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Abstract. We show how Rank-Crank type PDEs for higher order Appell functions
due to Zwegers may be obtained from a generalized Lambert series identity due to
the first author. Special cases are the Rank-Crank PDE due to Atkin and the third
author and a PDE for a level 5 Appell function also found by the third author. These
two special PDEs are related to generalized Lambert series identities due to Watson,
and Jackson respectively. The first author’s Lambert series identity is a common
generalization. We also show how Atkin and Swinnerton-Dyer’s proof using elliptic
functions can be extended to prove these generalized Lambert series identities.

1. Introduction

F. J. Dyson [9], [10, p. 52] defined the rank of a partition as the largest part minus
the number of parts. Dyson conjectured that the residue of the rank mod 5 divides
the partitions of 5n + 4 into 5 equal clases thereby providing a combinatorial inter-
pretation of Ramanujan’s famous partition congruence p(5n + 4) ≡ 0 (mod 5). He
also conjectured that the rank mod 7 likewise gives Ramanujan’s partition congru-
ence p(7n + 5) ≡ 0 (mod 7). Dyson’s rank conjectures were proved by A. O. L. Atkin
and H. P. F. Swinnerton-Dyer [3]. The following was the crucial identity that Atkin
and Swinnerton-Dyer needed for the proof of the Dyson rank conjectures. It was first
proved by G.N. Watson [18].

ζ
[ζ2]∞
[ζ]∞

∞∑
n=−∞

(−1)nq3n(n+1)/2

1− zqn
+

[ζ]∞[ζ2]∞(q)2∞
[z/ζ]∞[z]∞[ζz]∞

(1.1)

=
∞∑

n=−∞

(−1)nq3n(n+1)/2

(
ζ−3n

1− zqn/ζ
+

ζ3n+3

1− zζqn

)
.
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Throughout we use the standard q-notation

(x)0 := (x; q)0 := 1,

(x)n := (x; q)n :=
n−1∏
m=0

(1− xqm),

(x1, · · · , xm)n := (x1, · · · , xm; q)n := (x1; q)n · · · (xm; q)n,

[x1, · · · , xm]n := [x1, · · · , xm; q]n := (x1, q/x1, · · · , xm, q/xm; q)n.

when n is a nonnegative integer. Assuming |q| < 1 we also use this notation when
n = ∞ by interpreting its meaning as the limit as n → ∞. Later M. Jackson [14]
proved an analogue of the above identity,

ζ2[ζ2]∞[xζ]∞[x/ζ]∞
[ζ]∞[x]2∞

∞∑
n=−∞

(−1)nq5n(n+1)/2

1− zqn
+

[ζ]∞[ζ2]∞[xζ]∞[ζ/x]∞(q)2∞
[z/x]∞[z/ζ]∞[z]∞[zζ]∞[zx]∞

+
ζ

x

[ζ]∞[ζ2]∞
[x]∞[x2]∞

∞∑
n=−∞

(−1)nq5n(n+1)/2

(
x−5n

1− zqn/x
+

x5n+5

1− zxqn

)
(1.2)

=
∞∑

n=−∞

(−1)nq5n(n+1)/2

(
ζ−5n

1− zζ−1qn
+

ζ5n+5

1− zζqn

)
.

Recently, the first author [8, p.603] found a generalization of the above two identities,
namely,

xm
1 [x2/x1, · · · , xm/x1, x1xm, · · · , x1x2, x

2
1]∞

[x1]∞[x2, · · · , xm]2∞

∞∑
n=−∞

(−1)nq(2m+1)n(n+1)/2

1− zqn

+
[x1/x2, · · · , x1/xm, x1, x1xm, · · · , x1x2, x

2
1]∞(q)2∞

[z/x1, z/x2, · · · , z/xm, z, zxm, · · · , zx1]∞

+

{
x1

x2

[x1/x3, · · · , x1/xm, x1, x1xm, · · · , x1x3, x
2
1]∞

[x2/x3, · · · , x2/xm, x2, x2xm, · · · , x2
2]∞

(1.3)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
x
−(2m+1)n
2

1− zqn/x2

+
x
(2m+1)(n+1)
2

1− zx2qn

)
+ idem(x2;x3, · · · , xm)

}

=
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
x
−(2m+1)n
1

1− zqn/x1

+
x
(2m+1)(n+1)
1

1− zx1qn

)
,

where g(a1, a2, · · · , am)+ idem(a1; a2, · · · , an) denotes the sum
n∑

i=1

g(ai, a2, · · · , ai−1, a1, ai+1, · · · , am),

in which the i-th term of the sum is obtained from the first by interchanging a1 and ai.
Equation (1.3) was proved using partial fractions. Indeed, the m = 1 case of (1.3)

is equivalent to (1.1), while the m = 2 case is equivalent to (1.2). The fact that the
right-hand side of (1.2) is independent of x, and that the right-hand side of (1.3) is
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independent of x2, x3, · · · , xm seems to be intriguing at first. Indeed, one purpose of
this article is to show that the left-hand sides of (1.2) and (1.3) are really elliptic
functions of order less than 2, in fact entire functions as we show, in the respective
variables (x for (1.2) and x2 for (1.3) while holding x3, · · · , xm fixed) and therefore
that they must be constants which are nothing but the right-hand sides of (1.2) and
(1.3) respectively. Since (1.2) follows from (1.3), we show this only for (1.3). This is
done in Section 2.

Let N(m,n) denote the number of partitions of n with rank m. Then the rank
generating function R(z, q) is given by

R(z, q) =
∞∑
n=0

n∑
m=−n

N(m,n)zmqn =
∞∑
n=0

qn
2

(zq)n(z−1q)n
. (1.4)

In [1], G. E. Andrews and the third author defined the crank of a partition, a partition
statistic hypothesized by Dyson in [9]. It is the largest part if the partition contains
no ones, and otherwise is the number of parts larger than the number of ones minus
the number of ones. For n > 1, we let M(m,n) denote the number of partitions of n
with crank m. If we amend the definition of M(m,n) for n = 1, then the generating
function can be given as an infinite product. Accordingly, we assume

M(0, 1) = −1, M(−1, 1) = M(1, 1) = 1, and M(m, 1) = 0 otherwise.

