (1= g% )g ™= (69 o Z g
(4:9)9; 4 (6%, q:9),

2

-1 Jj+1 1— q2j71 q3J ; +1 q;q 5 . .

_ ( ) ( : ) ( )oo an q(2_] 1)n6n(q2j 1)
(q7Q>2j_1 n—0

C1\iHl1 251 35—
G e e

T (4:9)o
(4 9) 951 (%3 0) o

For j =1 we instead have

)1+ 2) (2,2 150) _ Sas(2:0) = — (@), + (—1)7H (1 — g2 1) 5241,

. . 25
We note that (—1)7+1(1 — ¢2~1)¢™ ="+ is invariant under j — —j + 1. Thus we have

i 52 —55
(1+2) (2275 q)  Sas(z,0) = —(1+2) (:9) o + Z (1)L - g g
j=—o00
i 3 S S g
Jj=—00 j=—o00
= —(142) (g9, + Z ST (1) 3 i (—1)ig M
j=—o00 j=—o00
= 3 e 1= (-1
j=—o00
= 3 (1)1 - (1)
j=—o00
This proves [ZI1)).
O
Proof of (212). We have
XL 1)+l (1 — g L) gn i —3) /24
(1+2) (z,z_l;q) Sar(z,q) Z Z - " Ja (3.21)

(q7Q)n+j (Q§Q)n_j+1

n=1j=—n

The coefficients of 277 and z'*7 are the same in (1 + 2) (z, P q)oo Sar(z,q). This time we use the Bailey
pair o* and * from [B.I4) and I5) and apply (B.5).
Starting with j > 2, we have
[27)(1 + 2) (2, Zﬁl;Q) Saz(z,q)
Z 1)i+1(1 — q2j71)qn2+j(j73)/2+1
Oon,J71 (q Q)nJ,»J (q q)n Jj+1
14




n? —2n+2nj

. . 352-75 e
= (1Y -¢" Mg T (@0 )

= (€D g1 (G0,

o n? —2n+2nj

(G900 ¢
— (¢¥,¢;9),

)L (] 201y T 42
(1)1 —g¥ g =
(Q;q)2j—1

n

i . 342 7
1)1 — ¢2i1 q'*JQ 142 4q 0 2 (25 oV oy 2
_ ( ) ( : ) ( )oo Zq q(QJ 2) Bn(QQJ 2)
(Q7q)2j—1

; ; 3% -7j
)T A =¥ P (g9) 1 — g4-2
- ) 2j—1. (I—q )
(4 q)gj (@75 9)

= (-1 TR (1 - g2,
For j =1 we instead have
)1+ 2) (227 0) , Sar(z,a) = = (@:0)o + (—1)7 g™

s .
We note that (—1)7+1¢*=+2(1 — ¢%~2) is invariant under j — —j + 1. Thus we have

7J

21— g4,

352 7j

(1+2) (2,27 550) o Sar(z,9) = —(1+2) (4:0) o + Z (=1)*q 2(1-¢Y7?)
j=—00
—(142) (g:9) o + Z 2 (1)L T Z (-1)ig"
Jj=—00 Jj=—00
. 3525 o .
—(1+2)( +ZZJ+1 1)ig™ +ZZ—J(_
Jj=—00 Jj=—00
s . . . 3524
= Y e 1) (1)
Jj=—00
- i ; ; 332
= Y (=) - )i
j=—00
This proves [2.12]).
O
Proof of (33). We use the fact that
1 _ @), _ @-¢9. _ (69,
(©), (1), (G0 (@0, (G (Ga0), (@),
By (3I6) we then have
_ S (1+2) (2,275 9), (—¢59),
(1+2) (2,27 9)  Sor(2,0) = (6:6°) (G D Y ( : ) (3.22)
n=1 (qu)gn
oo n+l . i (i—
= (#¢°) . @) Y i W1 = g g VT (qrq),
7 o (D)1 (G D
(3.23)

Again we find that the coefficients of 277 and z'*7 are the same in (1+ 2) (z,27% q)oo Sci(z,q). We again
use the Bailey pair o and S from BI2]) and BI3]) but this time apply BI1]). Starting with j > 2, we have

[27](1 + 2) (z, 2z L q)oo Sci(z,q)

9 , o (1)t

= (@0) o (@0 n:zj;,l (@D s (G D0y
15
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oo

. . L q" (—q; q nj—1
= (=)= NPV (g9 (66) E
n+2] 1 (q7q)n

:(—1)”1(1—qzj_l)qj(j_””(q;Q) (¢:¢%) . (= ,) iq (-¢%:q),

(5 0)aj_1 —~ (¢¥,¢:9),
(1)1 =¥ )P0 (gq) o (6% L (60,1 S, N .
= (¢:9) ! Z (_QJH])nQ Bn(q2j 1)
4:9)251 ne0

_ (=17 (1= ¢¥ U2 (g59) , (45 q2)oo (=¢:9), 4 (—¢’; q)oo i @B D+n(Gn+5)/2() _ gitn)

B (@ @)2-1 (4%, 4:0) ~=

_ (_1)j+1(1 B q2j_l)qj(j_1)/2 i qn(3n—1)/2+3nj(1 _ qj+n)'

(4 9) o =
For j =1, we instead have
[Z](1 4 2) (2,27 55q)  Sea(z,q)
—1)IHN (1 — P )gU-D2 & i -
—(4;9) (q;qz)oo+( ) ) ) Zq (3n—1)/2+43 I(1 =g tm).
? o n=0
Thus
(1+2) (z,z_l;q)oo Sci1(z,q)
11 dG=D | n@BreD) g . -
—(1+2)(g;9) (q q ZZ 2 L1 g 1)J+1q 7t —+3 I(1— g™ (1 — g% 1)’
OO j=1n=0
(3.24)
which is (33). O
Proof of (217)). Again using (q;qg)j(q;q)n = (<qf31>q2)" and ([B.I0) we have
oo ntl ]+1Z] 1— 2j—1\,n(n+1)/24+5(j—3)/2+1 .
_ 7" ")q (=49
(1+2) (2,274 9)  Ses(z,9) = (4:4%) n
( )OO ( ;j;n (q7Q)n+j (q7Q)n7j+1

(3.25)

Again we find that the coefficients of 277 and z'*7 are the same in (1+ 2) (z,27% q)oo Scs(2,q). We again
use the Bailey pair « and § from [B12) and [B.I3]) but this time apply (B6). Starting with j > 2, we have

[zj](l +2) (z, 27 L q)oo Scs(z,q)

