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Abstract. Bombieri and Selberg showed how Mehta’s [6; p. 42] integral could be

evaluated using Selberg’s [7] integral. Macdonald [5; §§5,6] conjectured two different

generalizations of Mehta’s integral formula. The first generalization is in terms of
finite Coxeter groups and depends on one parameter. The second generalization is

in terms of root systems and the number of parameters in equal to the number of
different root lengths. In the case of Weyl groups Macdonald showed how the first

generalization follows from the second. We give a proof of the I3 case of the first

generalization and the F4 case of the second generalization. As well we give a two
parameter generalization for the dihedral groupH2n

2 . The parameters are constant on

each of the two orbits. We note that the G2 case of the second generalization follows
from our two-parameter version for H6

2. Our proofs draw on ideas from Aomoto’s [1]

proof of Selberg’s integral and Zeilberger’s [10] proof of the G∨2 case of the Macdonald

Morris [5; Conj. 3.3] constant term root system conjecture. The problem is reduced
to solving a system of linear equations. These equations were generated and solved

by the computer algebra package MAPLE.

1. Introduction. In 1967 Mehta [6; p. 42] conjectured that

(1.1)
∫
Rn

e−‖x‖
2/2|D(x)|2kdx = (2π)n/2

n∏
j=1

Γ(jk + 1)
Γ(j + 1)

.

Here, k is any complex number with Re(k) > 0, dx = dx1 . . . dxn is Lebesgue
measure, ‖x‖2 = x2

1 + · · ·+x2
n, and D(x) =

∏
i<j(xi−xj). E. Bombieri and Selberg

showed how (1.1) follows from Selberg’s integral∫
[0,1]n

n∏
i=1

xa−1
i (1− xi)b−1|D(x)|2cdx(1.2)

=
n∏
i=1

Γ(a+ (n− i)c)Γ(b+ (n− i)c)Γ(ic+ 1)
Γ(a+ b+ (2n− i− 1)c)Γ(c+ 1)

.

See [5; p. 1000]. Macdonald [5; §§5,6] conjectured two different generalizations of
(1.1).

The first generalization is in terms of Coxeter groups. Let G be a finite Cox-
eter group, i.e. a finite group of isometries of Rn generated by reflections S in
hyperplanes through the origin. The equations of these hyperplanes are of the
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form hS(x) =
∑n
i=1 aixi = 0. Normalize each hS (up to sign) by requiring that∑

a2
i = 2, and let P (x) =

∏
S hS(x) be the product of these normalized linear

forms, the product being over all reflections S in G. Let di be the degrees of the
fundamental polynomial invariants of G. Macdonald [5; Conj. 5.1] conjectured

Macdonald-Mehta Conjecture I. If k is any complex number with Re(k) > 0,
then

(Mac-Meh I)
1

(2π)n/2

∫
Rn

e−‖x‖
2/2|P (x)|kdx =

n∏
j=1

Γ(k2dj + 1)
Γ(k2 + 1)

.

When G is the symmetric group Sn, acting on Rn by permuting the coordinates
(Mac-Meh I) reduces to (1.1). A. Regev observed that when G is Bn or Dn then
(Mac-Meh I) is true for all k, again by Selberg’s integral. Macdonald showed
that (Mac-Meh I) is true for k=1 and G a Weyl group, and for arbitrary k when
G is dihedral. As noted by Macdonald the dihedral case can be computed by
transforming to polar coordinates.

We note that (Mac-Meh I) may be generalized as follows: for a reflection S ∈ G
we let kS be any complex number with Re(kS) > 0 such that kS1 = kS2 whenever
hS1 , hS2 belong to the same orbit when G acts on the set of hyperplanes. In this case
if |P (x)|k in the integrand of the left side of (Mac-Meh I) is replaced by

∏
S |hS(x)|kS

then the resulting integral can be evaluated as a nice product of gamma functions.
If G is a Weyl group then this integral reduces to the one given below in (Mac-
Meh II). The only other non-transitive non-Weyl irreducible Coxeter groups are
the dihedral groups H2m

2 . In this case there are two orbits. The integral is given
below in (1.4). As in the equal parameter case the evaluation follows easily by
transforming to polar coordinates. The details are given in §2.

Theorem (1.3). If a, b ∈ C with Re(a), Re(b) > 0 and m ∈ N then

2
2π

m(a+b)/2 ∫
R2

m−1∏
k=0

| cos kπm x1 + sin kπ
m x2|a| cos (2k+1)π

2m x1 + sin (2k+1)π
2m x2|b

(1.4)

· e−(x2
1+x2

2)/2dx1dx2

=
Γ(a+ 1)Γ(b+ 1)Γ(m(a+b)

2 + 1)
Γ(a2 + 1)Γ( b2 + 1)Γ(a+b

2 + 1)
.

Macdonald’s second generalization is in terms of root systems. Let S be a (not
necessarily reduced) root system consisting of linear forms on a real Euclidean
space A. We normalize the linear forms a ∈ S so that they have norm

√
2. Let

kα be complex-numbers with real part > 0 such that kα = kβ if ‖α‖ = ‖β‖,
and let P (x) =

∏
α∈S+ |α(x)|kα be the product of these normalized linear forms,

weighted according to the multiplicity kα, over the set of positive roots. Macdonald
conjectured

Macdonald-Mehta Conjecture II.

(Mac-Meh II)
∫

A

e−‖x‖
2/2P (x)dγ(x) =

∏
α∈S+

Γ( 1
2kα + 1

4kα/2 + 1
2 (ρk, α∨) + 1)

Γ( 1
4kα/2 + 1

2 (ρk, α∨) + 1)
,
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where α∨ is the coroot 2α/‖α‖2, kα/2 = 0 if 1
2α /∈ S, ρk = 1

2

∑
α∈S+ kαα, and γ is

the Gaussian measure on A.