Then the crank generating function C(z, q) is given by

C(z, q) =
∞∑
n=0

n∑
m=−n

M(m,n)zmqn =
(q)∞

(zq)∞(z−1q)∞
. (1.5)

Atkin and the third author [2] found the so-called Rank-Crank PDE, a partial differen-
tial equation (PDE) which relates R(z, q) and C(z, q). To state this PDE in its original
form, we first define the differential operators

δz = z
∂

∂z
, δq = q

∂

∂q
. (1.6)

Then the Rank-Crank PDE can be written as

z(q)2∞[C∗(z, q)]3 =

(
3δq +

1

2
δz +

1

2
δ2z

)
R∗(z, q), (1.7)

where

R∗(z, q) :=
R(z, q)

1− z
,

C∗(z, q) :=
C(z, q)

1− z
. (1.8)

In [2], it was shown how the Rank-Crank PDE and certain results for the derivatives
of Eisenstein series lead to exact relations between rank and crank moments. As in
[13], define Nk(m,n) by∑

n≥0

Nk(m,n)qn =
1

(q)∞

∞∑
n=1

(−1)n−1qn((2k−1)n−1)/2+|m|n(1− qn), (1.9)
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of any positive integer k. When k = 1 this is the generating function for the crank,
and when k = 2 it is the generating function for the rank. When k ≥ 2, Nk(m,n)
can be interpreted combinatorially as the number of partitions of n into at least k − 1
successive Durfee squares with k-rank equal to m. See [13, Eq.(1.11)] for a definition
of the k-rank. We define

Rk(z, q) :=
∑
n≥0

n∑
m=−n

Nk(m,n)zmqn. (1.10)

From [13, Eq.(4.5)], this generating function can be written as

Rk(z, q) =
∑

nk−1≥nk−2≥···≥n1≥1

qn
2
1+n2

2+···+n2
k−1

(q)nk−1−nk−2
· · · (q)n2−n1(zq)n1(z

−1q)n1

, (1.11)

when k ≥ 2. In Section 3, we show that Rk(z, q) is related to the level 2k − 1 Appell
function

Σ(2k−1)(z, q) :=
∞∑

n=−∞

(−1)nq(2k−1)n(n+1)/2

1− zqn
. (1.12)

We obtain the following

Theorem 1.1. For k ≥ 1,

Rk(z, q)

=
1

(q)∞

(
zk−1(1− z)Σ(2k−1)(z, q)− zθ1,2k−1(q) + z(1− z)

k−3∑
m=0

zmθ2m+3,2k−1(q)

)
,

(1.13)

where

θj,2k−1(q) =
∞∑

n=−∞

(−1)nqn((2k−1)n+j)/2, (1.14)

for j = 1, 3, . . . , 2k − 3.

This theorem generalizes Lemma 7.9 in [12] which gives a relation between the rank
generating function R(z, q) and a level 3 Appell function. The k = 1 case of the theorem
gives the familiar partial fraction expansion for the reciprocal of Jacobi’s theta product
(z)∞(z−1q)∞ [16, p. 1], [17, p. 136], since

∑∞
n=−∞(−1)nqn(n+1)/2 = 0.

A few years ago the third author found a 4th order PDE, which is an analogue of the
Rank-Crank PDE and is related to the 3-rank [13]. To state this PDE we define

G(5)(z, q) :=
1

(q)3∞
Σ(5)(z, q). (1.15)

Then

24(q)2∞[C∗(z, q)]5

= 24(1− 10Φ3(q))G
(5)(z, q)

+
(
100δq + 50δz + 100δqδz + 35δ2z + 20δqδ

2
z + 100δ2q + 10δ3z + δ4z

)
G(5)(z, q), (1.16)
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where

Φ3(q) :=
∞∑
n=1

n3qn

1− qn
. (1.17)

This PDE can be written more compactly as

24(q)2∞[C∗(z, q)]5 = (H2
∗ − E4)G

(5)(z, q), (1.18)

where H∗ is the operator

H∗ := 5 + 10δq + 5δz + δ2z ,

and

E4 := E4(q) := 1 + 240Φ3(q),

is the usual Eisenstein series of weight 4. The PDE (1.16) was first conjectured by the
third author and then subsequently proved and generalized by Zwegers [21]. It was also
Zwegers who first observed that (1.16) could be written in a more compact form. We
now describe Zwegers’s generalization. Define for l ∈ Z>0, the level l Appell function
as

Al(u, v) := Al(u, v; τ) := zl/2
∞∑

n=−∞

(−1)lnqln(n+1)/2wn

1− zqn
, (1.19)

where z = e2πiu, w = e2πiv, q = e2πiτ , and define the modified rank and crank generating
functions as follows.

R := R(u; τ) :=
z1/2q−1/24

1− z
R(z, q), (1.20)

C := C(u; τ) := z1/2q−1/24

1− z
C(z, q). (1.21)

Here and throughout we assume Im τ > 0 so that |q| < 1. Then the following theorem
due to Zwegers gives for odd l, the (l − 1)th order analogue of the Rank-Crank PDE.

Theorem 1.2 (Zwegers[21]). Let l ≥ 3 be an odd integer. Define

Hk :=
l

πi

∂

∂τ
+

1

(2πi)2
∂2

∂u2
− l(2k − 1)

12
E2,

H[k] := H2k−1H2k−3 · · ·H3H1, (1.22)

where E2(τ) = 1 − 24
∑∞

n=1 σ1(n)q
n is the usual Eisenstein series of weight 2 with

σα(n) =
∑

d|n d
α. Then there exist holomorphic modular forms fj (which can be con-

structed explicitly), with j = 4, 6, 8, · · · , l − 1, on SL2(Z) of weight j, such thatH[(l−1)/2] +

(l−5)/2∑
k=0

fl−2k−1H[k]

Al(u, 0) = (l − 1)!ηlCl, (1.23)

where η is the Dedekind η-function, given by η(τ) = q1/24(q)∞.
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Zwegers proved this theorem using the formulas and methods motivated from the
theory of Jacobi forms. In contrast to this, the proof of the Rank-Crank PDE by Atkin
and the third author, which corresponds to the l = 3 case of Zwegers’s PDE, depends
upon simply taking the second derivative with respect to ζ of both sides of (1.1). The
main goal of this paper is to show how a generalized Rank-Crank PDE of any odd order
follows from the Lambert series identity (1.3) in a similar fashion. We will obtain
Zwegers’s result in a different form. In our form the coefficients are quasimodular
forms rather than holomorphic modular forms, but in contrast, our coefficients are
given recursively. See Theorem 4.4 and Corollary 4.5.

This paper is organized as follows. In Section 2, we prove (1.3) using the theory
of elliptic functions. Then in Section 3 we prove Theorem 1.1, which is the theorem
that relates Rk(z, q) with the level 2k − 1 Appell function Σ(2k−1)(z, q). In Section 4
we prove our main result that shows how (1.3) can be used to derive the higher order
Rank-Crank-type PDEs of Zwegers.

In the light of (1.19), it should be observed that the identities (1.1) and (1.2) are really
the identities involving certain combinations of level 3 and level 5 Appell functions
respectively while (1.3) is an identity involving a combination of level (2m+1) Appell
functions. However, the analogue for level 1 Appell function which cannot be derived
from (1.3) was found by R. Lewis [15, Equation 11] and is as follows.

