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ABSTRACT. For any fixed integer k > 2, we define a statistic on partitions called the k-
rank. The definition involves the decomposition into successive Durfee squares. Dyson’s rank
corresponds to the 2-rank. Generating function identities are given. The sign of the k-rank
is reversed by an involution which we call k-conjugation. We prove the following partition
theorem: the number of self-2k-conjugate partitions of n is equal to the number of partitions
of n with no parts divisible by 2k and the parts congruent to & (mod 2k) are distinct. This
generalizes the well-known result: the number of self-conjugate partitions of n is equal to the
number of partitions into distinct odd parts.

1. Introduction
Let p(n) denote the number of unrestricted partitions of n [A2]. Ramanujan discovered

and later proved

(1.1) p(bn +4) =0 (mod 5),
(1.2) p(Tn+5) =0 (mod 7),
(1.3) p(1ln+6) =0 (mod 11).

Dyson [D1], [D3] discovered remarkable combinatorial interpretations of (1.1) and (1.2).
He defined an integral statistic on partitions, called the rank, whose value modulo 5 split
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the set of partitions of 5n + 4 into 5 equal classes thus giving a combinatorial refinement
of (1.1). He further conjectured that the rank modulo 7 gave an analogous combinatorial
refinement of (1.2) and hypothesized a statistic, called the crank, which would likewise give
a combinatorial refinement of (1.3). Atkin and Swinnerton-Dyer [A-SD] proved Dyson’s
conjecture for 5 and 7. In [Gal], [Ga2] a crank for 11 as well as new cranks for 5 and 7
were found relative to vector partitions. In [A-G1], Andrews and Garvan completed the
solution of Dyson’s crank conjecture. Garvan, Kim and Stanton [G-K-S] found different
cranks in terms of t-cores and found a crank which gave a combinatorial refinement of

Ramanujan’s partition congruence modulo 25:
(1.4) p(25n+24) =0 (mod 25).

In [Ga3], some relations between the rank and the crank modulo 5, 7 were proved. Later,
relations for the crank modulo 8, 9, 10 were found [Gad]. In [L1], Lewis conjectured 88
linear relations involving the rank and the crank. The new relations involved the moduli 4,
8, 9, 12. These were subsequently proved in a series of papers by Lewis and Santa-Gadea
[L2], [L3], [SG1], [SG2], [L-SG].

The mock-theta conjectures [A-G2] are combinatorial identities that relate the rank
modulo 5 and Ramanujan’s mock-theta functions of order 5. These were proved by Hick-
erson [H1] who also found connections between the rank modulo 7 and the mock-theta
functions of order 7 [H2]. Lewis and Santa-Gadea found connections between their rela-
tions and mock-theta functions of order 3 [W2].

In this paper we generalize Dyson’s rank. Given a partition Dyson’s rank is defined to
be the largest part minus the number of parts. If we let N(m,n) denote the number of

partitions of n with rank m we have the following partition identities:

oo n _— oo qn2
(1.5) T;)m;nN(m,n)z " =1+ ; R
(1.6) 3 N(m,n)q" = ﬁ (1)t gnGn=n/2Hmingy _ gny.
n=0 X p=1

Here we have employed the usual g-notation (a), = (a;q)n = H?;Ol (1 —ag¢’) and (a)oo =
(65 9) o = limp_00(a)y for |¢| < 1. Equation (1.5) is given in [Ga2, (7.4)]. Equation (1.6) is
due to Dyson and was proved by Atkin and Swinnerton-Dyer [A-SD]. In [Ga2] we showed
how (1.6) follows from Watson’s [W1] g-analog of Whipple’s theorem. We note that in
(1.5) we have taken the rank of the empty partition to be 0, but in (1.6) we have defined
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N(m,0) = 0. Equation (1.6) provides an effective means of computing the coefficients
N(m,n) and is the starting point of Atkin and Swinnerton-Dyer’s proof of the Dyson
conjectures.