Macdonald has shown that (Mac-Meh II) is true in the following three cases:

(a) S is of classical type (An, Bn, Cn, Dn, BCn) (by Selberg’s integral).
(b) S is the restricted root system of a symmetric space G/K and the kα are

the multiplicities mα of the root.
(c) S = G2 and the kα are all equal.

Case (c) follows from the fact that when S is reduced and the kα are all equal
(Mac-Meh II) reduces to (Mac-Meh I) and from the fact that the Weyl group of G2

is H6
2. We note that the general G2 case follows from (1.4) with m = 3.

In §3 we introduce some notation and prove some preliminary results. In §4 we
present a computer approach for handling (Mac-Meh I) for a given Coxeter group.
In §5 we describe some modifications of this approach so as to handle (Mac-Meh
II). We have sucessfully implemented this approach on the computer to prove the
I3 case of the first conjecture and the F4 case of the second conjecture. The details
of the I3 case are given in §6. Some details of the F4 case are given in §7.

Our computer programs are written in FORTRAN or MAPLE and were run on
an APOLLO DN-5800 at the I.M.A., University of Minnesota, Minneapolis. All
computer programs or files used in this paper are available from the author on
request.

2. An extra parameter for the dihedral case.
In this section we prove (1.4) which is a generalization of (Mac-Meh I) for the

dihedral group H2m
2 . Our generalization has two parameters one for each orbit.

As noted in §1 the dihedral group Hn2 is non-transitive if and only if n is even.
From [4; p. 76] a set of hyperplanes for Hn2 is

hj(x) := cos jπn x1 + sin jπ
n x2 = 0, (0 ≤ j ≤ n− 1).

If n = 2m and Hn2 acts on the set of hyperplanes there are two orbits:

ORB1 = {hj : j even}, ORB2 = {hj : j odd}.

In this way (1.4) may be written as

1
2π

∫
R2

∏
h∈ORB1

|
√

2h(x)|a
∏

h∈ORB2

|
√

2h(x)|be−(x2
1+x2

2)/2dx1dx2(2.1)

=
Γ(a+ 1)Γ(b+ 1)Γ(m(a+b)

2 + 1)
Γ(a2 + 1)Γ( b2 + 1)Γ(a+b

2 + 1)
.

As with the a = b case the general case of (2.1) follows easily by transforming
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to polar coordinates. If we let x1 = r cos θ, x2 = r sin θ and z = reiθ then

∏
h∈ORB1

|h(x)| =
m−1∏
k=0

|r cos(
kπ

m
− θ)|

(2.2)

=
rm

2m

m−1∏
k=0

|e−iθ(1−Xe−2πik/m)| (where X = e2iθ)

=
rm

2m
|e−imθ(1−Xm)|

=
rm

2m
|eimθ − e−imθ|

=
1

2m
|zm − zm|.

Similarly,

(2.3)
∏

h∈ORB2

|h(x)| = 1
2m
|zm + zm|.

Hence on conversion to polar coordinates we find that the left side of (2.1) becomes

1
2π

2(a+b)(1−m2 )

∫ ∞
0

rma+mb+1e−r
2/2dr

∫ 2π

0

| sinbmθ|| cosamθ|dθ

=
2a+bΓ(a+1

2 )Γ( b+1
2 )Γ(ma+mb

2 + 1)
πΓ(a+b

2 + 1)

=
Γ(a+ 1)Γ(b+ 1)Γ(m(a+b)

2 + 1)
Γ(a2 + 1)Γ( b2 + 1)Γ(a+b

2 + 1)
,

as required. In the last step we have used the duplication formula [10; p. 240]:

(2.5) 22z−1Γ(z)Γ(z + 1
2 ) =

√
πΓ(2z).

3. Preliminaries. Before describing our computer approach we need to introduce
some notation and develop some preliminary results.

First we need to write (Mac-Meh I) and (Mac-Meh II) in the same form. To
do this we define a root system of a finite Coxeter group G. Our definition follows
Benson and Grove [4; §4.1]. Let V be a finite dimensional real Euclidean space, with
inner product ( , ). For a hyperplane Pr = {x : (x, r) = 0} (r 6= 0) the reflection Sr
is the unique linear transformation fixing Pr and sending r to −r. Sr is given by

(3.1) Sr(x) = x− 2(x, r)
(r, r)

r.

Suppose G is generated by S ⊂ G a finite set of reflections. For each S ∈ S choose
r 6= 0 such that S = Sr, (usually ‖r‖ = 1 but not necessarily). The vectors ±r
are the roots corresponding to S. The root system ∆ = ∆(G) is the set of all roots
corresponding to the generating reflections, together with all images of these roots
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under all transformations in G. In Appendix A we give a table of root systems for
each finite Coxeter group. We note that each of these root systems is embedded in
R
n for some n.
We may partition ∆ into two subsets as follows. Choose a t ∈ V such that

(t, r) 6= 0 for every r ∈ ∆. Let

(3.2a) ∆+ = ∆+
t = {r ∈ ∆ : (t, r) > 0}

and

(3.2b) ∆− = ∆−t = {r ∈ ∆ : (t, r) < 0}.

Then
∆− = −∆+ and ∆ = ∆+ ∪∆−.

For r ∈ ∆+ the equation of the hyperplane orthogonal to r is given by

(3.3) r(x) := (x, r) = 0.

For example if ∆ = ∆(An−1), r = ei − ej then

r(x) = r(x1, x2, . . . , xn) = xi − xj .

In this way we may write each of the integrals in (Mac-Meh I) and (Mac-Meh II)
in the form:

(3.4)
1

(2π)n/2

∫
Rn

∏
r∈∆+

|
√

2
‖r‖

r(x) |kr e−‖x‖
2/2dx.