[z]∞[ζ2]∞(q)2∞
[zζ]∞[ζ]∞[zζ−1]∞

=
∞∑

n=−∞

(−1)nqn(n+1)/2

(
ζ−n

1− zqn/ζ
+

ζn+1

1− zζqn

)
. (1.24)

2. General Lambert series identity through elliptic function theory

Atkin and Swinnerton-Dyer’s proof of (1.1) depends in essence on the theory of
elliptic functions. In this section, we show how this method of proof can be used to
prove (1.3). Let

z = e2πiu, x1 = e2πiv, x2 = e2πiw, (2.1)

and let

xj = e2πiaj , j = 3, · · · ,m, (2.2)

where u, v, w, a3, . . . , am are all complex numbers. Also recall that q = e2πiτ , where Im
τ > 0.

Let

[b]∞ =: J(a, q) =: J(a), where b = e2πia, a ∈ C. (2.3)

Then using the Jacobi triple product identity [4, p. 10, Theorem 1.3.3], we easily find
that,

J(a, q) =
ieπiaq−1/8

(q)∞
θ(a), (2.4)

where

θ(z) = θ(z; τ) :=
∞∑

n=−∞

e
πi

(
n+

1
2

)2
τ+2πi

(
n+

1
2

)(
z+

1
2

)
. (2.5)
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Comparing this with the classical definition of θ1(z) [11, p. 355, Section 13.19, Equation
10], we find that upon replacing q by q1/2 in this classical definition, θ(z) = −θ1(z).
From [20, p. 8], we see that

θ(z + 1) = −θ(z), (2.6)

θ(z + τ) = −e−πiτ−2πizθ(z), (2.7)

θ(−z) = −θ(z), (2.8)

θ
′
(0; τ) = −2πq1/8(q)3∞. (2.9)

Using (2.6) and (2.7), we have

J(a+ 1, q) = J(a, q), (2.10)

J(a+ τ, q) = −e−2πiaJ(a, q), (2.11)

J(a− τ, q) = −q−1e2πiaJ(a, q), (2.12)

J(−a, q) = −e−2πiaJ(a, q). (2.13)

Using (2.3), we rephrase (1.3) as follows:

e2πimvJ(w − v)J(w + v)J(2v)

J(v)(J(w))2

∏
3≤j≤m

J(aj − v)J(aj + v)

(J(aj))2

∞∑
n=−∞

(−1)nq(2m+1)n(n+1)/2

1− e2πiuqn

+
J(v − w)J(v)J(v + w)J(2v)(q)2∞

J(u− v)J(u− w)J(u)J(u+ w)J(u+ v)

∏
3≤j≤m

J(v − aj)J(v + aj)

J(u− aj)J(u+ aj)

+

{
e2πi(v−w) J(v)J(2v)

J(w)J(2w)

∏
3≤j≤m

J(v − aj)J(v + aj)

J(w − aj)J(w + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

e2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)
+ idem(w; a3, · · · , am)

}

=
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiv(2m+1)n

1− e2πi(u−v)qn
+

e2πiv(2m+1)(n+1)

1− e2πi(u+v)qn

)
. (2.14)

Fix a3, · · · , am, consider the left-hand side of (2.14) as a function of w only and denote
it by g(w). Let f1(w) denote the expression in line 1 of (2.14), f2(w) the expression in
line 2 of (2.14) and f3(w) the expression in lines 3 and 4 of (2.14). Then, using (2.10),
(2.11) and (2.12), we see

f1(w + 1) = f1(w) = f1(w + τ),

f2(w + 1) = f2(w) = f2(w + τ),

f3(w + 1) = f3(w). (2.15)
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Another application of (2.11) and (2.12) gives

f3(w + τ)

=
e2πi(v−w−τ)J(v)J(2v)

J(w + τ)J(2w + 2τ)

∏
3≤j≤m

J(v − aj)J(v + aj)

J(w + τ − aj)J(w + τ + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πi(w+τ)(2m+1)n

1− e2πi(u−w−τ)qn
+

e2πi(w+τ)(2m+1)(n+1)

1− e2πi(u+w+τ)qn

)

+
m∑
k=3

e2πi(v−ak)
J(v)J(2v)J(v − w − τ)J(v + w + τ)

J(ak)J(2ak)J(ak − w − τ)J(ak + w + τ)

∏
2<j<m+1

j ̸=k

J(v − aj)J(v + aj)

J(ak − aj)J(ak + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiak(2m+1)n

1− e2πi(u−ak)qn
+

e2πiak(2m+1)(n+1)

1− e2πi(u+ak)qn

)

= e2πiv+4πimw J(v)J(2v)

J(w)J(2w)

∏
3≤j≤m

J(v − aj)J(v + aj)

J(w − aj)J(w + aj)

( ∞∑
n=−∞

(−1)nq(2m+1)(n+1)(n+2)/2

× e−2πiw(2m+1)(n+1)q−(2m+1)(n+1)

1− e2πi(u−w)qn
+

∞∑
n=−∞

(−1)nq(2m+1)n(n−1)/2 e
2πiw(2m+1)nq(2m+1)n

1− e2πi(u+w)qn

)

+
m∑
k=3

e2πi(v−ak)
J(v)J(2v)J(v − w)J(v + w)

J(ak)J(2ak)J(ak − w)J(ak + w)

∏
2<j<m+1

j ̸=k

J(v − aj)J(v + aj)

J(ak − aj)J(ak + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiak(2m+1)n

1− e2πi(u−ak)qn
+

e2πiak(2m+1)(n+1)

1− e2πi(u+ak)qn

)
= f3(w). (2.16)

Thus from (2.15) and (2.16), we deduce that g is a doubly periodic function in w with
periods 1 and τ . Our next task is to show that g is an entire function of w and hence
a constant (with respect to w). We show that the poles of g at w = u and w = −u are
actually removable singularities by proving that limw→±u(w ∓ u) (f2(w) + f3(w)) = 0
which readily implies that limw→±u(w ∓ u)g(w) = 0. Let

A := A(v, a3, · · · , am; q) := J(v)J(2v)
∏

3≤j≤m

J(v − aj)J(v + aj). (2.17)

Next, applying (2.4), (2.13) and (2.9), we see that

lim
w→u

(w − u) (f2(w) + f3(w))

= A lim
w→u

(w − u)

{
J(v − w)J(v + w)(q)2∞

J(u− w)J(u+ w)J(u− v)J(u)J(u+ v)

∏
3≤j≤m

1

J(u− aj)J(u+ aj)

+
e2πi(v−w)

J(w)J(2w)

∏
3≤j≤m

1

J(w − aj)J(w + aj)

(
1

1− e2πi(u−w)
+

∞∑
n=−∞
n̸=0

(−1)nq(2m+1)n(n+1)/2
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× e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