The Andrews-Garvan crank is defined as follows. For a partition we define the crank to
be the largest part if the partition contains no ones, otherwise it is the difference between
the number of parts larger than the number of ones and the number of ones. We let
M (m,n) denote the number of partitions of n with crank m. Our derivation of the crank
depended on some previous work on vector partitions [Gal], [Ga2]. We define Ny (m,n)
by

oo n

(1.7) Z Z NV(m,n)zmq":( (@)oo

2q)o0(271q) 0 ‘

n=0m=—-n

The Ny (m,n) may be interpreted as counting certain weighted triples of partitions (vector
partitions). We have the following identities:

(1.8) M(m,n) = Ny (m,n) forn > 1,
(1.9) 3 Ny (m,n)q" = ﬁ S () g /i gy,
n=0 X p=1

Equation (1.8) is the main result of [A-G1] and equation (1.9) is [Ga2, Theorem (7.19)].
We define Ni(m,n) by

(1_10) ZNk(mm)q” — L Z(_1)n71qn((2k71)n71)/2+|m|n(1 _ qn)7
n=0 (q)OO n=1

for any positive integer k. The problem we consider in this paper is to find a combinatorial
interpretation of Ny (m,n). The answer is given below in Theorem (1.12). We observe that
the k = 2 case corresponds to Dyson’s rank and the k = 1 case corresponds to the Andrews-
Garvan crank. For k > 2, the interpretation of Ng(m,n) is in terms of the Ferrers graph
[A2] of a partition and its decomposition into successive Durfee squares [A4], [A5],[AT].
For fixed k£ > 2 we define the k-rank of a partition. To do this we need to define some
statistics on partitions. For a partition, 7, we define ny (), na(w), ... to be the sizes of

the successive Durfee squares of 7. We note the ng(w) = 0 when the number of successive
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Durfee squares of 7 is less then £. The k-rank, ri(7), is given by

re(m) = the number of columns in the Ferrers graph of
7 which lie to the right of the first Durfee square
and whose length < ng_q(7)
minus
the number of parts of 7 that lie below the
(k — 1)-th Durfee square.

(1.11)

We note that 7 (w) = 0 if ng_1(7) = 0. The main result is

Theorem (1.12). Let k > 2 be fized and let Ni(m,n) be defined by (1.10). Then
Ni(m,n) is the number of partitions of n into at least k — 1 successive Durfee squares

with k-rank equal to m.

An easy consequence of (1.10) is
(1.13) Ni(m,n) = Ni(—m,n).

In §5 we define an involution which the reverses the sign of the k-rank thus explaining
(1.13) combinatorially. We call this involution k-conjugation since it depends on k and
when k = 2 it corresponds to ordinary conjugation. We call a partition k-self-conjugate if

it is fixed by k-conjugation. We prove the following partition theorem:

Theorem (1.14). Let k > 1 be fized. Then the number of self-2k-conjugate partitions of
n is equal to the number of partitions of n with no parts divisible by 2k and all parts which

are congruent to k modulo 2k are distinct.

This theorem generalizes the well-known result that the number of self-conjugate parti-
tions of n is equal to the number of partitions of n into distinct odd parts [S-W, Theorem
3.3, p.72], [A7, p.24].

2. Multiple basic hypergeometric series
In this section we set up the needed ¢-series identities needed for the proofs of our
combinatorial results. The basic hypergeometric series ,, ¢, is defined by

ai, az, ..., Qam

(21) m¢n b17 b2, ., b,, 4, Z:| =

(a1); -~ (am); 2
g (b1)j -~ (bn)j(@);”

where |z| < 1, |q| < 1, b; # ¢~ *. We will need Andrews’ [A1] multiple series generalization
of the g-analog of Whipple’s theorem. This result is best explained in terms of Bailey
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chains [A6, Lecture 3]. Two sequences ay,, 3, form a Bailey pair (o, Br) if
n

(2:2) =3 -

r=0 n—r(aq)n—i-r ’

for n > 0. Bailey’s Lemma [A6, Theorem 3.3] gives rise to another Bailey pair (o, 8)
defined in terms of the original Bailey pair via