We introduce some notation to describe the conjectures for the equal parameter
case (i.e. kr = ks for all r, s ∈ ∆+). In §5 we describe the general case. We assume
kr = 2a for all r ∈ ∆+ and let

(3.5) F (a) = FG(a) :=
1

(2π)n/2

∫
Rn

∏
r∈∆+

|
√

2
‖r‖

r(x) |2a e−‖x‖
2/2dx,

and

(3.6) f(a) = fG(a) :=
n∏
j=1

Γ(adj + 1)
Γ(a+ 1)

,

which is the right side of either (Mac-Meh I) (with k = 2a) or (Mac-Meh II) (with
kα = 2a).

With ∆ embedded in Rn the symmetric group Sn acts on Rn as follows. For
π ∈ Sn and r = (r1, r2, . . . , rn) ∈ Rn

(3.7) πr = (rπ(1), rπ(2), . . . , rπ(n)).

Let,

(3.8) SYM = {π ∈ Sn : π(∆) = ∆} < Sn.
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Choose a fundamental region [4; p. 27], FUN for SYM in V , so that for all r ∈ V
there is a π ∈ SYM such that πr ∈ FUN and let

(3.9) w(x) = w(x, a) :=
1

(2π)n/2
∏
r∈∆+

|
√

2
‖r‖

r(x)|kre−‖x‖
2/2

so that F (a) =
∫
Rn
w(x)dx. For x ∈ Rn, the elements of G and SYM act on

functions f : Rn → R by

(3.10) Tf(x) = f(T (x)) (for T ∈ G or SYM).

For α ∈ Nn say α = (α1, α2, . . . , αn) we let

(3.11) xα = xα1
1 xα2

2 . . . xαnn .

The elements of SYM act on the monomials xα in a nice way:

(3.12) πxα = (π(x))α = xπ(α) (π ∈ SYM).

We note that in general the elements of G do not act in such a nice way since they
do not necessarily send monomials to monomials. Since the elements of SYM and
G are orthogonal transformations which leave ∆ invariant we have the following
Lemmas:

Lemma (3.13). Let S ∈ G and p(x) ∈ R[x1, x2, . . . , xn] then

(3.14)
∫
Rn

p(S(x))w(x)dx =
∫
Rn

p(x)w(x)dx.

Lemma(3.15). For each α ∈ Nn there is an α0 ∈ Nn ∩FUN and a π ∈ SYM such
that πα = α0 and

(3.16)
∫
Rn

xαw(x)dx =
∫
Rn

xα0w(x)dx.

For α ∈ Nn we let sum(α) =
∑n
i=1 αi. Since w(−x) = w(x) we have

Lemma (3.17). If sum(α) is odd then

(3.18)
∫
Rn

xαw(x)dx = 0.

We note that for many root systems there are other monomials for which (3.18)
is true. In particular, we have

Lemma(3.19). If ei ∈ ∆(G) (1 ≤ i ≤ n), α ∈ Nn and α 6≡ 0 (mod 2) then

(3.20)
∫
Rn

xαw(x)dx = 0.

The proof of the lemma is analogous to that of the previous one. We note that
∆(G) contains ei (1 ≤ i ≤ n) for G = Bn, I3, I4 and F4.
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4. The computer approach.
In this section we give a computer approach for handling (Mac-Meh I) (or (Mac-

Meh II)) for any given finite Coxeter group (or root system) in the equal parameter
case excluding the dihedral and G2 cases. In §5 we give the modifications of our
approach that will handle the two parameter case.

Our goal is to prove

(4.1) F (a) = f(a) (for Re(a) > 0),

where F (a), f(a) are defined in (3.5), (3.6). Using Carlson’s Theorem [9; p. 186]
it is enough to show that (4.1) is true for a ∈ N = {0, 1, 2, . . . }. The details are
given in Appendix B. The idea is to proceed by induction on a. That is, we want
to prove

(4.2)
F (a+ 1)
F (a)

=
f(a+ 1)
f(a)

.

This will be enough since the case a = 0 is trivial.
The flavor of our proof resembles our [2] proof of the F4 (q = 1) case of the

Macdonald-Morris constant term root system case which in turn was inspired by
Zeilberger’s [11] proof of the G∨2 case. Zeilberger’s proof was inspired by Stem-
bridge’s [8] proof of the An case.

F (a+ 1) =
∫
Rn

w(x, a+ 1)dx

(4.3)

=
∫
Rn

∏
r∈∆+

|
√

2
‖r‖

r(x)|2w(x, a)dx (by (3.9))

=
∑
α∈L′

∫
Rn

a′αx
αw(x, a)dx (for some finite L′ ⊂ Nn)

=
∑
d∈L

∫
Rn

aαx
αw(x, a)dx,

for some L ⊂ FUN ∩ {α ∈ Nn : sum(α) = |∆|} by Lemma (3.15). The idea is to
write a computer program to expand

∏
r∈∆+(r(x))2 and do the reduction in (4.3).

For m = 0, 1, . . . , |∆+| − 1 let

(4.4a) L(m) =
{

FUN ∩ {α ∈ Nn : sum(α) = 2m}, if G 6= Bn, I3, I4,F4,

FUN ∩ {α ∈ (2N)n : sum(α) = 2m}, otherwise,
and let

(4.4b) L(|∆+|) = L.

Suppose |L(m)| = cm and

(4.5) L(m) = {αm,1, αm,2, . . . , αm,cm}.
Let,

(4.6) un(m, j) = un(m, j, a) :=
∫
Rn

xαm,jw(x, a)dx.

The problem is to get each of the un(m, j) in terms of un(0, 1) =
∫
Rn
w(x, a)dx =

F (a). Once we have done this (4.2) should follow from (4.3). We find that each
un(m, j) can be gotten in terms of the un(m− 1, k) (1 ≤ k ≤ cm−1).
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Theorem (4.7). Let G be a finite irreducible Coxeter group, G 6= Hn2 , G2. For
1 ≤ m ≤ |∆+|, 1 ≤ j ≤ cm there exist dm,k, em,k ∈ R (1 ≤ k ≤ cm−1) such that

(4.8) un(m, j) =
cm−1∑
k=1

(dm,ka+ em,k)un(m− 1, k).

