MORE CRANKS AND t-CORES

F. G. GARVAN

ABSTRACT. In 1990, new statistics on partitions (called *cranks*) were found which combinatorially prove Ramanujan's congruences for the partition function modulo 5, 7, 11 and 25. The methods are extended to find cranks for Ramanujan's partition congruence modulo 49. A more explicit form of the crank is given for the modulo 25 congruence.

Dedicated to George Szekeres on the occasion of his 90th Birthday

1. INTRODUCTION

Let p(n) be the number of partitions of n [1]. If $\alpha \ge 1$, and δ_{α} , λ_{α} , μ_{α} are the reciprocals of 24 modulo 5^{α} , 7^{α} , 11^{α} respectively, then

(1.1) $p(5^{\alpha}n + \delta_{\alpha}) \equiv 0 \pmod{5^{\alpha}},$

(1.2)
$$p(7^{2\alpha-1}n + \lambda_{2\alpha-1}) \equiv 0 \pmod{7^{\alpha}},$$

(1.3)
$$p(7^{2\alpha}n + \lambda_{2\alpha}) \equiv 0 \pmod{7^{\alpha+1}},$$

(1.3) $p(1 \quad n + \lambda_{2\alpha}) \equiv 0 \pmod{1}$ (1.4) $p(11^{\alpha}n + \mu_{\alpha}) \equiv 0 \pmod{11^{\alpha}}.$

These are Ramanujan's partition congruences. Watson [9] proved (1.1), (1.2), (1.3)and Atkin [3] proved (1.4). Dyson [5] was the first to consider explaining these congruences combinatorially. Dyson defined an integral statistic on partitions, called the rank, whose value mod 5 he conjectured split the partitions of 5n + 4 into 5 equal classes, thus giving a combinatorial refinement for the $\alpha = 1$ case of (1.1). He further conjectured that the analogous result for the rank mod 7 gave the $\alpha = 1$ case of (1.2), and that there was a statistic, called the crank, which would similarly give the $\alpha = 1$ case of (1.4). Atkin and Swinnerton-Dyer [4] proved Dyson's conjecture for 5 and 7. Andrews and Garvan [2] were able to find a crank which not only solved Dyson's crank conjecture for 11 but gave new interpretations for 5 and 7. Later, Garvan, Kim and Stanton [6] found new cranks which gave new interpretations of Ramanujan's congruences mod 5, 7, 11, and 25. Their approach was combinatorial and in terms of the t-core of a partition. They gave explicit bijections between the equinumerous classes. In the present paper we extend the methods of [6] and give a crank which is a combinatorial refinement of the $\alpha = 1$ case of (1.3), namely

(1.5)
$$p(49n+47) \equiv 0 \pmod{49}.$$

Date: July 22, 2001.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 11P83; Secondary: 05A17.

Key words and phrases. partitions, congruences, t-cores, Dyson's rank, cranks.

Research supported in part by the NSF under grant numbers DMS-9208813 and DMS-9870052.

F. G. GARVAN

In §2 we reexamine two bijections from [6]. A crank for the partitions of $25n+24 \mod 25$ was given in [6]. A more explicit form of this crank is given in Theorem 3.4. A new and explicit crank for the 7-cores of 49n + 47 is given in Theorem 3.5. This leads to a crank for the partitions of 49n + 47 (Corollary 3.1).

2. Two bijections for t-cores

We need to examine in detail the two bijections relating partitions and t-cores which were given in [6]. Following [6] we let P be the set of all partitions. For any $\lambda \in P$, let $|\lambda|$ denote the number that λ partitions. Fix a positive integer t. Let $P_{t-\text{core}}$ be the set of partitions which are t-cores. Recall, that a partition is a t-core if it has no hook numbers that are multiples of t or equivalently no rim hooks that are multiples of t. See [7] for background on t-cores, hook numbers and rim hooks. We let $a_t(n)$ denote the number of partitions of n which are t-cores.

Bijection 1. ([7, 2.7.17], [6, p.2]) There is a bijection $\phi_1 : P \to P_{t\text{-core}} \times P \times \cdots \times P$,

$$\phi_1(\lambda) = (\widehat{\lambda}, \widehat{\lambda}_0, \widehat{\lambda}_1, \dots, \widehat{\lambda}_{t-1}),$$

such that

$$|\lambda| = |\widetilde{\lambda}| + t \sum_{i=0}^{t-1} |\widehat{\lambda}_i|.$$

Corollary 2.1.

$$\sum_{n \ge 0} a_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})^t}{(1-q^n)}.$$

Given a partition λ we label a cell in the *i*-th row and *j*-th column by $j - i \pmod{t}$. The resulting diagram is called a *t*-residue diagram [7, p.84]. We form the extended *t*-residue diagram by adding an infinite column 0 labelled in the same way. A region *r* of the extended diagram is the set of cells (i, j) with $t(r-1) \leq j - i < tr$. A cell is *exposed* if it is at the end of a row. The partition λ is a *t*-core if and only if for each exposed cell labeled *i* in region *r* there is an exposed cell labeled *i* in each region < r. Now we construct *t* bi-infinite words $W_0, W_1, \ldots, W_{t-1}$ of words of two letters *N* (not exposed) and *E* (exposed):