— (6% _ (¢:0) i (=171 (1 = g2 =) gnn /245 G=3) /241 (g g
o i) 2 (6 D (G Dy

0o qn(nfl)/2+nj (_q7 q)n+_j—1

= (G Dpyai (©9),
. . .2 . 0o n(n— ni .
(=171 =g Mg " (q59) o (5:0%) o (—4:0); 1 S ¢ D/2 (—g7iq)

B (4:9)95_1 2

. . 2 o
= (1M1= N T g9 (667)

— (¢*,q39),
j+1 2j—1Y,52—25+1 (. .2 . o0
D g Y (gig) (%) (), S (—aisq), "D/ g, (1)
(Q'Q)zj_l ne0 "

(11— ¥ )7 24 (g5q) o (0:¢%) o (—0:0);_1 (—¢730)
(4:4)2j-1 (0¥ 0)
= (1P
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For j = 1, we instead have

[27](1 + 2) (z, 2z L q)oo Sc1(z,q)

= (G0 (6:0%) o, + (“1)7H (1= g ) 2L
We note that (—1)7+1(1 — ¢%=1)¢7*~2+1 is invariant under j — 1 — j and so

(1+2) (z, 27t q)oo Ses(z,q)
= —(1+2) (60 (60 + 2 ZD(1- g 2

o0

:_(1+Z) (‘J§‘I)oo (q;q2)oo+ Z Zj(_l)j+1qj2,2j+1+ Z Zj(_

j=—o00 j=—o00

o0

= (42 (@D (@®)+ Y. 27910 + Y 2(-1)g"

PR j=—oo
By Gauss we have
> .2
(@D (G0°) o= D (-1)V¢,
j=—00
and 2277 427 — 1 — 2= (1 —2771)(1 — 29)2'79 which then proves (Z.14).
2
Proof of (Z13). Using 15— = M and (3I0) we have
(a%5a%),, (@92,
= (D" (L +2) (2,27 549), (),

(1+2) (2,27 q)  Se2(2,0) = (%1¢%) LD

n=1

(4 Q) an

oo n+l (_1)n+j+1zj(1 _ qzj—l)qn+j(j—3)/2+1 (q;q2)

)qu

= (%) D). >,

n=1j=—n

(Q;Q)n+g‘ (QQQ)nfjH

(3.26)

(3.27)

Again we find that the coefficients of 277 and z'*7 are the same in (1 + 2) (z,27% Q)OO Sp2(z,q). We again
use the Bailey pair « and § from (B12) and [B.I3]) but this time apply B1). Starting with j > 2, we have

(1 +2) (2,274 0) , Sp2(2,9)
— (¢4 ) i (—1)mHHI(1 = g2 1)gntil=9)/2+1 (g g2)

n=j—1

(Q§ Q)n+j (Q§ Q)n7j+1

N < (-1)"¢" (¢:4°), . ;
=(1—qg¥ Vgl 172 (g% ntj—1
e (e q)”; (4 D py2jo1 (G 0),

(L= ¢ U2 (¢%¢%)  (1:47), 1 & (F1)"a" (@715 0),

>

(45 0)25-1 = (¢¥,q:9),
(1- q2j71)qj(j71)/2 (qQ;QQ)oo (q;qz) > ‘ ‘
= , 2N (@), (—1) " Bulg¥ )
(q7Q>2j_1 ne0

(1- q2j—1)qj(j—1)/2 (qz; q2)00 (q; qz)jil (q2j+l;q2)oo
(4 9)9;-1 (4%, =6 0)
Gq°)

= i=D/2(

For j =1, we instead have

21+ 2) (2,275 q)  Se2(2.9) = — (¢%1¢%) L+ V% (61 ¢%) -
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By Gauss we have

(%), — §(i—1)/2
o\ — q )
(4:4%) oo ;

and so
(1+2) (27271§(J) Sr2(2,q)
—(1—|—z)(q q OOZZJ+Z ) gu—/2
Jj=1
)3 (o 21— )i
j=1
)3 (1= ) (1 = )t i,
j=1
This proves (215). O
2
Proof of [34). Again using (QT}f)n = ((Z;Z)z):, and (BI6) we have
0o L (L)t (1 — g2 1) gRntiG=8)/241 (g g2)
(1+2) (z,z_l;q) Sea(z,q) : (3.28)
;]_Z_:n (9,1 (G D

Again we find that the coefficients of 277 and z'*7 are the same in (1 + 2) (2,27 q)oo SEa(z,q). Here we
use the Bailey pair o* and 8* from [BI4]) and BI5) and apply BI0). Starting with j > 2, we have
[27](1 + 2) (z zil;q) SEa(z,q)
J+1(1 . ng 1)q2n+J(J 3)/2+1 (q q )
n;—l (q7Q>n+_j (q7Q)n_j+1

j j i(j < ¢* (q;47) .
— (—=1) i1 = q2j—1 qJ(J+1)/2—1 qz;qz ntj—1
o ) ( )OO ,;0 (¢; q>n+2j—1 (:9),,

_ (_1)j+1(1 _ q2j—1)qj(j+l)/2—l (q2;q2)oo (q;qQ)J;l i an (qu*l;qQ)
(5 0)aj_1 = (¥ ¢a),
(7L = g¥ U (@) o (a:6°),

00 —1
(Q§Q)2j_1 nz

(q2] 1 ) 2n6 ( 25— 2)
(_1)j+1(1 _ q2j—1)qj(j+l)/2—1 (qz;q2) ( <

n

0
(4 9) 951 (43 0) 0 (4%36%) o (1 +9) > (-1

n=0
(—1)it1gil+1/2-1

=) _1\n,nP-n+2nj1 _  2n+2 24 2n+1
(4:9)., (1 +q) <;( D" (I=¢")1—q )).

n n (2§—2)+n? +n(1 _ q2n+2)(1 _ q2j+2n+1)>

The (1 + ¢) in the denominator will cancel by elementary manipulations. We have

= 2 —n+2nj n j+2n
Z(_l)nqn +2 J(l _ q2 +2)(1 _ q2j+2 +1)
n=0

n n 7n+2ng + E n+1 n +n+2ng+2 + E n+1qn2+n+2nj+2j+l + E (_1)nqn2+3n+2nj+2j+3

0o
n=0 n=0 n=0
0o
E n n 7n+2ng 4 E n+1 n +n+2ng+2 4 E n n 7n+2nj+1 4 E n+1qn2+n+2nj+1

n=1 n=1
18

n=0



o0

=1— q2 + Z(_l)n n —n+2n] 1+q Z n+1 n +n+2n]+1(1 +q)