∞∑
n=−∞

(−1)nq(2m+1)n(n+1)/2 e
2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)}
= A

e2πi(v−u)

J(u)J(2u)

∏
3≤j≤m

1

J(u− aj)J(u+ aj)

(
−iq1/8(q)3∞

θ′(0)
+

1

2πi

)
= 0. (2.18)

Similarly, limw→−u(w+u) (f2(w) + f3(w)) = 0. Now the only other possibility of a pole
of g is at 0, which arises from f1 and f3 each having a pole at 0. Again, to show that
this is a removable singularity, it suffices to show that limw→0w (f1(w) + f3(w)) = 0.
To show this, we need Jacobi’s duplication formula for theta functions [19, p. 488, Ex.
5]

θ(2w)θ2θ3θ4 = 2θ(w)θ2(w)θ3(w)θ4(w). (2.19)

Let

B := B(u, v, a3, · · · , am; q) := e2πimv J(2v)

J(v)

∏
3≤j≤m

J(aj − v)J(aj + v)

(J(aj))2

∞∑
n=−∞

(−1)nq(2m+1)n(n+1)/2

1− e2πiuqn
.

(2.20)

Then from (2.14) and (2.20),

lim
w→0

w (f1(w) + f3(w))

= lim
w→0

w

{
B
J(w − v)J(w + v)

(J(w))2
+ A

e2πi(v−w)

J(w)J(2w)

∏
3≤j≤m

1

J(w − aj)J(w + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

e2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)}

+ lim
w→0

w

m∑
k=3

e2πi(v−ak)
J(v)J(2v)J(v − w)J(v + w)

J(ak)J(2ak)J(ak − w)J(ak + w)

∏
2<j<m+1

j ̸=k

J(v − aj)J(v + aj)

J(ak − aj)J(ak + aj)

= lim
w→0

w

θ(w)

{
B
θ(w − v)θ(w + v)

θ(w)
− Ae2πivq1/4(q)2∞

e−5πiw

θ(2w)

∏
3≤j≤m

1

J(w − aj)J(w + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

e2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)}
=

1

θ′(0)
lim
w→0

D(w)

θ(w)
, (2.21)
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where

D(w) := D(w, v, a3, · · · , am; q) := Bθ(w − v)θ(w + v)− Ae2πivq1/4(q)2∞E(w)

E(w) := E(w;u, a3 · · · , am; q) :=
e−5πiwθ(w)

θ(2w)

∏
3≤j≤m

1

J(w − aj)J(w + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

e2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)
.

(2.22)

Now using (2.19), (2.4) and (2.13), we find that as w → 0,

D(w) → −Bθ2(v)− e2πivAq1/4(q)2∞
(−1)m−2e−2πi(a3+···+am)(J(a3) · · · J(am))2

∞∑
n=−∞

(−1)nq(2m+1)n(n+1)/2

1− e2πiuqn

= 0, (2.23)

which is observed by putting the expressions for A and B back in the first expression
on the right side in (2.23). Thus,

lim
w→0

w (f1(w) + f3(w)) =
D

′
(0)

θ′(0)2
. (2.24)

Now we calculate D
′
(0).

D
′
(w) = B

(
θ
′
(w − v)θ(w + v) + θ(w − v)θ

′
(w + v)

)
− e2πivAq1/4(q)2∞E

′
(w). (2.25)

Using (2.4) and (2.19), we have

E(w) = (−1)m−2q
m−2

4 (q)2(m−2)
∞

e−πiw(2m+1)θ2θ3θ4
2θ2(w)θ3(w)θ4(w)

∏
3≤j≤m

1

θ(w − aj)θ(w + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

e2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)
. (2.26)

Differentiating both sides with respect to w and simplifying, we obtain

E
′
(w) =

1

2
(−1)m−2q

m−2
4 (q)2(m−2)

∞ e−πiw(2m+1)θ2θ3θ4

×
{
−

πi(2m+ 1) +
θ
′
2(w)

θ2(w)
+

θ
′
3(w)

θ3(w)
+

θ
′
3(w)

θ3(w)
+
∑

3≤j≤m

(
θ
′
(w − aj)

θ(w − aj)
+

θ
′
(w + aj)

θ(w + aj)

)
θ2(w)θ3(w)θ4(w)

∏
3≤j≤m

θ(w − aj)θ(w + aj)

×
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

e2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)
+

1

θ2(w)θ3(w)θ4(w)

∏
3≤j≤m

1

θ(w − aj)θ(w + aj)
F

′
(w)

}
, (2.27)
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where

F (w) := F (w, u,m; q) :=
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiw(2m+1)n

1− e2πi(u−w)qn
+

e2πiw(2m+1)(n+1)

1− e2πi(u+w)qn

)
.

(2.28)
It is straightforward to see that

F
′
(0) = 2πi(2m+ 1)

∞∑
n=−∞

(−1)nq(2m+1)n(n+1)/2

1− e2πiuqn
. (2.29)

From (2.8), we have

θ
′
(−z) = θ

′
(z). (2.30)

Then letting w → 0 in (2.27), and using (2.8), (2.30), (2.29) and the fact that θ
′

k(0) = 0
for 2 ≤ k ≤ 4, we find that

E
′
(0) = 0. (2.31)

Using (2.30) and (2.31) in (2.25), we finally deduce that D
′
(0) = 0.

With the help of (2.24), this then implies that limw→0w (f1(w) + f3(w)) = 0 and
thus limw→0wg(w) = 0. Thus w = 0 is also a removable singularity, which implies that
g is an doubly periodic entire function and hence a constant, say K (which may very
well depend on v). Finally, since J(0) = 0, we have

K = g(v) =
∞∑

n=−∞

(−1)nq(2m+1)n(n+1)/2

(
e−2πiv(2m+1)n

1− e2πi(u−v)qn
+

e2πiv(2m+1)(n+1)

1− e2πi(u+v)qn

)
.

This completes the proof.

3. Proof of Theorem 1.1

From [13, Eq.(4.3)], we see that

Rk(z, q) =
1

(q)∞

∞∑
n=1

(−1)n−1qn((2k−1)n−1)/2(1− qn)

(
1

1− zqn
+

z−1qn

1− z−1qn

)

=
z−1

(q)∞

∞∑
n=−∞
n̸=0

(−1)n−1qn((2k−1)n+1)/2 1− qn

1− z−1qn
.