, _ (p1)n(p2)nlag/pip2)om
23) n = " (ag/p1)n(aa] p2)n

; = (Pl)j(ﬂz)j(GQ/P1P2)n—j(afI/P1P2)jﬂj
24 = L s @l ol

Successive iterations of Bailey’s Lemma produce a so-called Bailey Chain:
(25) (ana,@n) — (alnvﬁiw,) - (axa ;:) >

This is made explicit in the following result which is [A6, Theorem 3.4]. If (o, By) is a
Bailey pair (ie. related by (2.2)) then

(b1)n(c1)n -+ (Ok)n(ck)n
(26) HZZO (ag/bi)n(ag/c1)n - - (ag/br)n(agq/ck)n

Ny akgt+N \" .
N (qN+3 ( q ) B (1) ay
(agN+1), \ bicy - --brey

_ (ag)n(ag/brcr) N 3 (Ok)ns, (k) ny, =~ (b1)ny (€1)m,

B (aq/bk)N(GQ/Ck)N > >0 (Dnx—nicr * (Dna—n,y

(q_N)nk (aq/bk—lck—l)nk—nk—l too (aq/blcl)nz—nl
(bkckqiN/a)nk (a(I/bkfl)"k (aq/ckfl)"k U (aq/bl)nz (aq/cl)n2

X qn1+"'+nkan1+“'+nk—1 (bk_lck_l)ink_l .. (blcl)fnl ,Bn1-

If welet N, by, ..., b, c1, ..., ¢ all tend to infinity then we obtain the following result
which is [A6, Theorem 3.5]. If (a,, Br) is a Bailey pair then

oo

(2.7) 1 Z q’m2 a*"a, = Z

(aq)oo n=0 N> >n1>0 (q)’nk—nk—l T (q)ﬂa—ﬂd .

2 2
gmttne qnl+----|-n,c ﬂnl
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It is well-known that the following form a Bailey pair

(2.8) ﬂn={(1)j iy
_ (1" (1 - ag?")(a)n
(29 A ) [

As noted in [A6, Theorem 3.6] taking k = 2 in (2.6) and using the Bailey pair in (2.8)-
(2.9) gives Watson’s g-analog of Whipple’s theorem. For general k¥ we obtain Andrews’

generalization [Al]:

(2.10)

d) a, Q\/('_7’7 —Q\/a, bl: C1, DR bk7 Ck,q -N aqu+N
PhaPakts Va,—a, agfbi,agfer, ... aq/beaq/ck,ag™ Y bier - brek
_ (ag)n(agq/brcr)n ) (Ok) s (k)i === (02) s (C2)my

(a‘I/bk)N(GQ/Ck)N Np_1>>n1>0 (q)nk—l_nk—Q oo (Q)nz—m (‘I)m

(qiN)nk—l (aq/bkflckfl)mc—1*"k—2 T (aCI/bQC2)n2 —nq (GQ/b - 1Cl)n1
(bkckqiN/a)"k—1 (aq/bkfl)ﬂk—1 (aq/ckfl)"k—1 T (aq/bl)nl (aq/cl)nl

n1+"'+nk—1an1+"'+nk—2 (bkflckfl)ink_z L. (b202)7n1 .

X q

3. The 3-rank and non-Rogers-Ramanujan Partitions
In this section we show how we found the definition of the k-rank for k¥ = 3. The

Rogers-Ramanujan identities are

™ _ 1
(3-1) ng (— - };[ q5n—1)(1 _ q5n—4)7
(3.2) 3 - ﬁ L

L (1—¢n2)(1- @"3)"

See [A2, Chapter 7]. Watson [W1] showed how (3.1), (3.2) follow from his g-analog of
Whipple’s theorem (ie. (2.10) with k£ = 2). Andrews [A4] has generalized (3.1), (3.2).

et qN1+ +Nk 1+ Na++Ng—1 oo 1
69 35 T | S e

n1=0 Nng—1=0 (q)n2 T n=1
n#0,+a (mod 2k+1)

where Nj = n; + njp1 +--- +ngp—y with 1 < a < k. The identities (3.1)-(3.3) have a

number of combinatorial interpretations.
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Theorem (3.4). (B. Gordon [Go]) Let By, ,(n) denote the number of partitions of n of
the form by + by + --- + b, where b; > bj11, bj — bjyr—1 > 2 and at most a — 1 of the b;
equal 1. Let Ay (n) denote the number of partitions of n into parts Z 0,+a (mod 2k+1).
Then

Ag,a(n) = Bg,a(n), for all n.