=(1+q(1-q+(1+q) Z ) TR (1 — g2t

o0

= (L+q) > (=1)rg™ 7mF2ni(1 — g2,

n=0
And so we have
. —1)iH14iG+1)/2-1 2
[Z7](1+2) (2,27 55q)  Spal(z,q) = U™

2 —n42nj n
(q-q) (_1)nqn +2 ](1 _ q2 +1)_

n=0
For j =1, we instead have
(=1)it1giG+1/2-1 2

2 .
(_1)nqn —n+2n](1 _ q2n+1).
(49) o o

[Z)(1+2) (2,275 q)  Sealz,0) = — (%5 6°) , +

Thus
(1+2) (2,27 5q)  Sealz,0) = —(1+2) (6% ¢°)

S 4 1) S Ay e )
j=1

4 n=0
(3.29)
which is (34). O
Proof of (221), (2.22), (2223), and (2-Z4). As noted in (B.IT),
_ (1+2) (227459, 0"
(1+2) (z,z 1;q) Sai(z,q) Z )" )
n=1 q7 q)2n

Thus setting z = 1 in (1)) gives

1 0o 00 B e
0= —2 (q;q)oo + — 22 ((_1)k+lqk(/€—1)/2 + Z(_l)n+k+lqk(k2—1)+4( 5 3) +2kn(1 + qn)> )

(4 0) 12

n=1

This proves (Z2ZI). Similarly 222), 223), and (Z24), follow by setting z = 1 in (2), B3)), and (BZI)

respectively.

Pmof of 29, ([ﬂﬂ) ([ZE) and (216) . We see ([2.9)) follows directly from B.)) and ([221), noting that
PR 1= (1= 2R (1 = 202tk = (2178 — 1)(1 — 2F)2'7F. The remaining three identities of
Theorem 2.2] follow as well Wlth the corresponding product identities product identities of Corollary 2.6l [

Proof for Corollary [2.3 . The proofs only require elementary rearrangements of series and Theorem 2.2l For

@I17) we have
i k/z k k—2 2 k41 k2—k—3n2-n
PR D G ) e [ e Vi
k=1n=—[k/2]
= & 1y ( k—2|n| 2n|—kt1y, K2=k=sn?on
=2 > - -2 o
k=0 n=—[k/2]

Z Z n+k Zk72\n|)(1 _ 22‘”|*k+1)q%

n=—00 k>2|n|

2_ 2_
Z Z n+k k)(l _ Z—k+1)qW+2k\n|—|n\

n=—00 k=0
19



oo o0

2_ 2_
Z Z n+k k)(l _ Z—k+1)qW+2k\n|—|n\

n=—oo k=1

oo o0

k2 —k4n?—n
§ § : n+k+1 k)(l _ Zkfl)zlfkqf+2k|n\f\n|

n=-—oo k=1

o0

Z(l _ )1 = 2Rtk <( 1)k B2k Z )tk wwkn n

k=1
o0 2 2
Z n+k+1 eran n

- - - ERT n E2—ktn?—3n op "
Z(l _ Zk)(l _ Zk 1)21 k <(_1)k+lq — 4+ Z(_l) +k+1q 5 +2k (1 +gq ))
n=1

k=1
= (1 + Z) (q,Z,Z_l;q)oo SA1(27Q)'

r (2I8) we have

oo [k/2]

Z Z 1)mHR(1 = R—2nty () Zznfk)q%
k=1 n=1
oo [k/2] K2 k—3n2—
_ Z Z (_1)n+k(1 _ Zk—2n)(1 _ Z2n—lc-i—1)qi2
k=1 n=0
- — n —2Zn n— m
:Z (-1) -‘rk(l_zk 2 +1)(1—Z2 k)q S
n=1k=2n
SR n —2n n— k2 4k—3n®-n
_Z Z(_l) +k(1_zk 2 )(1_22 kJrl)q >
n=0k=2n
Rate ket kN(q L okl EE=8kdn®osn op, g
=> > 1 (1=29)(1—-2""")g =
n=1k=1
S SR (1 = (1 a2
n=0 k=0
= SO (1)L = 2E)(1 = R R 2k
n=0 k=1
B Z Z(_l)n+k(1 — M- Z—k-i—l)q%-ﬂkn
n=0k=1
— Z Z(l _ Zk)(l _ Zkfl)zlfk(_1)n+k+1qw+2knfl(1 _ q2n+1)
k=1n=0

r (Z19) we have

o /3] .
Z Z n-HC ZSn—k-i—l)(l _ Zk—3n)q
k=1 n=0
o +/3] K24k 2
_ Z Z n+k Z3n—k+1)(1 _ Zk—3n)q S~ —3n"—n
k=1 n=0

20



oo [k/3]

+3° 3 (- 2Ry - Zk—3n+1)qk2;k—3n2+n
k=1 n=1
oo [k/3] )

_ Z Z (_1)n+k(1 _ Z3n—k)(1 _ Zk—3n+1)qk FE—3n%—n
k=1 n=1

oo [k/3]

K2k 2
Z Z (_1)n+k(1 _ 23n—k+1)(1 _ Zk—Sn)q S~ —3n —n(q2n o qk)

k=1 n=0
oo [k/3] e

PP e Nl (R T
k=1 n=1

-1 n+k 1— 3n—k+1 1— k—3n kz;kf?mzfn 2n
DY =t -z )1 —2""")g (q

n=0k=3n
o0 oo

—q")

")

- —3n K2k n%—n n
_|_Z Z (_1)n+k(1 _Z3n k)(l —Zk 3 +1)q > 3 (q2 _qk)

n=1k=3n

_ k2 —k+3n2—5n " n n
DI G L C e O R e (R A

_ k2—8k4+3n?—11n | g5 n
_ (_1)k(1 —Zl k)(l —zk)q 5 +3k +1(q2 _

)

qk+3n— 1 )