(3.1)

Replacing z by z−1 in (1.11) and (3.1), we see that

Rk(z, q)

=
z

(q)∞

∞∑
n=−∞
n̸=0

(−1)n−1qn((2k−1)n+1)/2 1− qn

1− zqn

=
z

(q)∞

∞∑
n=−∞
n̸=0

(−1)n−1qn((2k−1)n+1)/2

(
1− (1− z)qn

1− zqn

)
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=
z

(q)∞

 ∞∑
n=−∞
n ̸=0

(−1)n−1qn((2k−1)n+1)/2 + (1− z)
∞∑

n=−∞
n ̸=0

(−1)nqn((2k−1)n+3)/2

1− zqn


=

z

(q)∞

1−
∞∑

n=−∞

(−1)nqn((2k−1)n+1)/2 + (1− z)
∞∑

n=−∞
n̸=0

(−1)nqn((2k−1)n+3)/2

1− zqn


=

−zθ1,2k−1(q)

(q)∞
+

z

(q)∞

(
1 + (1− z)

∞∑
n=−∞
n̸=0

(−1)nqn((2k−1)n+3)/2

1− zqn

)

=
−zθ1,2k−1(q)

(q)∞
+

z

(q)∞

(
1 + (1− z)

∞∑
n=−∞
n̸=0

(−1)nqn((2k−1)n+3)/2

(
zk−2q(k−2)n

1− zqn
+

1− (zqn)k−2

1− zqn

))

=
−zθ1,2k−1(q)

(q)∞
+

z

(q)∞

(
1 + (1− z)

∞∑
n=−∞
n̸=0

(−1)nqn((2k−1)n+3)/2

(
zk−2q(k−2)n

1− zqn
+

k−3∑
m=0

zmqmn

))

=
−zθ1,2k−1(q)

(q)∞
+

z

(q)∞

(
1 + zk−2(1− z)

∞∑
n=−∞
n̸=0

(−1)nq(2k−1)n(n+1)/2

1− zqn

+ (1− z)
k−3∑
m=0

zm
∞∑

n=−∞
n̸=0

(−1)nqn((2k−1)n+2m+3)/2

)

=
−zθ1,2k−1(q)

(q)∞
+

z

(q)∞

(
zk−2(1− z)

∞∑
n=−∞

(−1)nq(2k−1)n(n+1)/2

1− zqn

+ (1− z)
k−3∑
m=0

zm
∞∑

n=−∞

(−1)nqn((2k−1)n+2m+3)/2

)

=
1

(q)∞

(
−zθ1,2k−1(q) + zk−1(1− z)Σ(2k−1)(z, q) + z(1− z)

k−3∑
m=0

zmθ2m+3,2k−1(q)

)
.

This completes the proof of Theorem 1.1.

4. Higher order Rank-Crank-type PDEs

In this section we show how the generalized Lambert series identity (1.3) can be used
to derive general Rank-Crank PDEs of the type found by Zwegers.

4.1. The idea. First we let xi = ζ i, 1 ≤ i ≤ m in (1.3) to obtain

Ym(ζ, z, q) (q)
2
∞ = S2m+1(ζ, z, q)+

m−1∑
j=1

Fj,m(ζ, q)S2m+1(ζ
j+1, z, q)−F0,m(ζ, q) Σ

(2m+1)(z, q),

(4.1)
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where

Sk(ζ, z, q) :=
∞∑

n=−∞

(−1)nqkn(n+1)/2

(
ζ−kn

1− zζ−1qn
+

ζk(n+1)

1− zζqn

)
, (4.2)

for k odd and

F0,m(ζ, q) := ζm
[ζm+1]∞
[ζm]∞

, (4.3)

Fj,m(ζ, q) :=

[
ζ−(m−1), ζ−(m−2), · · · , ζ−(m−j)

]
∞

[ζm+2, · · · , ζm+j+1]∞
(for 1 ≤ j ≤ m− 1), (4.4)

Ym(ζ, z, q) :=

[
ζ−(m−1), ζ−(m−2), · · · , ζ−2, ζ−1, ζ, ζ2, · · · , ζm, ζm+1

]
∞

[zζ−m, zζ−(m−1), · · · , zζ−2, zζ−1, z, zζ, zζ2, · · · , zζm−1, zζm]∞
. (4.5)

The basic idea is to apply the operator D2m to both sides of (4.1) where

Dℓ :=

(
ζ
∂

∂ζ

)ℓ
∣∣∣∣∣
ζ=1

= δℓζ
∣∣
ζ=1

. (4.6)

We will also need the differential operator

H∗
k := kδz + 2kδq + δ2z . (4.7)

We note that the operatorH∗
k differs from Zwegers’sHk although they are similar. First

we need to write the functions Σ(k)(z, q) and Sk(z, q) as double series. Throughout we
assume that 0 < |q| < 1, z ̸∈ {qn : n ∈ Z} ∪ {0} and ζ ̸∈ {z±1qn : n ∈ Z} ∪ {0}. We
obtain

Sk(ζ, z, q) =
∞∑
n=0

(−1)nqkn(n+1)/2

(
ζ−kn

∞∑
m=0

zmζ−mqmn + ζk(n+1)

∞∑
m=0

zmζmqmn

)

−
∞∑
n=1

(−1)nqkn(n−1)/2

(
ζkn

∞∑
m=1

z−mζmqmn + ζk(−n+1)

∞∑
m=1

z−mζ−mqmn

)

=
∞∑
n=0

∞∑
m=0

(−1)nzmqkn(n+1)/2+mn
(
ζ−kn−m + ζk(n+1)+m

)
−

∞∑
n=1

∞∑
m=1

(−1)nz−mqkn(n−1)/2+mn
(
ζkn+m + ζ−kn+k−m

)
(4.8)

and

Σ(k)(z, q) =
∞∑
n=0

∞∑
m=0

(−1)nzmqkn(n+1)/2+mn −
∞∑
n=1

∞∑
m=1

(−1)nz−mqkn(n−1)/2+mn. (4.9)

We have

Theorem 4.1. Suppose k is odd and 1 ≤ ℓ ≤ k − 1. Then

Dℓ Sk(ζ, z, q) = Pk,ℓ(H∗
k)Σ

(k)(z, q), (4.10)
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where

Pk,ℓ(x) =

⌊ℓ/2⌋∑
m=0

ℓ(ℓ−m− 1)!

(ℓ− 2m)!m!
xmkℓ−2m. (4.11)

Proof. Suppose k is odd and 1 ≤ ℓ ≤ k − 1 . First we prove that

Pk,ℓ(x) = (1
2
k − 1

2

√
k2 + 4x)ℓ + (1

2
k + 1

2

√
k2 + 4x)ℓ. (4.12)

We have

(1
2
k − 1

2

√
k2 + 4x)ℓ + (1

2
k + 1

2

√
k2 + 4x)ℓ =

⌊ℓ/2⌋∑
j=0

(
ℓ

2j

)
kℓ−2j21−ℓ(k2 + 4x)j

=

⌊ℓ/2⌋∑
j=0

j∑
m=0

(
ℓ

2j

)(
j

m

)
xmkℓ−2m22m−ℓ+1 =

⌊ℓ/2⌋∑
m=0

⌊ℓ/2⌋∑
j=m

(
ℓ

2j

)(
j

m

)xmkℓ−2m22m−ℓ+1.