Proof. By definition we have

(4.9) un(m, j) =
∫
Rn

xαm,jw(x, a)dx.

We describe an algorithm with 4 steps that converts equation (4.9) into the desired
form of equation (4.8).

STEP 1. Suppose αm,j = (k1, k2, . . . , kn). Find the first nonzero coordinate of αm,j ,
say ki and use

(4.10)
∫
Rn

∂

∂xi

xαm,j

xi
w(x, a)dx = 0.

This idea was used by Aomoto[1] in his proof of Selberg’s [7] integral. (4.10) gives
rise to the following equations:

un(m, j) =
∫
Rn

xαm,jw(x, a)dx(4.11)

= (ki − 1)
∫
Rn

xαm,j

x2
i

w(x, a)dx

+ 2a
∑
r∈∆+

∫
Rn

rix
αm,j/xi
r(x)

w(x, a)dx.

STEP 2. Use the group G to reduce the number of types of terms arising in STEP 1
(i.e. in the right side of (4.11)).

When G acts on the root system ∆ there are at most 2 orbits. By examining
Table I (Appendix A) we find that each orbit contains one of the vectors in the
following set:

(4.12) NICEVECS = {e1, e1 − e2}.

Thus for each r ∈ ∆+ there is a Tr ∈ G such that Tr(r) ∈ NICEVECS. Hence we
find that each integral in the summation part of the right side of (4.11) may be
written in the form

∫
Rn

T−1
r

(
xαm,j/xi
r(x)

)
w(x, a)dx (by Lemma (3.13))

(4.13)

=
∫
Rn

T−1
r (xαm,j/xi)
Tr(r)(x)

w(x, a)dx,

where Tr(r)(x) = x1 or x1 − x2.
STEP 3. Get rid of the denominator appearing in the right side of (4.13) by us-

ing straight division or utilizing symmetry in x1, x2. This will mean each
integral may be written in the form:
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(4.14)
∑
α

sum(α)=2m−2

∫
Rn

d′αx
αw(x, a)dx,

where the d′α ∈ R. There are two cases:
CASE(I) Tr(r)(x) = x1.

In this case e1 ∈ ∆. By considering the reflection Se1 we find w(x1, x2, . . . , xn; a) =
w(−x1, x2, . . . , xn; a). It follows that

∫
Rn
xαw(x)dx = 0 if α1 is odd where

α = (α1, α2, . . . , αn) ∈ Zn (as long as the denominator of xα divides the poly-
nomial part of w(x)). Hence we expand T−1

r (xαm,j/xi) as a sum of monomials,
carry out the division by x1 and toss out all monomials in which the exponent of x1

is −1. In this way the integral in (4.13) may be written in the desired form (4.14).
CASE(II) Tr(r)(x) = x1 − x2.

In this case e1−e2 ∈ ∆ and it follows that w(x, a) is symmetric in x1, x2. Hence,

∫
Rn

T−1
r (xαm,j/xi)
Tr(r)(x)

w(x, a)dx

(4.15)

=
1
2

∫
Rn

(T−1
r (xαm,j/xi)− (12){T−1

r (xαm,j/xi})
(x1 − x2)

w(x, a)dx (since (12) ∈ SYM).

Now expand (T−1
r (xαm,j/xi)− (12){T−1

r (xαm,j/xi)} and carry out the division by
(x1 − x2). In this way the integral in (4.13) may be written in the desired form
(4.14).

STEP 4. After STEP 3 all integrals on the right side of (4.11) are in the form of
(4.14). Use the group SYM to write each of these integrals in the form:

(4.16)
∑

α∈L(m−1)

∫
Rn

dαx
αw(x, a)dx.

We note that if G = Bn, I3, I4, or F4 we were able to omit any vector α with an
odd component in view of Lemma (3.19). Thus (4.11) can be written in the form
of (4.8) as required. �

Remark. Steps 1-4 in the proof of Theorem (4.7) provide an algorithm for getting
un(m, j) in terms of un(m− 1, k) (1 ≤ k ≤ cm) and hence, by iteration, of getting∫
Rn
xαw(x, a) dx (α ∈ L) in terms of F (a). This algorithm can be easily imple-

mented on a computer using an algebra package like MAPLE. Hence with the aid
of a computer one should be able to verify (4.2) for small root systems. We have
successfully implemented this algorithm for the icosahedral group I3 and a modified
version for the root system F4. We give more specific details for these cases in later
sections.

It is interesting to note if (Mac-Meh I) is true for a certain finite set of values k
then it is true in general.

Corollary (4.17). Let G be a finite irreducible Coxeter group. If the Macdonald-
Mehta Integral Conjecture (Mac-Meh I) is true for k = 0, 2, 4, . . . , |∆|+ 2 then it is
true in general.

Proof. With k = 2a (Mac-Meh I) is equivalent to

(4.18) F (a) = f(a).
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As remarked earlier it is enough to prove

(4.19)
F (a+ 1)
F (a)

=
f(a+ 1)
f(a)

for a = 0, 1, 2, . . . . We may assume G 6= Hn2 , G2 since the dihedral and the G2 cases
are already known. From Theorem (4.7) it follows that F (a+1)

F (a) is a polynomial in a

of degree ≤ |∆+|. Since f(a) =
∏n
j=1

(
adj !
a!

)
an easy calculation shows that f(a+1)

f(a)

is a polynomial in a of degree = |∆+| using the fact that

n∑
i=1

(di − 1) = the number of reflections in G (by [4; Prop. 7.4.8])

(4.20)

= |∆+|.