2 w2 _n
— 3OS ()R = 2Ry (1 = kg skt (gt

Z Z(—l)k(l ~ Ry Zk)qwj%kn(l —

n=0 k=1
(1 + Z) (quvz_l;q)oo SCl(ZaQ)-

For (Z20) we have

< L2 k2 —k 2
Z Z (_1)n+k(1 _ 2271,—]{})(1 _ Zk—2n+1)q ; —n
k=1 n=1
oo [k/2] i
D e L (I P
k=1 n=0
_ Z ( 1)n+k(1 _ Z2n7k)(1 _ Zk72n+1)qk —k _n?
n=1k=2n
0o oo . - Copy K2tk 2
_ Z Z (-1) +k(1 _ 2 k+1)(1 _ k-2 )g 2
n=0 k=2n
=3 Sy (- 2k - Zk)qk2;3k +n2 —3n+2kn+1
n=1k=1
_ Z Z(_l)n+k(1 _ Zl—k)(l _ Zk)qk2;k+n2+n+2kn
n=0 k=0

21
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M

n

M
NE

0
+

=

=

S (1) —
0 k=1
-

[}

x>

k)(l _ Zk)qk22+k +n?—n+2kn—1

kz;rk +n24+n+2kn

3 (=1)"HF(1 — 21
>

k=1

M1 =2

k2+k

(=)™ =21 - 2F)g

=1
z (q7 2 Z_l; Q)Oo SE4(27 q)

+n?—n+42kn— 1(1 _

2n+1)

O

Proof of (2223) and (2.20). Using essentially the same series rearrangements as in the proof of ([219)), we

find that

oo [k/3]

2D (-

k=1 n=0
oo [k/3]

-2

k=1 n=0
oo [k/3]

PG

k=1 n=1
0o [k/3]

—ii<

With (324]) we then have

—(1+2) (@)% (),

n+k:

n+k

n+k

4 dG=1) | n(Bn-1) . . )
=(1+2) (22 54q)  Se1(z,9) ZZ (29 4 2179 (=1)iH g e B (] ity (1 — g2
j=1n=0
2 w2 _m
(14 2) (505750 Sea(ev) = 30 S 1) (a1 2Hg R g gy _ ety
n=0 k=1
(1+=2) Zq (1 —¢")
oo [k/3] oo [k/3]
— Z Z n+k: 1+ Z) 77 —3n2+n Z Z n-Hg 1 + Z) k 2+k —_3n2_n
k=1 n=0 k=1 n=0
oo [k/3] o [k/3] . -,
£+ ) YD) T T T = (L4 2) Y a T (L=,
k=1 n=1 k=1 n=1 n=0
so that
(@ 0)% (1:4%)
oo [k/3] o [k/3] oo [k/3]
S 1)ty ok _3n?in ntkg B2 ik _gn2_ 1)ty B2k _3p21n
=->_ > (= 22 (- Y-
k=1 n=0 k=1 n=0 k=1 n=1

n+k: Sn—

K Zk)qwq%kn(l — M1 =

2
k+1 k—3ny E =k 7k—3n2+n
—2"7")g

3n—k+1 kz;rk —3n%2—n

_ Zk—Bn)q

3n—k __

K2k
—z Zk73n+1) >

q

_ _ K24k o 2
g3n—k _ .k 3n+1)q—2 3n’—n

22
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oo [k/3]

+Z Z n+k K2 S+ —3n? —n+zq37l277l(1_q )

k=1 n=1 n=0
oo [k/3] oo [k/3]
_ E E n+k+l K> 7k—3n +n + E E +k K? Jrk—3n +n _ E E n+k k> 7k—3n +n
k=1 n=0 k= l'n,_f[k/B] k=1 n=1
K2 +k
+ E E n+k —3n2+n
k=1n=— [k/3

+Zq = (1—-¢")

We use that
i Z +k k2 +k —3n%4n __ Z Z +k k2 +k —3n%+4n
k=1n=—[k/3] k=0n=—] k/3
_ Z Z (— 1)n+k+1q’C ;k—Sn +n
k=1n=—[(k—1)/3]
and
i kz/3 2k i[(ki)/?ﬁ 2 » oo [(k+1)/3] 2 2
_ n+k —k_3n24n __ n+k —3n%4n __ Z Z n+k —3n? +n
k=1 n=1 n= n=
to find that
(@0)% (6%,
S [k/3] 2 o oo [(k+1)/3] 2 " 2
— Z Z (— 1)n+k+l —3n’+n + Z Z n+k —3n°+n + Zq (1= ¢").
k=1n=—[(k—1)/3] k=1n=—k/3] n=0
But [(k+1)/3] = [k/3] when k # 2 (mod 3) and [k/3] = —[(k — 1)/3] when k # 3 (mod 3), so we find
oo [(k+1)/3] K24k 2 i (k/3] k2+k 2 e 3k2—k e 3k2+k
(—1)mHhgt st —ann Z Z (—1)nthg =3 4n _ Zq 4 ZqT,
k=1 n=—[k/3] k=1 n=—[(k—1)/3] k=1 k=1
Thus
) [k/3] 2k ) [k/3] 2k )
(q q) Z Z ( 1)n+k+1 —3n?4n + Z Z (_1>n+kq773n +n
k=1 n=—[(k—1)/3] k=1 n=—[(k—1)/3]
) [k/3]

K2k _g.2
— Z Z (_1)n+k+lq S —3n"+4 (1 _qk).

k=1n=—[(k—1)/3]

Using essentially the same series rearrangements as in the proof of (2.20), we find that

s [/2] oo [k/2] o
E E n—i—k 22 n—k __ k 2n+1 _ E E n+k 2n—k+1 _ Zk—2n)q 5 =N
k=1 n=1 k=1 n=0

Z Z _ NSNS Z‘”
_ n+k+1 1 k + Zk)q 5 +n n+2kn— 1 2n+1 n+1 1 + Z) n +n

n=0 k=1 n=1

With (3:29)) we then have
—(142) (9 (%% o,
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- 71 - k+k n?—n n— n
=(1+2)(q.2.2 " q) Sealz,q) — ZZ AL (lk oy B on 21 ganty

n=0k=1
oo /7] K2k _ 2
= (1 + z) (q7272—1;q) SE4 z q Z Z n+k 2k Zk—2n+1)q E—n
k=1 n=1
oo [k/2] 00
+ Z Z n+k 2n—k+1 _ Zk—2 Z n+1 1 + Z) n2+n
k=1 n=0 n=1
o [k/2] oo [k/2] 00
— (_1)n+k(1 +Z _ Z Z n+k 1—|—Z 2 Z n+1 1 —|—Z) n +n
k=1 n=1 k=1 n=0 n=1
so that
oo [k/2] o [k/2]
K _n? n K2 +k —n? n n n
(Q7 Q)oo Z Z -+ Z Z Jrk + Z +1 +
k=1 n=1 k=1 n=0
o [k/2] o [k/2] 2,
Y3 RS S
k=1 n=1 k=0 n=0
oo [(kED)/2) k2 +k oo [k/2] k2 +k 2
_ (_1)n+kq 5 —n? + Z Z n-Hc -n® 4 Z n+1 n +n
k =1 k=0 n=0