It is clear that A ,(n) enumerates the right side of (3.3). Bressoud has shown how the
left side enumerates By, o(n). Andrews [A4] has found another interpretation of the left
side of (3.3). We relate the a = k case.

We define Andrews’ concept of successive Durfee squares. For each partition 7 we
find the largest square (starting from the upper left-hand corner) of dots contained in its
graphical representation. This square is called the Durfee square (after W.P. Durfee). For
example, if 7 is the partition 9+6+4+ 3+ 3 + 2+ 1, then its graphical representation is
given below in FIGURE 1.

FIGURE 1

and the 3 x 3 “Durfee” square is indicated. Once the Durfee square is determined, it splits
the given partition into 3 parts: (1) the square itself, (2) a smaller partition to the right
of the square, and (3) a smaller partition below the square. If the smaller partition below
the Durfee square is non-empty then one can determine a “second Durfee square”. Clearly
third, fourth, etc. Durfee squares can be determined as long as the lower portion of the
partition is not exhausted. Thus we see in FIGURE II that the partition 9+6+4+3+43+2+1

has four successive Durfee squares.
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FIGURE II

Thus for a = k we find the following interpretation of (3.3).

Theorem (3.5). [A4, Theorem 1] The number of partitions of n with at most k—1 succes-
sive Durfee squares equals the number of partitions of n into parts Z 0, +k( mod 2k +1).

Andrews [A4, Theorem 2] also found interpretations of (3.3) for general a.

As mentioned before, in [Ga2], we showed how (1.6) follows from Watson’s g-analog of
Whipple’s theorem. To interpret the right side of (1.10) with k& = 3 we play the same
game except we utilize (2.10) with k£ = 3. We need the following lemma.

Lemma (3.6). Forn > 1, and |q| < |z| < |g|™* we have
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Letting k=3, b, = z, ¢, = 271, by, ¢y, b3, c3, N — o0, and a — 1 in (2.10) we obtain

(3.8)

2 (9)

na>ni >0 n2—ni (Zq)"1(z71q)n1
i 1 —z 1 — 2 1)(_1)nqn(5n+1)/2(1 +(]n)
@=\" "= (0= =)= ¢)
00

( )" n(5n71)/2(1 +q") {1 1+q (Z 2Mgm" + Z L m mn) })

(by Lemma (3.6))
En—foo( l)n n(5n—1)/2

qrﬁ +n§

8

(@)o
o= i ) 1 n (5n—1)/2 (1—¢" <z P i zmqmn>
n=1 m=1
— - ﬁ L S _ n 1 n(5n 1)/2 ( m mn - -m mn)
= + (-1 z + 2z Mg .
; @n (Do n; 2 mzzl

In the last step we used the following.

(3.9)
Zzoz_w(_l)nqnwnfl)/Z _ 10_01 (1 _ q5n)(1 _ q5n—2)(1 _ q5n—3)
(@)oo m—1 (1-4qm)

(by Jacobi’s triple product identity [A2, p.21])

1
L= - )

Il
3

n=

n2

q
« (O)n

M |

(by the first Rogers-Ramanujan identity (3.1)).

n

We observe that the term corresponding to n; = 0 in the summation on the left side of
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(3.8) also occurs on the right side. If we subtract this term from both sides we have

(3.10)

qnf+ng

(Dns—n1 (2@ 01 (271 ny

(]

ng>mni>1
]. > _ n(bn— n - m ,mn - —m _mn

:TZ(_I)H Lgn® 1)/2(1—11)<ZZ "+ Y 2" )
9o n=1 m=0 m=1

In the analysis below, we will see that the left side of (3.10) (with z = 1) enumerates
partitions with at least two successive Durfee squares. We note, by Theorem (3.5), that
the left side of the first Rogers-Ramanujan identity (3.1) enumerates partitions with at
most one Durfee square. Thus we call partitions with at least two successive Durfee squares
non-Rogers-Ramanujan partitions. We need to determine how the parameter z is counting
these non-Rogers-Ramanujan partitions.