If (Mac-Meh I) is true for k = 0, 2, 4, . . . , |∆| + 2 then (4.19) is true for a =
0, 1, . . . , |∆+| and hence true for all a ∈ N since both sides of (4.19) are polynomials
in a of degree ≤ |∆+|. The result follows. �

5. Modifications for the two parameter case. In this section we sketch how
our method can be modified to handle (Mac-Meh II) when there is more than one
root length. The only non-reduced irreducible root system, BCn, has three different
root lengths. All other irreducible root systems have at most two root lengths. Our
method can be adapted to handle the BCn case for n fixed, but since (Mac-Meh
II) is already known for the BCn case we might as well assume our root system has
two root lengths, short and long. Letting

(5.1) kr =
{

2a, r short,
2b, r long,

we define

F (a, b) = F∆(a, b)(5.2)

:=
1

(2π)n/2

∫
Rn

∏
r∈∆+

short

|
√

2
‖r‖

r(x)|2a

·
∏

r∈∆+
long

|
√

2
‖r‖

r(x)|2be−‖x‖
2/2dx,

where r(x) is defined in (3.3). We define f(a, b) to be the right side of (Mac-Meh
II) with kr as given in (5.1). Our goal is to prove

(5.3) F (a, b) = f(a, b) (for Re(a), Re(b) > 0).

Again via Carlson’s Theorem it is enough to show (5.3) for a ∈ N. The idea is to
proceed by induction on a. First the case a = 0 corresponds to the sub-root system
∆long (with one parameter b):

F∆(a, b) = F∆long(b),
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which can be handled by the method of §4. If you want to cheat this case can be
disposed of all together since the only unknown case of (Mac-Meh II) with more
then one root length is F4 and the long roots of F4 correspond to D4 for which
(Mac-Meh II) is already known.

What remains is to prove

(5.4)
F (a+ 1, b)
F (a, b)

=
f(a+ 1, b)
f(a, b)

,

for a ∈ N, Re(b) > 0. Letting W (x, a, b) be the integrand in (5.2) we find the analog
of (4.3):

(5.5) F (a+ 1, b) =
∑
α∈L

∫
Rn

aαx
αw(x, a, b)dx,

for some L ⊂ FUN ∩ {α ∈ Nn : sum(α) = |∆short|}. As before we define

(5.6a) L(m) =
{

FUN ∩ {α ∈ Nn : sum(α) = 2m}, if G 6= Bn, I3, I4,F4,

FUN ∩ {α ∈ (2N)n : sum(α) = 2m}, otherwise,

for m = 0, 1, . . . , |∆+
short| − 1 and

(5.6b) L(|∆+
short|) = L.

The un(m, j) = un(m, j, a, b) are defined as before and everything proceeds as in
§4. The un(m, j) can be computed in terms of the un(m− 1, k) using the obvious
analogs of STEPS 1-4. Hence the

∫
Rn
xαw(x, a, b)dx can be gotten in terms of

un(0, 1) = F (a, b) and (5.4) should follow from (5.5), provided our computer can
handle all the computations. We carry out this procedure for the F4 case in §7.

6. The icosahedral case I3. In this section we prove the I3 case of (Mac-Meh
I) by implementing our computer approach described in §4.

Theorem (6.1). Let Re(a) > 0, α = 1+
√

5
4 , β = −1+

√
5

4 .

F (a) : =
215a

2
√

2π3

∫
R3

∏
r2,r3=±1

(|αx1 + r2βx2 + r3
2 x3|2a| 12x1 + r2αx2 + r3βx3|2a

· |βx1 + r2
2 x2 + r3αx3|2a)

· |x1x2x3|2ae−(x2
1+x2

2+x2
3)/2dx1dx2dx3

is equal to

f(a) :=
Γ(10a+ 1)Γ(6a+ 1)Γ(2a+ 1)

Γ(a+ 1)Γ(a+ 1)Γ(a+ 1)
.

We must show that F (a) = f(a). As noted in §4 it is enough to prove this for
a ∈ N. We proceed by induction on a. The case a = 0 is trivial. We must prove
the inductive step:

(6.2)
F (a+ 1)
F (a)

=
f(a+ 1)
f(a)

.
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It is easily shown that

f(a+ 1)
f(a)

= 293252(10a+ 9)(10a+ 7)(10a+ 3)(10a+ 1)(6.3)

· (5a+ 4)(5a+ 3)(5a+ 2)(5a+ 1)

· (6a+ 5)(6a+ 1)(3a+ 1)(2a+ 1)3.

We observe that integrand of F (a) is invariant under the cyclic permutation
(123). So,

(6.4) SYM = {id, (123), (132)}

and

(6.5)
∫
R3
xπ(α)w(x)dx =

∫
R3
xαw(x)dx

for π ∈ SYM . Here x = (x1, x2, x3) and w(x) is defined in (3.9) or more simply as
the integral in F (a). The closure of a fundamental region for SYM is

(6.6) FUN = {(x1, x2, x3) ∈ R3 : x1 ≥ x2 ≥ x3 or x1 ≥ x3 ≥ x2}.

Remark. It is possible to use a larger group than SYM namely S3 as follows. First
we observe that when a ∈ N, α ∈ N3 then

∫
R3 x

αw(x, a)dx ∈ Q[
√

5]. Let ϕ be the Q-
automorphism of Q[

√
5]
√

5 7→ −
√

5. ϕ extends naturally to a ring automorphism
of Q[

√
5][x1, x2, x3]. Since w0(x) := w(x)e(x2

1+x2
2+x2

3)/2 ∈ Q[
√

5][x1, x2, x3], and a
calculation shows that ϕ (12) w0 = w0 it follows from (6.5) that for π ∈ S3, α ∈ N3

we have

(6.7)
∫
R3
xπ(α)w(x)dx =

{
ϕ(
∫
R3 x

αw(x)dx), if π is odd,∫
R3 x

αw(x)dx, if π is even.

However since the action of ϕ seems difficult to program in MAPLE we stick with
SYM.

From Table I (Appendix A) the root system of I3 is

I3 = ∆(I3) = {ei (1 ≤ i ≤ 3); (α, r2β,
1
2r3) r2, r3 = ±1

and all even permutations of coordinates}.