=0 n
[k/2] when k is even and so we find that

We now note [(k+1)/2] =
/2] o [k/2]

oo [(k+1)
k Zl (—1)™+g Bk _p? _kzzl ’CQQ —n? +Z Yo+,
=0 n= 0n
Thus
e k/2 K2 +k n2 > k/2 K2 +k n2 s [k/2] K2 +k 2
(4:0) 1)"**q + g = T

4. PROOFS OF CONGRUENCES BY THEOREM

We recall to prove the congruences in Theorem 2] we are to show the following terms are zero: ¢3"
in SA1(<37q)7 q3n+1 in SA3(<3=Q)7 q5n+4 in SA5(<5=Q)7 q7n+l in SA5(<7=Q)7 q5n+4 in SA7(<57q)7 q5n+3 in
Scs(Cs,q), @™ in Sp2((3,q), and ¢+ in Sg4((3,q). The double series do not appear to easily give that the
terms ¢°" 1 in Sa3((s,q) and ¢°" 3 in Sc1((s, ) are zero.

Corollary 4.1. Forn >0, Ma1(0,3,3n) = Ma1(1,3,3n) = Ma1(2,3,3n) = ispt 4, (3n).
Proof. We are to show that [¢3"]Sa1(C3,q) = 0 for n > 0. We note that

1 U
(¢a:Grga), (@356

By ([29) we have that
(1+ )1 = ¢)(A = ¢5)Sar(Gs.q)

1 s _ _ B i k(k—1) | n(n—3)
= T =16 -a6T ((—1>’f+lqk<k DRy +23+2'm<1+q">>.
’ o k=1 n=1

Upon inspection we find that when the ¢3V terms occur, we have either k =0 (mod 3) or k =1 (mod 3).
However for such values of k we have either (1 — ¢¥) = 0 or (1 — ¢57) = 0. Thus the coefficient of ¢*V in
Sa1(Cs,q) must be zero. O
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Corollary 4.2. Forn >0, Ma3(0,3,3n+1) = Mas(1,3,3n+ 1) = Mas(2,3,3n + 1) = 3spt 43 (3n +1).
Proof. We are to show for N > 0 that [¢>*V+1]S43(C3,q) = 0. By ([ZI0) we have that
(1+ Cs)(l = (3)(1 = €3)Sas(2,9)

ZZ (1 = )R (— 1y g 2k (g g2ny
°O k=1n=0

Similar to before we find that when the ¢>N*+! terms occur, we have either k =0 (mod 3) or k =1 (mod 3).

Again for such values of k we have either (1 —¢§) = 0 or (1 — ¢(57*) = 0. Thus the coefficient of ¢*¥*! in
Sa3((3,q) must be zero.
O

Corollary 4.3. Forn >0, Mg2(0,3,3n) = Mgs(1,3,3n) = Mga(2,3,3n) = 2sptg, (3n).
Proof. We are to show for N > 0 that [¢*"]Sg2(C3,q) = 0. By ([ZI5) we have that
(I+¢)(1 - Cs)(l — (3)Sr2(2,9)

(qq qq oo LICSH)
_le—@ -

(¢
Z > (- - A g

°O k=1n=—o0

When the ¢3V terms occur, we have either k =0 (mod 3) or k =1 (mod 3). Thus the coefficient of ¢V
in Sg2((s,q) must be zero.
]

Corollary 4.4. Forn >0, Mg4(0,3,3n+ 1) = Mp4(1,3,3n+1) = Mp4(2,3,3n+ 1) = 1spty, (3n+ 1).
Proof. We are to show for N > 0 that [¢>*N*1]Sg4(¢3,¢) = 0. By (ZI6) we have that
(1+ 4‘3)(1 —¢3)(1 = 3)Spa(z,9)
n ketl) L p2_ g, n— n
ZZ 1_ 1_<3) 1— k( 1)]@"1‘ +1q 7+ +2k 1(1_q2 +1)'

Ook 1n=0

Again when the q3N +1

coefficient of g3V 11

terms occur we must have either k¥ = 0 (mod 3) or £ = 1 (mod 3). Thus the
in Sgp4(z,q) is zero. O

Corollary 4.5. Forn >0, My5(0,5,5n+4) = Mas(1,5,5n+4) = Ma5(2,5,5n+4) = My5(3,5,5n+4) =
Mas(4,5,5n +4) = spt 45 (5n +4).

Proof. We are to show for N > 0 that [¢®V+4]S45(C5,q) = 0. By Lemma 3.9 of [11] we have

1 _ 1 i q(Cfs +6GY)
(G0, ¢ ), 6P a6

By (2I1) we then have

(L4 G)(1 =) (1 — ¢ 1)Sas(Gs,9)
= Y (D= -d G

OOk_

k k(3k+1)

— 00

LG S it - - G

00 k=—o0

However we find that M

Sas(Cs,q) must be zero.

is never congruent to 3 or 4 modulo 5, so we see the coefficient of ¢>V+4 in
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Corollary 4.6. Forn >0, M47(0,5,5n+4) = Ma7(1,5,5n+4) = Ma7(2,5,5n+4) = M47(3,5,5n+4) =
Ma7(4,5,5n +4) = £spt a7 (5n+4).

Proof. We are to show for N > 0 that [¢?N*4]S47((5,¢) = 0. By ([212) we then have
(1+ G =)L =5 1)Sar(Gs.a)

:ﬁ Z (—D)*(1 = ¢ - ek

X k=—o0

k k(sk k(3k—1)

4+ 555 /4 <5+<5 Z 1_<5)( k+1)c5k k(3k 1)'

Ook*oo

However we find that w is never congruent to 3 or 4 modulo 5, so we see the coefficient of ¢°V*+* in

Sa7(Cs,q) must be zero. |

Corollary 4.7. Forn >0, Mc5(0,5,5n+3) = Mcos(1,5,5n+3) = Mc5(2,5,5n+3) = Mc5(3,5,5n+3) =
Mes(4,5,5n + 3) = Lsptes (5n + 3).