The result (4.12) now follows from the binomial coefficient identity

⌊ℓ/2⌋∑
j=m

(
ℓ

2j

)(
j

m

)
= 2ℓ−2m−1 ℓ(ℓ−m− 1)!

(ℓ− 2m)!m!
, (4.13)

which we leave as an exercise.
We observe that if x = km+m2 + k2n(n+ 1) + 2mnk then

k2 + 4x = (k + 2m+ 2kn)2,

1
2
k − 1

2

√
k2 + 4x = −kn−m,

1
2
k + 1

2

√
k2 + 4x = k(n+ 1) +m,

and we see that

Dℓ

(
ζ−kn−m + ζk(n+1)+m

)
= (−kn−m)ℓ+(k(n+1)+m)ℓ = Pk,ℓ(km+m2+k2n(n+1)+2mnk).

Similarly we find that

Dℓ

(
ζkn+m + ζ−kn+k−m

)
= (kn+m)ℓ+(−kn+k−m)ℓ = Pk,ℓ(−km+m2+k2n(n−1)+2mnk).

We note that

H∗
k

(
qkn(n+1)/2+mnzm

)
= (km+m2 + k2n(n+ 1) + 2mnk)

(
qkn(n+1)/2+mnzm

)
,

H∗
k

(
qkn(n−1)/2+mnz−m

)
= (−km+m2 + k2n(n− 1) + 2mnk)

(
qkn(n−1)/2+mnz−m

)
.

Thus

Dℓ

(
qkn(n+1)/2+mnzm(ζ−kn−m + ζkn+k+m)

)
= Pk,ℓ(H∗

k)
(
qkn(n+1)/2+mnzm

)
,

and

Dℓ

(
qkn(n+1)/2+mnzm(ζkn+m + ζ−kn+k−m)

)
= Pk,ℓ(H∗

k)
(
qkn(n−1)/2+mnz−m

)
.

The result (4.10) follows from equations (4.8) and (4.9). �
Next we calculate D2m of each term in (4.1).



RANK-CRANK TYPE PDES 15

4.2. The term Ym(ζ, z, q). It is clear that the function Ym(ζ, z, q) has a zero of order
2m at ζ = 1. It is well-known that

D2m(f(ζ)) =
2m∑
i=1

S(2m, j)f (j)(1),

where the numbers S(2m, j) are Stirling numbers of the second kind. Since S(2m, 2m) =
1 it follows that

D2m (Ym(ζ, z, q))) = Y (2m)
m (1, z, q) = (−1)m−1(2m)! (m+1)! (m−1)! [C∗(z, q)]2m+1(q)2m−1

∞
(4.14)

by an easy calculation.

4.3. The term F0,m(ζ, q). By logarithmic differentiation we have

δζF0,m(ζ, q) = L0,m(ζ, q)F0,m(ζ, q). (4.15)

where

L0,m(ζ, q) = K0,m(ζ)− (m+ 1)
∞∑
i=1

(
ζm+1qi

1− ζm+1qi
− ζ−m−1qi

1− ζ−m−1qi

)

+m
∞∑
i=1

(
ζmqi

1− ζmqi
− ζ−mqi

1− ζ−mqi

)
= K0,m(ζ)− (m+ 1)

∑
i,n≥1

(ζm+1qi)n − (ζ−m−1qi)n +m
∑
i,n≥1

(ζmqi)n − (ζ−mqi)n

(4.16)

K0,m(ζ) = m+ Jm(ζ)− Jm−1(ζ), (4.17)

Jm(ζ) =

m∑
n=1

nζn

m∑
n=0

ζn
. (4.18)

For any positive integer k we define

G2k := G2k(q) :=
1

2
ζ(1− 2k) +

∞∑
n=1

n2k−1qn

1− qn
= −B2k

4k
+ Φ2k−1(q), (4.19)

where B2n is the (2n)-th Bernoulli number, and

Φ2k−1 := Φ2k−1(q) :=
∞∑
n=1

σ2k−1(n)q
n. (4.20)

The function G2k is a normalized Eisenstein series. For k > 1 it is an entire modular
form of weight 2k. We need the following

Lemma 4.2. If m and a are positive integers, then

Da(Jm(ζ)) =
Ba+1

a+ 1

(
(m+ 1)a+1 − 1

)
.
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Proof. Suppose m and a are positive integers. It is well-known that

x

ex − 1
=

∞∑
k=0

Bkx
k

k!
. (4.21)

By taking the logarithmic derivative of (ζm+1 − 1)/(ζ − 1) we find that

Jm(ζ) = m+ (m+ 1)
1

ζm+1 − 1
− 1

ζ − 1
.

Hence by (4.21) we have

Jm(e
x) = m+

∞∑
k=0

Bk+1

(k + 1)!

(
(m+ 1)k+1 − 1

)
xk.

The result now follows since

Da(Jm(ζ)) =

(
d

dx

)a

Jm(e
x)

∣∣∣∣
x=0

.

�
Corollary 4.3. Suppose a, m are integers a ≥ 0 and m ≥ 1. Then

Da(L0,m(ζ, q)) =


2(ma+1 − (m+ 1)a+1)Ga+1(q) if a is odd,

m+ 1
2

if a = 0,

0 otherwise.

(4.22)

Proof. The proof of (4.22) when a = 0 is straightforward. Suppose a is even and
positive. Then by Lemma 4.2

Da(L0,m(ζ, q)) = Da(K0,m(ζ))

=
Ba+1

a+ 1
(−ma+1 + (m+ 1)a+1)

= 0,

since the Bernoulli numbers Bk are zero when k > 1 is odd. Now suppose a is odd.
Then again by Lemma 4.2

Da(L0,m(ζ, q)) = Da(K0,m(ζ)) + 2(ma+1 − (m+ 1)a+1)Φa(q)

=
Ba+1

a+ 1
(−ma+1 + (m+ 1)a+1) + 2(ma+1 − (m+ 1)a+1)Φa(q)

= 2(ma+1 − (m+ 1)a+1)Ga+1(q).

�
By applying Da−1 to both sides of (4.15) and using (4.22) we obtain the following

recurrence

Da(F0,m(ζ, q)) = (m+ 1
2
)Da−1(F0,m(ζ, q))

+

⌊a/2⌋∑
i=1

2

(
a− 1

2i− 1

)
(m2i − (m+ 1)2i)G2i(q)Da−2i(F0,m(ζ, q)). (4.23)
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This together with the initial value

D0(F0,m(ζ, q)) = F0,m(1, q) =
m+1
m

(4.24)

uniquely determines the coefficients Da(F0,m(ζ, q)). We compute some examples

D0(F0,2) =
3

2
,

D1(F0,2) =
15

4
,

D2(F0,2) =
75

8
− 15G2 = 10− 15Φ1,

D3(F0,2) =
365

16
− 225

2
G2 =

225

8
− 225

2
Φ1,

D4(F0,2) =
1875

32
− 1125

2
G2 + 450G2

2 − 195G4 = 82− 600Φ1 + 450Φ2
1 − 195Φ3.