Since the ei ∈ I3 we find that Lemma (3.19) applies. For m = 0, 1, . . . , 14 = |∆+|−1
L(m), defined in (4.4a), consists of compositions of 2m into at most 3 parts in which
each part is even, and the parts are nonincreasing or if they are not nonincreasing
the first part is the largest part and the second part is smaller than the first part and
is the smallest part. We have written a MAPLE program to do the calculation in
(4.3). We find that L, the set of monomial vectors α that occur in this calculation,
has cardinality 31. We let the un(m, j) be defined as in (4.6). On running our
MAPLE program we have

(6.8) F (a+ 1) =
3

512
un(15, 1) +

(−39 + 3
√

5)
256

un(15, 2) + · · ·+ 26925
256

un(15, 31).
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The elements of L together with the missing coefficients in (6.8) are given in Table
II (Appendix A). STEPS 1–4 in the proof of Theorem (4.7) provide an algorithm
for getting each un(m, i) in terms of the un(m− 1, j)’s and hence, by iteration, in
terms of un(0, 1) = F (a). We have written a MAPLE program to carry this out.
The program generates a triangular system of 260 equations in 261 unknowns. To
help the reader write his/her own program we do STEPS 1–2.

Suppose δ = 2(n1, n2, n3) ∈ L(m). In STEP 1 we use

(6.9)
∫
R3

∂

∂x1
x2n1−1

1 x2n2
2 x2n3

3 W (x, a)dx = 0.

Here we have used ∂
∂x1

since the first component of δ is always the largest. After
simplification we have

∫
R3
xδw(x, a)dx

(6.10)

= (2a+ 2n1 − 1)
∫
R3
x2n1−2

1 x2n2
2 x2n3

3 w(x, a)dx

+ 8a
∫
R3

{
αx1

x1 − βx2 + 1
2x3

+
1
2x1

1
2x1 + αx2 − βx3

− βx1

−βx1 + 1
2x2 + αx3

}
x2n1−2

1 x2n2
2 x2n3

3 w(x, a)dx.

In STEP 2 we use the reflection Sα,−β,− 1
2

with action:

(6.11) e1 7→ (−β, 1
2 , α), e2 7→ ( 1

2 , α,−β) and e3 7→ (α,−β, 1
2 ).

By applying Lemma (3.13) with S = Sα,−β,− 1
2

to the last integral in (6.10) we have

∫
R3
xδw(x, a)dx

(6.12)

= (2a+ 2n1 − 1)
∫
R3
x2n1−2

1 x2n2
2 x2n3

3 w(x, a)dx

+ 8a
∫
R3

(−βx1 +
1
2
x2 + αx3)(− β

x1
+

1
2x2

+
α

x3
)(−βx1 +

1
2
x2 + αx3)2n1−2

· (1
2
x1 + αx2 − βx3)2n2(αx1 − βx2 +

1
2
x3)2n3w(x, a)dx.

Example. We apply the algorithm (by hand) to obtain un(1, 1) in terms of un(0, 1).
L(0) = {(0, 0, 0)} and L(1) = {(2, 0, 0)} so taking n1 = 1, n2 = n3 = 0 in (6.12) we
find ∫

R3
x2

1w(x, a)dx

(6.13)

= (2a+ 1)
∫
R3
w(x, a)dx

+ 8a
∫
R3

(−βx1 +
1
2
x2 + αx3)(− β

x1
+

1
2x2

+
α

x3
)w(x, a)dx

= (10a+ 1)
∫
R3
w(x, a)dx
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by Lemma (3.19) since α2 + β2 + 1
4 = 1. We obtain

(6.14) un(1, 1) = (10a+ 1)un(0, 1) = (10a+ 1)F (a).

Our program was run on several machines to produce all the necessary equations
in one big file. Later this file was read in MAPLE the equations being solved
automatically by back substitution. After the equations were solved the values for
the un(15, i) were substituted into the right side of (6.8). The result was factored
and we obtained

(6.15)
F (a+ 1)
F (a)

=
f(a+ 1)
f(a)

,

as required. This completes the proof of Theorem (6.1).

7. The F4 case. In this section we sketch a proof of the F4 case of (Mac-Meh
II). The approach is analogous to the I3 case of (Mac-Meh I) but with appropriate
modifications. We give enough detail so that the reader may write his/her own
computer programs following the recipe laid out in §§4–5. We have been successful
in verifyng all the relevant results using the computer algebra package MAPLE.
Copies of the computer programs are available from the author on request.

Theorem(7.1). Let Re(a), Re(b) > 0.

F (a, b) : =
1

24b+2π2

∫
R4

∏
1≤i<j≤4

|x2
i − x2

j |2a
4∏
i=1

|xi|2b

·
∏

r2,r3,r4=±1

|x1 + r2x2 + r2x3 + r4x4|2b

· e−(x2
1+x2

2+x2
3+x2

4)/2dx1dx2dx3dx4

is equal to

f(a, b) : =
Γ(2a+ 1)Γ(3a+ 1)Γ(4a+ 2b+ 1)Γ(4a+ 4b+ 1)

Γ(a+ 1)Γ(a+ 1)Γ(2a+ b+ 1)Γ(a+ b+ 1)

· Γ(6a+ 6b+ 1)Γ(2a+ 4b+ 1)Γ(3b+ 1)Γ(2b+ 1)
Γ(3a+ 3b+ 1)Γ(a+ 2b+ 1)Γ(b+ 1)Γ(b+ 1)

.

We must show that F (a, b) = f(a, b). As noted in §5 it is enough to prove this
for a ∈ N. We proceed by induction a. The case a = 0 is already known since

(7.2) Long roots of F4
∼= D4.

Hence we must prove the inductive step:

(7.3)
F (a+ 1, b)
F (a, b)

=
f(a+ 1, b)
f(a, b)

.
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An easy calculation gives

f(a+ 1, b)
f(a, b)

= 21032(3a+ 2)(3a+ 1)(2a+ 1)

(7.4)

· (2a+ 2b+ 1)2(2a+ 4b+ 1)(4a+ 2b+ 3)(4a+ 2b+ 1)

· (4a+ 4b+ 3)(4a+ 4b+ 1)(6a+ 6b+ 5)(6a+ 6b+ 1).