Proof. We are to show for N > 0 that [¢°V+3]Sc5((5,¢) = 0. By (Z14) we have

(14 ¢) (1= ¢)(1 =G5 H)Ses(¢srq)
= e Y (-G -aH + C5+C5 T3 (- - e

X k=—0c0 OO k=—oc0

However we find that k2 is never congruent to 2 or 3 modulo 5, so we see the coefficient of ¢®V*3 in
Ses(Cs, g) must be zero. |

Corollary 4.8. Forn >0, Mu5(0,7,Tn+1) = Mas(1,7,Tn+1) = Mas(2,7,Tn+1) = Mu5(3,7,7n+1) =
Mas(4,7,Tn+ 1) = Mas(5,7,7n+ 1) = Ma5(6,7,7n+ 1) = Lspt 45 (Tn + 1).

Proof. We are to show for N > 0 that [¢"V11]S45((7,q) = 0. To do this we actually find the 7-dissection of
Sas5(¢r,q) and see there are no ¢"V*1 terms. We claim that

49. 49 6 g 2 [q14; q49]

J— . o0
Sas(Croa) = (434 )oo 14+ ¢+ ) %9, 45, 147] q 47, 2 4%
9 ] ) [e'e) Y ? [e’e)

[q*?

q9 q3 4

[, 4%, ¢70; 147] +(<7+<$)W+(1+C7+C$+C?+C$)[q21,

—(1+C+0)

147} 147]

[q 1 4 [q 4
(C+¢%)q
(@', ¢%8, q%, ¢4 7] (@1, q*, q*,q70 "]

+(¢+ ¢

6
2 5 q
et +C7)[q14,q49,q63;q147]oo)’ (4.1)

which we see has no terms of the form ¢"V+1. To begin we have by ([2.11]) that

LS 0@ s
Ak rorw ey D i T s e LA

)

so we can instead verify

o0

(¢; Q)
(¢ra. ¢ asg 2

OO n=—oo

1) (1—C7)(1— 7
D= -¢h

n(%n+1)

¢ "q

(—
(1+
14 -
o 0 q » [6"d"]
=(¢;9) ( (1+¢+¢7) [q42,q497q56;q147]00+q 47, %% 4%
3 4

[q*! q49,q70,q147]oo (<7+<$)[f114;c]7]w+(1+<7+<$+<$+<$)[ ’

“A+ O .,
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147] 147}

[4%;q [¢*;q
(¢ +¢%q ¢+ ¢%)q
[@%', 628, ¢%, ¢%%; ¢*17] (@', ", q%,q70; ¢M7]

6
2 5 q
tera ) [g"*, %%, ¢%%; qm]oo) ' (4.2)

For the series we have

= (LML= (= @Y e
n,zm<1+<7><1—<7><1 —Ty¢

Z Z n+k (1-— Ck)(l k+1)c;k (Tn+k) 3Tt +1)
q

k=3 n=—oo 1+<7 (1= -¢h)
3

_ (_1) (I_Céc)( k+1)<7 W = _ ) g2ink+TT 147n(2n—1)
:Z +m-ma-c¢h ¢ n;_oo( reTe

— (1 4 <7 4 C’?)q12 [ 7qlél’q (q147’ q147) _ q5 [q ’q147] (qléﬁ7 q147) 4 q2 (q49; q49)
_ (1 + <7 + C?)q [ 119,(]147} (ql47,ql47)Oo + (1 _ C’? _ C;l) 15 [q1407q147}00 (q147,q147) . (43)

The last line of the above equality follows from the Jacobi Triple Product Identity.
By Theorem 5.1 of [11] we have

[q14; q49} N
7

g2 g

(¢59) o [*5q%] 1
% = (q49;q49)oo (m + (G + ¢ - 1)Qm + G+ I

(¢ra, ¢ asq)

1 1 0 g0 N
+(E+¢G+ 1)q3m - (¢r + C?)'flm —(G+E+ 1)&%) .
(4.4)

By Euler’s Pentagonal Numbers Theorem and the Jacobi Triple Product Identity we have

7. 49

21. 49}

49
) _ (49, 49 [q 1 q ]oo_ [q iq
(Qaq)oo (q 5 q )OO ( [q7;q49]00 q [q14;q49]

To verify [@2), we multiply the right hand side of @) by ([J) collect the ¢"V** terms, for 0 < k < 6,
and verify each of those is equal to the corresponding term from multiplying (£3)) by ([@4). We do not
include the full details, but as an example, in verifying the ¢”"V terms match, we find we are to prove the
following identity:

49 . 49
(q49,q49)2 _(1+<+<6)q14 [q 14 ]oo _(2+<$+<’?)q7 [q 4 ]oo
e [q7; 4%] o [4*2, 4%, 7% M) o [ ¢*] o [a*4, 42, ¢5%; ¢*7]
et (%% ¢M7] et [q"¢"7] S N Y il I
1 [q%1, %8, ¢%, ¢%; ¢M47] 1 (@21, q%, q%9,q70; ¢147] a7, ¢*', ¢®45 %) o

[@%%;¢%] o [@®*, q*, q70; ¢*47]

7. A9
(142 )M [4":q ]Oo )

21. 28, g147] [0 [¢*% 7]
— (g% ¢ 147, 147 (14 ot (8 o la*q } [q 9 e 14 ’ oo ' oo
(¢%:4%) (50 )"O(( bt lq7, ¢**;q%] K [d7, q* 4%
MCETS }m[q7;q147]oo>

[q14, q21; q49]00

[q14; q49] - [q35; q147]

a7, %" q*)

—(GZ+ g X — (G 4+ +2)q
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14, 49
Dividing both sides by — (q49; q49)i0 g 7] [[q = 249] ST and then replacing ¢ by ¢, we find (8] to

be equivalent to

3. 7} [q ¢ q21} [q q} [q5 ¢ qs.qm]
1+ +6+2+ 2+5 ,1[%(]»(] 4 +6 4 54 0o
A+ CH )+ (246 + 6 (2, % q7] . [a% @ 4% o T EHOe [4207] o [@% 4 475 0] oo
o (@d"] "% %], G lewd] 6% d d% ]
N2 10 a% 7Y, RERE I
. 7} [qﬁ q8.q21}
+1+2+5[q,q,qm NVl I
(1+¢ C)[q27q3;q7]oo[q3,q1°;q21]oo
e lat %Pt L [wdT] [P b dBi ]
=G+ [9,6% 4% 4] * [9,¢% 47
1q7) % a8 ¢ ] [.0:47) _ [a,45 % ¢?]
+ 2+ 5 _1 [q7q o0 b b ) o0 + 2+ 5+2 9 ) fe's) b b ) [e'e)
(G ¢ 9, 4% 4] (G ¢ +2)a (2,2, 6347,

In this form each of the ten terms is a modular function with respect to I'y(21) by Theorem 3 of [16]. By
moving all ten terms to one side of the equation, we are to verify a modular function is identically zero. We
do this by checking that otherwise this modular function would violate the valence formula. Using Theorem
4 of [16] we compute the order at each cusp of T'1(21), not equivalent to infinity, of each generalized eta
quotient. At each cusp we taking the minimal order at that cusp among the generalized eta quotients.
Summing these minimal orders gives —13. By the valence formula, if the order at co is 14 or larger, the sum
of generalized eta quotients is identically zero. This is easily verified with Maple.