4.4. The terms Fj,m(ζ, q) (1 ≤ j ≤ m− 1). Suppose 1 ≤ j ≤ m− 1. We may obtain
a similar recurrence for Da(Fj,m(ζ, q)). This time we find that

δζFj,m(ζ, q) = Lj,m(ζ, q)Fj,m(ζ, q), (4.25)

for some function Lj,m(ζ, q) that satisfies

Da(Lj,m(ζ, q)) =


2
∑j

i=1 ((m+ i+ 1)a+1 − (m− i)a+1)Ga+1(q) if a is odd,

−j
(
m+ 1

2

)
if a = 0,

0 otherwise.

(4.26)

The proof of (4.26) is analogous to the proof of Corollary 4.3. By applying Da−1 to
both sides of (4.25) and using (4.26) we obtain the following recurrence

Da(Fj,m(ζ, q)) = −j(m+ 1
2
)Da−1(Fj,m(ζ, q))

+

⌊a/2⌋∑
i=1

j∑
k=1

2

(
a− 1

2i− 1

)
((m+ k + 1)2i − (m− k)2i)G2i(q)Da−2i(Fj,m(ζ, q)).

(4.27)

This together with the initial value

D0(Fj,m(ζ, q)) = Fj,m(1, q) = (−1)j
j∏

i=1

m− i

m+ i+ 1
(4.28)



18 SONG HENG CHAN, ATUL DIXIT AND FRANK G. GARVAN

uniquely determines the coefficients Da(Fj,m(ζ, q)). We compute some examples

D0(F1,2) = −1

4
,

D1(F1,2) =
5

8
,

D2(F1,2) = −25

16
− 15

2
G2 = −5

4
− 15

2
Φ1,

D3(F1,2) =
125

32
+

225

4
G2 =

25

16
+

225

4
Φ1,

D4(F1,2) = −625

64
− 1125

4
G2 − 675G2

2 −
255

2
G4 =

1

4
− 225Φ1 − 675Φ2

1 −
255

2
Φ3.

4.5. The terms S2m+1(ζ
j+1, z, q) (1 ≤ j ≤ m−1). Again suppose that 1 ≤ j ≤ m−1.

Consider the operator Tj that operates on a function f(ζ) by Tj(f(ζ)) = f(ζj). Then

δζ ◦ Tj = j (Tj ◦ δζ) . (4.29)

A simple induction argument gives

δaζ ◦ Tj = ja
(
Tj ◦ δaζ

)
, (4.30)

and
Da ◦ Tj = jaDa. (4.31)

Thus by (4.10) we have

DℓS2m+1(ζ
j+1, z, q) = (j + 1)ℓP2m+1,ℓ(H∗

2m+1)Σ
(2m+1)(z, q). (4.32)

4.6. The main theorem. We are now ready to derive our main theorem. Applying
D2m to both sides of (4.1) and using (4.10), (4.14), (4.23), (4.24), (4.27), (4.28), and
(4.32) we have

Theorem 4.4.

(−1)m+1(2m)! (m+ 1)! (m− 1)![C∗(z, q)]2m+1(q)2m+1
∞

=

(
P2m+1,2m(H∗

2m+1)

+
m−1∑
j=1

2m∑
a=0

(j + 1)2m−a

(
2m

a

)
Da(Fj,m(ζ, q))P2m+1,2m−a(H∗

2m+1)

−D2m(F0,m(ζ, q))

)
Σ(2m+1)(z, q) (4.33)

where the coefficient functions Da(Fj,m(ζ, q)) (0 ≤ j ≤ m− 1) are given recursively by
(4.23) and (4.27), and their initial values (4.24) and (4.28).

For n ≥ 0 let Vn be the Q-vector space spanned by the monomials Φa
1Φ

b
3Φ

c
5 with

a+ 2b+ 3c = n. We Define

Wn =
n∑

k=0

Vn; (4.34)
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i.e., Wn is the Q-vector space spanned by the monomials Φa
1Φ

b
3Φ

c
5 with 0 ≤ a+2b+3c ≤

n. We call Wn the space of quasi-modular forms of weight less than or equal to 2n.
This agrees with the definition in [2, p.355] except this time we allow monomials of
weight 0.

Corollary 4.5. Suppose m ≥ 1. Then there exist quasi-modular forms fj ∈ Wj for
1 ≤ j ≤ m such that(

H∗m
2m+1 +

m−1∑
k=0

fm−k H∗ k
2m+1

)
Σ(2m+1)(z, q) = (2m)! [C∗(z, q)]2m+1(q)2m+1

∞ . (4.35)

Proof. Suppose m ≥ 1. It is well-known that

Φ2n−1 ∈ Wn.

See [2, Eq.(3.25)]. Equation (4.19), the recurrence (4.27) and a simple induction argu-
ment imply that

Da(Fj,m(ζ, q)) ∈ W⌊a/2⌋,

for 1 ≤ j ≤ m− 1. Similarly using (4.22) and (4.23) we find that

D2m(F0,m(ζ, q)) ∈ Wm. (4.36)

Now we calculate the coefficient of H∗ k
2m+1 in the right side of (4.33). The degree of

the polynomial P2m+1,2m−a(x) is ⌊(2m − a)/2⌋. Assuming k ≤ ⌊(2m − a)/2⌋ we have
2k ≤ 2m − a and ⌊a/2⌋ ≤ m − k, and in this case Da(Fj,m(ζ, q)) is in Wm−k. This
together with (4.36) implies that the coefficient of H∗ k

2m+1 is in Wm−k for 0 ≤ k ≤ m.
The coefficient of H∗m

2m+1 is

f0 = 2 + 2
m−1∑
j=1

(−1)j(j + 1)2m
j∏

k=1

(m− k)

m+ k + 1

= 2
m−1∑
j=0

(−1)j(j + 1)2m
(m− 1)!(m+ 1)!

(m− j − 1)!(m+ j + 1)!
(4.37)

=
2(m− 1)!(m+ 1)!

(2m)!

m−1∑
j=0

(−1)j(j + 1)2m
(

2m

m− j − 1

)
.