Let us recall that the Gaussian polynomial

(3.11)

[n+m] — (Q)m-i-n (l_qn+1)"'(1_qn+m)
(Dn(@m (D)m

m

is the generating function for partitions with at most m parts each < n [A2, p.33]. We
rewrite the left side of (3.10) as

(3.12)

2 1 1
qm? X X
n}n:m (L—gm*)---(1—g™)  (1—2zq)(1—2¢*) - (1—2¢™)

(I—gm*)---(1-g™) 1
(1—q)---(1—gmm) = (1-27'q)1 —271¢%) - (1 —271gm)

2
X g™ x

Each of the six terms in the summand above corresponds to one of six regions in the
graphical representation of a partition with at least 2 successive Durfee squares. In FIGURE
ITT we consider a generic non-Rogers-Ramanujan partition with successive Durfee squares

of sizes ny > ny > 1.
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VI

FiGURE III

We examine each term in (3.12). The term q"g corresponds to region I which is the

first Durfee square. The second term (1_qn1+1)1...(1_qn2) is the generating function with

with parts greater than n; and less than or equal to ns and it enumerates the columns in

region II. The term (17211)(1721112)._(172(]"1) is the generating function for partitions with
parts < ny in which the power of z keeps track of the number of parts. Thus the third term
enumerates the columns in region III with the power of z keeping track of the number of
columns. The term q"? corresponds to region IV which is the second Durfee square. The

term

[ S R
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is the generating function for partitions with at most ns — ny parts each < ny and enu-

merates the columns in region V. The term (1_z—1q)(1_z—11q2)...(1_z—1q"1) enumerates the

rows in region VI with the power of z~! keeping track of the number of rows. Hence,
considering (3.10), we are led to define the 3-rank as the number of columns in region IIT
minus the number of rows in region VI. This coincides with the definition of r3(7) given
n (1.11). Thus we have

> > q"f"'"g
(3.13) N3(m,n)z™mq" = — .
T;]m;n n2§21 (q)nzfnl (zq)nl (Z 1q)n1

The case k = 3 of Theorem (1.12) follows from (3.10) and (3.13). The proof for general k

is completely analogous and is given in the next section.

4. The k-rank

In this section we prove Theorem (1.12). Let k& > 2 be an integer. In (2.10) we let
bi=z,¢c1=2"1, by, Ca, ..., bk, cx, N= 00, and a = 1 to obtain

(4.1)
nitnd+etng_y

q
Z (q)nk—1—nk—2 T (Q)ng—nl (z‘])nl (z_lq)nl

Nk—1>Nk—2>->N1>0

_ .1 n, n((2k— 1)n+1)/2 n
(1+Z )1 - Y@ <+q)>

(1—2¢")(1—2"1q")
220:_00(_1)nqn((2k—1)n—1)/2
(@)oo
Z n 1 n ((2k—1)n— 1)/2( qn) <Z zmqmn+ Z z—mqmn> ,
® n=1 m=0 m=1

by Lemma (3.6). We have followed the recipe of (3.8) with “5” replaced by “2k — 1”. By
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Jacobi’s triple product [A2, p.21]

(4.2)
200 (_1)nqn((2k—1)n—1)/2 (1- q(2k—1)n)(1 _ q(2k—1)n—k)(1 _ q(2k—1)n—k+1)

e =11 =D

n=1

= 1
N 11 (1-q")

n=1
n#Z0,+(k—1) (mod 2k—1)