The integrand of F (a, b) is invariant under any permutation of the coordinates, so
we take SYM to be the symmetric group S4. Hence the closure of a fundamental
region for SYM is

(7.5) FUN = {(x1, x2, x3, x4) ∈ R4 : x1 ≥ x2 ≥ x3 ≥ x4}.

Since ei ∈ F4 (1 ≤ i ≤ 4) we have the following two parameter analog of Lemma(3.19):

(7.6)
∫
R4
xαw(x; a, b)dx = 0 (for α ∈ N4 with α 6≡ (0, 0, 0, 0) (mod 2)).

where w(x; a, b) is the integrand of F (a, b).
The root system, F4 = ∆(F4), is given in Table I (Appendix A). For m =

0, 1, . . . , 11 = |∆+| − 1 L(m), defined in (5.6a), consists of partitions of 2m into at
most 4 parts in which each part is even. We have written a MAPLE program to do
the calculation in (5.5). We find that L, the set of monomial vectors α that occur
in this calculation, has cardinality 16. The elements of L are listed in Table III
(Appendix A). We let the un(m, j) be defined as before. On running our MAPLE
program we have

F (a+ 1, b) = 24(un(12, 1)− un(12, 2)− un(12, 3) + 2un(12, 4)− un(12, 5)− un(12, 6)
(7.7)

+ un(12, 7) + 2un(12, 8)− 2un(12, 9)− 2un(12, 10) + 2un(12, 11)

− un(12, 12) + 2un(12, 13) + un(12, 14)− 3un(12, 15) + un(12, 16)).

To help the reader write a program to produce the equations for the un(m, i) we
carry out STEP 1 of our algorithm. By letting δ = 2(n1, n2, n3, n4) ∈ L(m) and
using ∂

∂x1
we find

∫
R4
xδw(x; a, b)dx

(7.8)

= (2b+ 2n1 − 1)
∫
R4
x2n−2

1 x2n2
2 x2n3

3 x2n4
4 w(x; a, b)dx

+ 4a
4∑
j=2

∫
R4

x1

x1 − xj
x2n1−2

1 x2n2
2 x2n3

3 x2n4
4 w(x; a, b)dx

+ 16b
∫
R4

x1

x1 + x2 + x3 + x4
x2n1−2

1 x2n2
2 x2n3

3 x2n4
4 w(x; a, b)dx
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We have written a MAPLE program that implements our algorithm to generate
and solve equations for the un(m, i). This system consists of 275 equations in 276
unknowns (one unknown for each element of the L(m)).The solutions are polyno-
mials in the two variables a, b. Again using MAPLE we have plugged the values of
the un(12, i) into (7.7) which then simplifies to the right side of (7.4) after dividing
both sides by F (a, b). This verifies (7.3) thus completing our computer proof of
Theorem (7.1).

Acknowledgment. I would like to thank Doron Zeilberger for suggesting the
problem of evaluating the Macdonald-Mehta integrals.
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Appendix A: TABLES.

Group |∆| Root system ∆

An n2 + n ±(ei − ej), 1 ≤ j < i ≤ n+ 1.
Bn 2n2 ±ei, 1 ≤ i ≤ n; ±ei ± ej , 1 ≤ j < i ≤ n.
Dn 2n(n− 1) ±ei ± ej , 1 ≤ j < i ≤ n.
Hn2 2n (cos jπ/n, sin jπ/n), 0 ≤ j ≤ 2n− 1.
G2 12 ±(ei − ej), 1 ≤ j < i ≤ 3;

±(1,−2, 1),±(−2, 1, 1),±(1, 1,−2).
I3 30 ±ei, 1 ≤ i ≤ 3;β(±(2α+ 1),±1,±2α),

and all even permutations of coordinates
(α = 1+

√
5

4 , β = −1+
√

5
4 ).

I4 120 ±ei, 1 ≤ i ≤ 4; (1/2)(±1,±1,±1,±1);
β(±2α, 0,±(2α+ 1),±1), and all
even permutations of coordinates.

F4 48 ±ei, 1 ≤ i ≤ 4; ±ei ± ej ,
1 ≤ j < i ≤ 4;
(1/2)(±1,±1,±1,±1).

E8 240 ±ei ± ej , 1 ≤ j < i ≤ 8;
(1/2)

∑8
1 εiei,

εi = ±1,
∏8

1 εi = −1.
E7 126 Those roots of E8 orthogonal to

(1/2)(1, 1, 1, 1, 1, 1, 1,−1).
E6 72 Those roots of E7 orthogonal to

e8 − e7.

Table I. Root systems of Coexeter groups. Table I was taken from [4; p. 76].
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i i-th element of L coefficient of un(15, i)

1 26 2 2 3/512
2 24 4 2 (−39 + 3

√
5)/256

3 24 2 4 (−39− 3
√

5)/256
4 22 6 2 (861− 111

√
5)/512

5 22 2 6 (861 + 111
√

5)/512
6 22 4 4 321/128
7 20 8 2 (−1269 + 192

√
5)/128

8 20 2 8 (−1269− 192
√

5)/128
9 20 6 4 (−4341 + 393

√
5)/256

10 20 4 6 (−4341− 393
√

5)/256
11 18 10 2 (33843− 4671

√
5)/1024

12 18 2 10 (33843 + 4671
√

5)/1024
13 18 8 4 (15981− 3615

√
5)/256

14 18 4 8 (15981 + 3615
√

5)/256
15 18 6 6 19047/256
16 16 12 2 (−8199 + 669

√
5)/128

17 16 2 12 (−8199− 669
√

5)/128
18 16 10 4 (−8229 + 3648

√
5)/64

19 16 4 10 (−8229− 3648
√

5)/64
20 16 8 6 (−12015 + 747

√
5)/64

21 16 6 8 (−12015− 747
√

5)/64
22 14 14 2 10101/128
23 14 12 4 (9939− 12639

√
5)/128

24 14 4 12 (9939 + 12639
√

5)/128
25 14 10 6 (130821− 18471

√
5)/256

26 14 6 10 (130821 + 18471
√

5)/256
27 14 8 8 27/32
28 12 12 6 −43569/64
29 12 10 8 (−8829 + 46641

√
5)/128

30 12 8 10 (−8829− 46641
√

5)/128
31 10 10 10 26925/256

Table II. Coefficients of the un(15, i) in (6.8).