We show that
f0 = (−1)m+1 (m+ 1)! (m− 1)!. (4.38)

In view of (4.37) this is equivalent to showing that

2

(2m)!

m−1∑
j=0

(−1)m+j+1(j + 1)2m
(

2m

m− j − 1

)
= 1, (4.39)

which we can rewrite as

2
m−1∑
j=0

(−1)j(m− j)2m
(
2m

j

)
= (2m)!, (4.40)

by replacing j by m− j − 1 in the sum.
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Since
m−1∑
j=0

(−1)j(m− j)2m
(
2m

j

)
=

2m∑
j=m+1

(−1)j(m− j)2m
(
2m

j

)
,

it suffices to prove

2m∑
j=0

(−1)j(m− j)2m
(
2m

j

)
= (2m)!. (4.41)

Beginning with the elementary identity

2m∑
j=0

(
2m

j

)
xjy2m−j = (x+ y)2m,

setting x = − 1√
ζ
and y =

√
ζ, we obtain

2m∑
j=0

(
2m

j

)
(−1)jζm−j = ζ−m(ζ − 1)2m. (4.42)

We apply D2m to both sides of (4.42) and argue as in Section 4.2 to obtain (4.41) which
completes the proof of (4.38). The final result (4.35) follows from (4.33) by dividing
both sides by f0 and using (4.38). �

4.7. Some examples. We illustrate Theorem 4.4 and Corollary 4.5 with some exam-
ples. We show details of the calculations for the cases m = 1, 2. In cases m = 3, 4 we
give the quasi-modular forms fj (1 ≤ j ≤ m) in Corollary 4.5, in terms of the functions
Φ2k−1(q) rather than the G2k(q).
Example m = 1.

4 [C∗(z, q)]3(q)3∞ =

(
9 + 2H3 −D2(F0,1(ζ, q))

)
Σ(3)(z, q)

=

(
9 + 2H3 − (5− 12Φ1)

)
Σ(3)(z, q)

=

(
2H3 + 4 + 12Φ1

)
Σ(3)(z, q),

and (
H3 + 2 + 6Φ1

)
Σ(3)(z, q) = 2 [C∗(z, q)]3(q)3∞.

This identity implies the Rank-Crank PDE (1.7) as in [2, Section 2].
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Example m = 2.

− 144 [C∗(z, q)]5(q)5∞

=

(
625 + 100H∗

5 + 2H∗2
5 + 16D0(F1,2(ζ, q)) (625 + 100H∗

5 + 2H∗2
5)

+ 32D1(F1,2(ζ, q)) (125 + 15H∗
5) + 24D2(F1,2(ζ, q)) (25 + 2H∗

5) + 40D3(F1,2(ζ, q))

+ 2D4(F1,2(ζ, q))−D4(F0,2(ζ, q))

)
Σ(5)(z, q)

=

(
625 + 100H∗

5 + 2H∗2
5 − 4 (625 + 100H∗

5 + 2H∗2
5)

+ 20 (125 + 15H∗
5)− (30 + 180Φ1)(25 + 2H∗

5) + (
125

2
+ 2250Φ1)

+ (
1

2
− 450Φ1 − 1350Φ2

1 − 255Φ3) + (−82 + 600Φ1 − 450Φ2
1 + 195Φ3)

)
Σ(5)(z, q),

and(
H∗2

5+(60Φ1+10)H∗
5+300Φ2

1+10Φ3+350Φ1+24

)
Σ(5)(z, q) = 24 [C∗(z, q)]5(q)5∞.

(4.43)
In this case of Corollary 4.5 we see that

f1 = 60Φ1 + 10,

f2 = 300Φ2
1 + 10Φ3 + 350Φ1 + 24.

We show how this identity implies (1.18). We need the results

δq((q)∞) = −Φ1 (q)∞, δq(Φ1) =
1
6
Φ1 − 2Φ2

1 +
5
6
Φ3.

This implies that

H∗
5(Σ

∗(z, q)) = H∗
5((q)

3
∞G(5)(z, q)) = (q)3∞(H∗

5 − 30Φ1)G
(5)(z, q), (4.44)

and

H∗ 2
5 (Σ∗(z, q)) = H∗ 2

5 ((q)3∞G(5)(z, q)) = (q)3∞(H∗ 2
5 −60Φ1H∗

5−50Φ1+1500Φ2
1−250Φ3)G

(5)(z, q).
(4.45)

Substituting (4.44), (4.45) into (4.43) we find

(H∗ 2
5 + 10H∗

5 + 24− 240Φ3)G
(5)(z, q) = 24 [C∗(z, q)]5(q)5∞,

which simplifies to (1.18) since

H∗ = H∗
5 + 5.
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Example m = 3. We find that

f1 = 210Φ1 + 28

f2 = 210Φ3 + 8820Φ2
1 + 252 + 4410Φ1

f3 = 41160Φ3
1 + 2450Φ3 + 14Φ5 + 720 + 22736Φ1 + 2940Φ3Φ1 + 102900Φ2

1

Example m = 4. We find that

f1 = 504Φ1 + 60

f2 = 1260Φ3 + 24948Φ1 + 1308 + 68040Φ2
1

f3 = 136080Φ3Φ1 + 504Φ5 + 45360Φ3 + 2449440Φ2
1 + 403704Φ1 + 2449440Φ3

1 + 12176

f4 = 40320 + 2126232Φ1 + 404082Φ3 + 9828Φ5 + 2653560Φ3 Φ1 + 21820428Φ2
1

+ 9072Φ1Φ5 + 47764080Φ3
1 + 18Φ7 + 1224720Φ3Φ

2
1 + 11340Φ2

3 + 11022480Φ4
1.

5. Concluding remarks

The main goal of this paper was to show how the generalized Lambert series identity
(1.3) leads to the higher level Rank-Crank-type PDEs of Zwegers. The first author’s
proof [8] of (1.3) only involves a partial fraction argument and this together with the
proof in Section 4 gives an elementary q-series proof of these higher level Rank-Crank-
type PDEs. The elliptic function proof of (1.3) in Section 2 is independent of the other
sections. Our form of Zwegers’s result (1.23) was given above in (4.35). In our form
the coefficients are quasimodular forms rather than holomorphic modular forms. The
quasimodular function E2 occurs in Zwegers’s result as part of the definition of his
operator Hk. Our coefficient functions are given recursively. It would be interesting to
find explicit expressions for the coefficients and to derive the form of Zwegers’s result by
our method. The coefficients in the 4th order PDE (1.18) only involve the holomorphic
modular form E4, and the differential operator H∗ does not involve the quasimodular
E2. It would be interesting to determine whether there is a renormalization of higher
order Rank-Crank-type PDEs which only involve holomorphic modular forms, either
as coefficients or in the definition of the differential operator. Bringmann, Lovejoy
and Osburn [5], [6] found Rank-Crank-type PDEs for overpartitions. Bringmann and
Zwegers [7] showed how these results fit into the framework of non-holomorphic Jacobi
forms and found an infinite family of these PDEs. However these PDEs only involve
Appell functions of level 1 or 3. It would be interesting to determine whether the
methods of this paper could be extended to find PDEs for higher level analogues.
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