The *j*-th element of $W_i = \begin{cases} N & \text{if } i \text{ is not exposed in region } j, \\ E & \text{if } i \text{ is exposed in region } j. \end{cases}$

We now give the bijection. For each i we do the following steps:

- Step 1. Find the right most E.
- Step 2. Find the right most N to the left of this E. If no such N exists then END.
- Step 3. Remove the rim hook whose head is at E and whose tail is one cell to the right of the N. Place a part of size (rim hook removed)/t in λ_i .
- Step 4. Go to Step 1.

The operation in Step 3 above changes a substring of W_i of the form $NEE \dots EEN$ to $EEE \dots ENN$, i.e. the N is pushed right. The other words W_j are left unchanged by removing this rim hook, and we can process the *i*'s in any order. Steps 1–4 create a partition λ_i starting from the smallest part to the largest part and the process is easily reversible. At the end when all the W_i have been processed we are left with the required *t*-core $\tilde{\lambda}$.

Bijection 2. ([6, p.3]) There is a bijection $\phi_2 : P_{t\text{-core}} \to \{\vec{n} = (n_0, n_1, \dots, n_{t-1}) : n_i \in \mathbb{Z}, n_0 + \dots + n_{t-1}\}$, where

$$|\widetilde{\lambda}| = t ||\vec{n}||^2 / 2 + \vec{b} \cdot \vec{n}, \quad \vec{b} = (0, 1, \dots, t-1).$$

For a partition λ , we let $r_k(\lambda)$ denote the number of cells in the *t*-residue diagram labeled k (mod t), and call

$$\vec{r} = (r_0, r_1, \dots, r_{t-1})$$

the *r*-vector of λ . Bijection 2 is given by

(2.1)
$$\phi_2(\lambda) = \vec{n} = (r_0 - r_1, r_1 - r_2, \dots, r_{t-1} - r_0).$$

Let [x] denote the greatest integer $\leq x$. We will need the following Lemma 2.1. Let $\lambda : \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$ be a partition and suppose $\phi_1(\lambda) = (\tilde{\lambda}, \hat{\lambda}_0, \hat{\lambda}_1, \dots, \hat{\lambda}_{t-1}).$

Then

(2.2)
$$\sum_{i=0}^{t-1} |\widehat{\lambda}_i| = r_0 - \left(\sum_{i=0}^{t-1} r_i^2 - r_i r_{i+1}\right),$$

and

(2.3)

$$\sum_{i=0}^{t-1} i|\widehat{\lambda}_i| \equiv \sum_{j=1}^m (\lambda_j - j) \left[\frac{\lambda_j - j}{t}\right] - \sum_{i=1}^{t-1} id_i \left(\frac{1}{2}(d_i + 1) + \left[\frac{m - i - 1}{t}\right]\right) \pmod{t},$$

where d_i is the number of elements of the sequence

$$\lambda_1 - 1, \lambda_2 - 2, \ldots, \lambda_m - m,$$

which are congruent to $i \pmod{t}$.

Proof. For *t*-cores, we have

$$r_0 = \sum_{i=0}^{t-1} (r_i^2 - r_i r_{i+1}).$$

See [6, p.6]. Now suppose \vec{r} is the *r*-vector of λ and $\vec{r'}$ is the *r*-vector of its *t*-core $\tilde{\lambda}$. The partition $\tilde{\lambda}$ is obtained from λ by the removal of rim hooks whose lengths are multiples of *t*. Each rim hook of length *t* contains cells with distinct *t*-residues. It follows that

$$r_i' + s = r_i$$

where

$$s = \sum_{j=0}^{t-1} |\widehat{\lambda}_j|.$$

Since $\vec{r'}$ is the *r*-vector of a *t*-core we have

$$r'_{0} = \sum_{i=0}^{t-1} (r'_{i}^{2} - r'_{i}r'_{i+1}),$$

$$r_{0} - s = \sum_{i=0}^{t-1} ((r_{i} - s)^{2} - (r_{i} - s)(r_{i+1} - s)),$$

F. G. GARVAN

$$=\sum_{i=0}^{t-1}(r_i^2-r_ir_{i+1}),$$

and (2.2) follows.