SOME MACDONALD-MEHTA INTEGRALS BY BRUTE FORCE 19

i i-th element of L i i-th element of L

1 12 8 4 0 9 10 8 4 2
2 12 8 2 2 10 10 6 6 2
3 12 6 6 0 11 10 6 4 4
4 12 6 4 2 12 8 8 8 0
5 12 4 4 4 13 8 8 6 2
6 10 10 4 0 14 8 8 4 4
7 10 10 2 2 15 8 6 6 4
8 10 8 6 0 16 6 6 6 6

Table III. The elements of L for F4.

APPENDIX B. An Application of Carlson’s Theorem. We prove that
(Mac-Meh I) holds for all complex k, Re(k) > 0, if it holds for all even integers
k = 2a. Our proof is analogous to Mehta’s [6; pp. 40-41] proof of this result for the
An case. We need the following easy Corollary of Carlson’s Theorem [9; p. 186].

Lemma (B.1). Let δ > 0 be fixed. If a function f(β) is holomorphic and bounded
on the half-plane Re(β) > δ and zero for β = 1, 2, 3, . . . , then it is identically zero.

Let G be a finite Coxeter group and P (x) (x ∈ Rn) be defined as in §1. We
define

(B.2) W (x) :=
1
2
‖x‖2 − `n|P (x)|,

(B.3) N := |∆+| = the number of hyperplanes.

We assume (Mac-Meh I) holds for all even integers k = 2a. To be consistent with
Mehta’s notation we replace k by β in both sides of (Mac-Meh I). In order to apply
Carlson’s Theorem we need to determine the behavior of both sides of (Mac-Meh
I) as functions of β as |β| → ∞. We define the analog of Mehta’s function Ψ(β) for
our general Coxeter group G.

(B.6) Ψ(β) :=
∫
Rn

exp(−βW (x))dx, (Re(β) > 0).

Ψ(β) is related to the left side of (Mac-Meh I) by

(B.7)
∫
Rn

e−‖x‖
2/2|P (x)|βdx = βn/2+βN/2Ψ(β).

It will turn out that Ψ(β) = 0(|Y β |) (as |β| → ∞) for some constant Y . In order
to show this we calculate the minimum of the function W (x).

For the An case Mehta [6; Appendix A.4] relates the calculation of this minimum
to the zeros of Hermite polynomials. We take a different approach by following
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Macdonald’s [5; p. 1002] argument:

min
x∈Rn

W (x) = −1
2
`n(max

x∈Rn
e−‖x‖

2
P (x)2)

(B.8)

= −1
2
`n( lim

a→∞
(
∫
Rn

e−a‖x‖
2
P (x)2adx)

1
a )

= −1
2
`n( lim

a→∞
(2a)−N−n/a(

∫
Rn

e−‖y‖
2/2P (y)2ady)

1
a )

= −1
2
`n( lim

a→∞
(2a)−N

n∏
j=1

(
(adj)!
a!

)
1
a ) (since we have assumed (Mac-

Meh I) is true for even integers)

=
N

2
(1 + `n2)− 1

2

n∑
j=1

dj`ndj ,

by Stirling’s formula. Here we have also used (4.20). Hence,

(B.9) W (x) ≥W0 :=
N

2
(1 + `n2)− 1

2

n∑
j=2

dj`ndj , (x ∈ Rn),

so that

(B.10) 0 ≤ exp(−W (x)) ≤ Y := exp(−W0), (x ∈ Rn).

Now fix any δ > 0. For Re(β) > δ we have

|Ψ(β)| ≤
∫
Rn

exp(−(Re(β)− δ)W (x)) exp(−δW (x))dx(B.11)

≤ |Y β−δ|Ψ(δ) (by (B.10))

≤ Cδ|Y β |,
where

(B.12) Cδ = Y −δΨ(δ) <∞.
Hence for Re(β) > δ, Y −βΨ(β) is a bounded holomorphic function.

Next we consider the right side of (Mac-Meh I). We define

(B.13) ψ(β) := (2π)n/2β−n/2−βN/2[Γ(1 + 1
2β)]−n

n∏
j=1

Γ(1 + 1
2βdj).

Then (Mac-Meh I) is equivalent to Ψ(β) = ψ(β), (Re(β) > 0). We show that ψ(β)
has the same behavior as Ψ(β) (|β| → ∞) by using Stirling’s formula. As |β| → ∞
we have

ψ(β) = (2π)n/2β−n/2−βN/2[Γ(1 + 1
2β)]−n

n∏
j=1

Γ(1 + 1
2βdj)

(B.14)

v (2π)n/2β−n/2−βN/2[( 1
2β)β/2+1/2e−β/2

√
2π]−n

·
n∏
j=1

[( 1
2βdj)

βdj/2+1/2e−βdj/2
√

2π]

v Y β(2π)n/2β−n/2
√
|G| (c.f. [6; (4.11)]).
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Here we have used (4.20) and

(B.15)
n∏
j=1

dj = |G|, ([4; Prop. 7.4.7]).

It follows that on the half-plane Re(β) > δ the function Y −βψ(β) is bounded and
holomorphic. Now consider

(B.16) ∆(β) :=
1
Y 2β

[Ψ(2β)− ψ(2β)].

We know ∆(β) is bounded and holomorphic on the half-plane Re(β) > δ and is
zero for β = 1, 2, 3, . . . . The result follows by applying Lemma (B.1) since δ > 0
was arbitrary.
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