= > a4

N1 > >n9>0 (q)nk—l—nk—2 e (q)ns—n2 (q)nz

2 2
L% e

?

by (3.3) with k replaced by k — 1 and a = k¥ — 1. We note that the last term in (4.2)
corresponds to the part of the sum on the left side of (4.1) with n; = 0. Hence if we

subtract this term from both sides of (4.1) and use (4.2) we obtain
(4.3)

2, 2 2
ny+ngtetng g

Z q

Npe1 > >n1 >1 (q)nk—l_nk—2 U (q)n2—n1 (zq)m (zilq)n1

1 ) ) )
— Z(_l)n—lqn((Qk—l)n—l)/2(1 _ qn) (Z zmqmn + z z—mqmn> .

(@)oo ot

We rewrite the left side of (4.3) as

(4.4)
> i . y !
ni>-->ng—1>1 (]' _an_1+1)"'(1_qnl) (]. —Zq)---(]_ —zq”k—l)
n2 ni n2 Ng_o
X q? X --- X qMk—1
1 ["1 _"2] ¢ [nkQ _nk—1:|
1
X .
(1 — Z*lq) . (1 — Z*lan_l)
We note that in (4.3) we have replaced ny, na, ... , ng—1 by ng—1, ng—2, ... , n1. We show

that the function in (4.4) is the generating function for the k-rank. Consider partitions
into at least k — 1 successive Durfee squares with sides ny > ng > --- > ngp_1 > 1. In
the graphical representation of the partition we say the smaller partition to the right of a

Durfee square is associated with the square. The term

n? o 1 o 1
1 (1—gu—1tl)...(1—gm) (1 =2z2q)---(1—zgm-1)
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is the generating function for that portion of the partition that is associated with the first
Durfee square (of side ny) and the power of z counts the number of columns of length
< ng—1 (the side of the k — 1-th Durfee square). For 2 < j <k —1

q"?[ Mj-1 ]
nNj—1—"nj

generates those parts of the partition associated with the j-th Durfee square by considering
columns of dots. Finally, the term

1
(=2 1g) (1 -2 gm)

is the generating function for the portion of the partition that lies below the k — 1-th
Durfee square with the power of =1 counting the number of parts. Hence the function in
(4.4) is the generating function for the k-rank (see (1.11)) and we have

(4.5)

2, 2 2
nytngtetng g

> > m_n __ q
> X Nmmwzmgt= ) T

n=0m=-—n Ng—1>Ng—2>>n1>1 (q)nk—l_nk—2 U

Theorem (1.12) follows from (4.3) and (4.5).

5. A family of involutions
From (1.10) we have

(5.1) Ni(m,n) = Ni(—m,n).

We define an involution that explains (5.1) combinatorially. In this section we also prove
Theorem (1.14). For fixed k£ > 2 we define an involution which we call k-conjugation and
which acts on all partitions. If the number of successive Durfee squares is less than k — 1
then k-conjugation is the identity. If the partition has at least k¥ — 1 successive Durfee
squares we consider its graphical representation. See the FIGURE IV below.

It is clear how we should define the k-conjugate. We consider two regions of the par-
tition. The first region consists of those columns to the right of the first Durfee square
whose length < ng_1 (the side of the k — 1-th Durfee square). The second region is that
portion of the partition below the k — 1-th Durfee square. We take the conjugate of each
region and interchange. This is k-conjugation. This operation clearly reverses the sign of
the k-rank and (5.1) follows. Also we note that 2-conjugation is ordinary conjugation. We
illustrate with an example for ¥ = 3 in FIGURE V below.

We see that the 3-conjugate of 4+2+1+1is 3+2+1+ 14 1. Recall that a partition is
self-conjugate if it is fixed by conjugation. The following partition theorem is well-known.
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Theorem (5.2). [S-W, Theorem 3.3, p.72] The number of self-conjugate partitions of n

is equal to the number of partitions of n into distinct odd parts.