We then repeat this process for the other six values of k. In each case we have to prove an identity
between several infinite products. Dividing by one of the terms yields an identity between modular functions
with respect to I';(21). We examine the orders of each modular function at the cusps to and find we must
show the order at oo is larger than some number. In all cases this number is rather small, with 13 being the
largest.

O

5. DISSECTION FORMULAS

We recall we are to find the 3-dissections of Sg2((3,q) and Sg4((3,q), and the 5-dissections of S¢1(¢s, q)
and Sc5(Cs5,q). We prove Theorem by relating each series Sx(z,¢) to an appropriate rank-like and
crank-like function, both of which have dissections that are either known or easy to deduce.

We recall R(z,q) is the generating function for the rank of ordinary partitions. By [20], one form of the
generating function of the rank is

n@En+1)

1= =)™ (14 )
=2 % N = <+Z 0= 21— 1g") ) o1

n=0 m=—o0

We recall C(z,q) is the generating function for the crank of ordinary partitions. By [I1], two forms of the
generating function are given by

SRLIGER]
Oleg) = I _ 1) <1+Z D=2 (=1 (1+q)>'

(2¢,27'¢:0) . (0o (1 —zq)(1 — 2z=1q")

We also define two series of a similar form to that of R(z q) and C(z,q),

1 s —1)g™
Ri(z,q) = ((q’q) <1 + 22 1 — 2q™)(1 —)Z(lq)n)q ) ’

a(eng) = L0 <1+Z 0= a0 )

(@9) q) —zq")(1 —271q")

We used Rj(z,q) in [I0] in proving dissections similar to what we are doing here, and as we will see shortly
Rs(z,q) is essentially the rank of an overpartition.
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Proposition 5.1.

Ser(:10) = o= (R ) = (a:67)  Cle.a). (5.2)
Sos(.0) = Ty (O ) = (0:6%) . Ole) (5.3)
Ska(22) = = (Fa(0) = (410 Cle.0) (5.4)
Sea(220) = = (ol 0) = (410 C-.). (5.5)

We note that (—¢;q),, C(z,q) = % is a residual crank studied in [8] and [10]. Most of these

functions have known dissections when z is either a primitive third or fifth root of unity.
By taking subtracting the expressions for Sc¢1(z,q) and Scs(z, q) in Proposition Bl and using (LII), we
have Corollary 2.7

Proposition 5.2.

(42507 _ [ ¢®] . (_1)ngTon(n1)/2 (4®59%)

+q5C5+C§1—2 Z

R(G,q) =

4% ¢*°]2, (@:0%) 0 iy 1= T
7 (q25; qQS)OO 7 (q25; q25)oo I:qS7 q25] -
+ q2(C5 + (5 1)m - q3(C5 +¢5 1) [qlo;q25]io
20 + 2 _1+1 °° —1)g75n(n+1)/2
C(G,q) = (q%;q%)m <% (G + <5 —1)q m — (G + C?f + 1)q2m
~(G+ G %) , (5.7)
(a%4°)" (% ¢°) (¢'%:¢"%)  (¢”:¢°) s (a0
R _ o) 0 _ Yy o o .
o) St ene T @e e @ o
3 (¢%4°)5 (%) (%:¢°) . (¢*%¢*®) s (a9
R s . — S.S) x 2
) =5 g T > @) | @) @ (@)
(q ’q oo n 9n +9n
o (4% 4°)% n;oo ! _q9"+3 7 >
5. .50
(:4%) C(Gra) = (:¢7°) (% +2(¢+ ¢ N %
q15;q5 q25.q50 - ql57 50 - q5;q50 -
_2q [[q q25]] (C +<5 ) %q 7q 5%00 - (<5 +<5 ) quo; 25%00 + 2(]4 [q5;q25%oo ) )
(5.10)
(@) (%% (@"%4")_ (¢%¢°) ,  (d'%:¢")
—¢;9),, C((3,q) = — 00 © _2 . 5.11
(749)e Cl6s,9) (P (@59 ! (0% ¢°) L@ () o

We find that Theorem follows from Propositions [B.1] and
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Proof of Proposition [5.1l We apply Bailey’s Lemma, with p; = 2z and p2 = 271, to each Sx(z,q) with the
corresponding Bailey pair, the identities then quickly follow. We write

(:0°) o (GDoe = (2:2759), 0" (66%) (@0
Sorlsa) = (2,2 1,q Z (q,q) (2,271 9)
_ (@¢°) (@9 q 0 oo N e @@ (@9
TG B, Z R TN
_ 1 i (1-2)(1 -2l (6%, (@0
1=2)1=2"(¢*¢") 2= (1—2¢")(1 —27"q") (2,275 0)
B 1 2 (1—2)1 -2z (=D 1+ 2\ (66) L (60
(=)A= (0% <1+nz_:1 (1= 2¢*)(1—z"1¢>) )  (mr ),

- z)((ll —1) (R(z,¢*) — (1:¢%) _ C(2,9)) -

This proves (5.2)).
Next we have

(697 L (@9 'q) PR (46°) L (60w
Ses(e0) = Ty nz;) ) (459),, (2,2 1,q)
_(8¢) @D N mges (@40
(5 50 1,q Z P (2,27 7‘])
_ 1 i (1-2)(1—2"¢"ag®  (66°), (4 Du
1=2)1=2"(¢*¢*) 2= (1 —2¢")(1 — 271" ) (2,275 0) o

(-0 -0 S e EREN

B 1
(1= -27Y)

This proves (5.3).
For Sga(z,q) we have

(C(z,¢*) = (1:4%)  C(2,9)) -

Sealzq) = (¢*¢%) o i (z.2759), (D" (¢*d%),
E2(<, - — - —
(2,275 0) 0 = (a%¢%), (z,27159)
oo
—4, 49 _ —4, 49
_ ( = )oo (Z,Z l;q)nanE2_ ( - )oo
(2,275 0) 0 = (2,271 9) o

n E2

(—% Q) e i (1-2)(1—21¢"al?  (—qq;9)

00— ) (G0 = T—2g)(T—21q") (2,2 5a),,

_ (Do JA=2HED"" Y (469
A0z ) (@ (”22 T ) (e T0)
= (1 — Z)((l — 271)) (Rl(’z?q) - (_q7Q)oo C(Z7q)) .