We will generalize this theorem. We call a partition self-k-conjugate if it is fixed by
k-conjugation. For example the partition 4+ 2+ 1+ 1+ 1 is self-3-conjugate. We note that
if a partition has no more than k — 2 successive Durfee squares then it is self-k-conjugate.
We let sci(n) denote the number of self-k-conjugate partitions of 7.

L INTERCHANGE

FIGURE IV
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FIGURE V

The main result of this section is

Theorem (5.3). Let k > 2 be an integer. Then

- M (A—g)?
(5.4) Zsck H A= )i —g7)’
n=0 n= 1

Proof. We use the method of [A5] where it was shown how to generalize each of Slater’s
[S1],[S2] Rogers-Ramanujan type identities to multiple series identities. By Slater [S1] the
following form a Bailey pair (with a = 1):

[ (=D)"2¢"*, n>0,
(55) Qn = { 1, n=0,
1
(5.6) Pn = (a%¢%)

We apply (2.7) with k replaced by £ — 1 and a = 1, to obtain

(5.7)
1 & nitngttni_y

@ Y -yt = > 1

n=—oo Nk—1>Np—2>-->n12>0 (Q)nk—1—nk—2 e (q)n2—n1 (q23 qz)n

> ) P
X A gty (1 = gm) 2 2

> 130 (43 0°)nis
2 n 2 TNj—
an2 1 x...xq"k—l k—2 ,
N1 — N2 Ng—2 — Ng—1

which is the generating function for self-k-conjugate partitions by an analysis analogous



GENERALIZATIONS OF DYSON’S RANK AND NON-ROGERS-RAMANUJAN PARTITIONS 17

to that of the proof of (4.5) in §4. Hence we have

s _ Akn
= H (1 +(;Im)(§1 z ) (by [A2, (2.2.12), p.23))
= ﬁ (1—g")?

L T- ) (1-¢)

which is the desired result. O
As a corollary we deduce our partition theorem (1.14).

Corollary (5.9). Letk > 1 be an integer. Then the number of self-2k-conjugate partitions
of n is equal to the number of partitions of n with no parts divisible by 2k and all parts
which are congruent to k modulo 2k are distinct.

Proof. From (5.4) we have

el O 2kn)
(5.10) > scar(n H )
n=0 n—l q )
We need the elementary identity
oo o
(5.11) [Ha-¢~" H
n=1 n:l
So from (5.10), (5.11) we have
o o0 1 — g¥kn—2k)(1 — o2kn
(5.12) Zsczk(n)q" = H (1—g )(n ")
n=0 n=1 (1 —4q )
_ 1°_°[ (1 + q2kn—k)(1 _ q2kn—k)(1 _ q2kn)
oot (1-gm)
oo oo 1
— (1 + q2knfk)
1 I o

n=1
nZ0,k (mod 2k)

which is the generating function of partitions with no parts divisible by 2k and all parts
which are congruent to k£ modulo 2k distinct, as required. O
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In FIGURE VI below we illustrate this result with £ = 2. There are 12 self-4-conjugate

partitions of 8.

8 7+1 6+2
5+3 9+2+1 444
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FIGURE VI

As predicted by the result, there are also 12 partitions of 8 with parts not divisible by 4
and the parts congruent to 2 modulo 8 are distinct: 74+1,6+2,64+14+1,54+3,5+2+1,
5+1+1+1,3+34+2,34+3+1+1,3+2+14+14+1,34+14+1+1+1+1,24+14+14+14+14+1+1,
1+1414+1+14+14+141.

6. Questions

Question 1. Find a combinatorial proof of Theorem (1.12).

Dyson [D2] has given a combinatorial proof of Theorem (1.12) for the case k = 2. More
recently, he has proved (1.9) combinatorially [D4].

Question 2. Find a combinatorial proof of Theorem (1.14).

The case k = 1 has a well-known and easy combinatorial proof. See [S-W], [A7].
Lewis and Santa-Gadea have found numerous relations between Ny (m,n) and Na(m,n).

Unfortunately we have found no further non-trivial relations among the Ny (m,n).
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