This proves ([G5.4]).
Lastly, for Sg4(z,q) we have

2.2 o0 —1. 2n 2.2
Spa(e.q) = (4% 4°) Z(z,z 10), " (%)

(2275 0)0 = (0%6%), (z,2714)
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—4,¢:9) napd (GG
0q), 4" By —
(2,2 1,qoonz% "ozl

n . E4

(=4 9) 2(1—2)(1—2 g ol (— qu)

T 00— (G0 & T2 -2 1g") (2
_ (—49) = JA=2zHED" 1+ 6*)))  (-0.¢69a
T -9 - ) (G0 <”Z (1= 2q")(1— 2 1¢") ) (52 0) o

1
= (1 _ 2)((1 — 271)) (R2(qu) - (_Q;Q)oo 0(27Q))-

This proves (5.0)).

O

Proof of Proposition[5.2 Equation (5.6]) follows from Theorem 4 of [5], (5.7) is (3.8) of [11], (5.8) is Theorem
2.13 of [10], and (&I1)) is Theorem 2.9 of [I0].
We first prove (BI0). By Gauss and the Jacobi Triple Product identity we have

o'} 2 o'}
(%) (@D = D ()" = Y (=1 S (—1)ngtonkg?n

n=—oo k=-—2 n=-—oo

_ (qso;qso)oo i (_1)qu2 [q10k+25;q50]oo
k=—2
= (¢5¢*) _ ([¢*: 0] . — 24 [¢"%¢™] _ +2¢* [¢*: 0] ). (5.12)
By Lemma 3.9 of [I1] we have
1 1 1

+ (G + C;l)q[ (5.13)

(60,6 M asa) ~ 5 q'% q*]
Multiplying (5.12) and (EI3)) yields
(q7q2)oo (q’q)oo — (q50, q50) [q25;q50}oo 4 2(<5 4 Cf)_l)q5 [q5;q50}oo
(606 M aa) e U % 6% [¢'%; ¢*5] .

[q15; q50} -

20 (G 6 g UG+ 6

which is (5.10).

We note we could also use the 5-dissection of Rgdseth [17] for (—q; q2)oo and replace ¢ with —q to get

B (q5;q5)oo (q25;q25)io [q15;q50}00 - (q5;q5)oo (q50;q50)io [q15;q50}io

L2
((Lq )OO = 10. 10\3 10. ,10)3
(q'0;¢19) (q'0;¢19)
2 2
g (2:0°) . (¢%¢™)2 [0 ¢™)2 g (¢%4°)  (6%:07)  [d°: 6]
(419 q10)2, (q'%;¢10)%,

(q5'q5)2 ( 50, 50)3
4 ’ o)
(@205 ¢10)5, (4%3¢2%)

However multiplying this with the 5-dissection for C({s, ¢) would be a much longer calculation.
For (5.9) we recall R(z,q) is the generating function for the Dyson rank of an overpartition. By [13] the
generating function for the Dyson rank of an overpartition is given by

) (=2 (=g
R0 = ol (”22 e )
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By Theorem 1.1 of [15] we have

_ - (q q) (q q) ) (qQ;qQ)OO (qlg;qlg)oo

18. 18\4
q 549
R(C3,q) = +4q¢° ( )

(¢'8;¢'8)% (q @)% (4% ¢%) oo (4% 0% (¢54%)
n 9n +9n

( ’q oo
B v Z 1_q9n+3

OO n=—oo

. . . . o . 3—R(¢3,9) .
We note the expression on the right hand side of the identity in (5.9) is =—5>*%. We will show that

1-2)(1-2YH+(=+2 Rz
2

= Ry(z,q).
We have
(1—2)(1—-271) + (z+ 271 R(z,q)

o0

z+z 1—2)(1—2_1) (q;q)OO Z (1—2)(1-2" )(—1)"q"2+">

2 (—% @)oo — (I—z¢")(1-z""¢")

_ (39
(4:9)

n n2+n

_ 69y (1+ 1_Z)(l_Z,l)(_l)nqnzwﬂ,l)i1—z><1—z*1><—1>q )

(4 9) o (1 —2¢")(1—271q")

_ (59

—2)1—z"H)(-1)" n (z+2"Y)g"

e T Z == e (1 z—lqn>)>
_ 49)y )(L— = H)(=1) g™ (1 +¢*")
(@9 (HZ (1—zgM)(1—z""q") )
= Ry(z,q).

This proves (5.9), noting (1 — ¢3)(1 —¢3') =3 and (3 + ¢ * = —1.

6. CONCLUSIONS

We see spt-crank-type functions lead to a large number of new spt-type functions, as well as congruences for
these functions. We see some of these spt-crank-type functions have surprising product representations, while
others have interesting Hecke-Rogers-type double series representations. Also in all cases these functions arise
as the difference of a rank-like and crank-like function. While these results are quite different, they both
come out of Bailey pairs and Bailey’s Lemma.

As noted in Section 2, here we do not pursue interpreting the Mx(m,n) as a statistic defined on the
smallest parts that each function spty (n) counts. However there is reason to believe such an interpretation
exists. By [12] we know each of Ma1(m,n), Mas(m,n), Mas(m,n), and Ma7(m,n) is nonnegative. Also by
expanding the summands of Sg4(z,q) by the g-binomial theorem,

q2n (q2n+27 q ) B q2n (q2n; q)oo
(247, 274" @) (1= @) ("5 ¢2) o (247, 2714 ) o
q2n 0 Z—kan

(=) (@) 2 (@) (207 Ra)

we see that each Mpg4(m,n) is nonnegative. Numerical evidence suggests that also each M¢c1(m,n) and
Mes(m,n) is nonnegative. We pose the problem of finding nice combinatorial interpretations of the coeffi-
cients Mc1(m,n) and Mes(m,n) which prove nonnegativity.

In a coming paper, the second author continues this study with Bailey pairs from groups B, F, GG, and
J of [18] and [19]. This will cover the last of the Bailey pairs of Slater that appear to give congruences of
this form via spt-crank-type functions. Of course that is not to say there are not many more spt-crank-type
functions to uncover.
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