We add t dummy zeros to the parts of λ :

$$\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m \ge 0 \ge \cdots \ge 0,$$

and form the sequence

$$\bar{\lambda}: \lambda_1 - 1 > \lambda_2 - 2 > \dots > \lambda_m - m > -m - 1 > \dots > -m - t.$$

Let

$$\bar{\mu_i}:\,\mu_{i,1}>\mu_{i,2}>\cdots>\mu_{i,k_i}$$

be the terms of the sequence $\bar{\lambda}$ that are congruent to $i \pmod{t}$. Here k_i is the terms so that $d_i = k_i - 1$. Each $\mu_{i,k}$ corresponds to an exposed cell labeled i in region $[\mu_{i,k}/t] + 1$. In Bijection 1, the numbers

$$n_{i,k} = \left[\frac{\mu_{i,k}}{t}\right] - \left[\frac{\mu_{i,k+1}}{t}\right] - 1$$

correspond to a string of $n_{i,k}$ consecutive N's in the word W_i . Since these N's are shifted as far as possible to the right we find that the sum of parts of the (i + 1)th component

$$\begin{aligned} |\widehat{\lambda}_{i}| &= n_{i,1} + 2n_{i,2} + \dots + (k_{i} - 1)n_{i,k-1} \\ &= \left[\frac{\mu_{i,1}}{t}\right] + \dots + \left[\frac{\mu_{i,k_{i}-1}}{t}\right] \\ &- \frac{1}{2}k_{i}(k_{i} - 1) - (k_{i} - 1)\left[\frac{\mu_{i,k_{i}}}{t}\right] \end{aligned}$$

Since $\mu_{i,k} \equiv i \pmod{t}$ we find that

$$\sum_{i=0}^{t-1} i\left(\left[\frac{\mu_{i,1}}{t}\right] + \dots + \left[\frac{\mu_{i,k_i-1}}{t}\right]\right)$$
$$\equiv \sum_{j=1}^{m} (\lambda_j - j) \left[\frac{\lambda_j - j}{t}\right] \pmod{t}.$$

The desired result (2.3) follows from the fact that $d_i = k_i - 1$ and that

$$\begin{bmatrix} \underline{\mu_{i,k_i}}{t} \end{bmatrix} = \begin{bmatrix} \underline{m-i-1}{t} \end{bmatrix}.$$

3. Cranks for t-cores and partitions

We need the crank results in [6]. The following theorem follows from [6, Theorem 1].

Theorem 3.1. ([6]) If $(t, \delta) = (5, 4)$, (7, 5) or (11, 6), then $\sum_{n \ge 0} a_t (tn + \delta) q^{n+1} = \sum_{\vec{\alpha} \in \mathbb{Z}^t, \vec{\alpha} \cdot \vec{1} = 1} q^{Q(\vec{\alpha})},$

where

$$Q(\vec{\alpha}) = ||\vec{\alpha}||^2 - \sum_{i=0}^{t-1} \alpha_i \alpha_{i+1}.$$

The form $Q(\vec{\alpha})$ remains invariant under a cyclic permutation of the α_i . This induces a *t*-cycle on *t*-cores of $tn + \delta$, which in turn induces a *t*-cycle on partitions of $tn + \delta$ via Bijection 1. For the form $Q(\vec{\alpha})$ the associated crank statistic is $\sum_{i=0}^{t-1} i\alpha_i$. This leads to crank statistics for *t*-cores of $tn + \delta$, and for partitions of $tn + \delta$.

3.1. Cranks for partitions of 5n + 4 and 25n + 24.

Theorem 3.2. ([6, p.7]) Let $\vec{r} = (r_0, r_1, ..., r_4)$ be the *r*-vector of λ , a 5-core of 5n + 4. Then

(3.1)
$$c_1(\lambda) := 2r_1 - r_2 + r_3 - 2r_4 \pmod{5} \in \mathbb{Z}_5$$

is a crank for 5-cores of 5n + 4.

We make explicit the 5-cycle σ that acts of 5-cores of 5n + 4. We let $P_{t\text{-core}}(m)$ denote the set of *t*-cores of *m*. For $0 \leq j \leq 4$ we let $P_{t\text{-core}}^{j}(m)$ denote the set of *t*-cores $\tilde{\lambda}$ of *m*, with crank $c_1(\tilde{\lambda}) \equiv j \pmod{5}$. For a *t*-core $\tilde{\lambda}$ we call $\vec{n} = \phi_2(\tilde{\lambda})$ its *n*-vector. We define the 5-cycle σ in terms of *n*-vectors. The map

$$\sigma : P_{5\text{-core}}(5n+4) \longrightarrow P_{5\text{-core}}(5n+4)$$

is defined by

$$\vec{n} \mapsto \left(-\frac{2\,n_0}{5} + \frac{n_1}{5} + \frac{4\,n_2}{5} + \frac{2\,n_3}{5} + \frac{3}{5}, -n_3, -\frac{3\,n_0}{5} - \frac{6\,n_1}{5} - \frac{4\,n_2}{5} - \frac{2\,n_3}{5} + \frac{2}{5}, -\frac{n_0}{5} + \frac{3\,n_1}{5} - \frac{3\,n_2}{5} + \frac{n_3}{5} - \frac{1}{5}, \frac{6\,n_0}{5} + \frac{2\,n_1}{5} + \frac{3\,n_2}{5} + \frac{4\,n_3}{5} - \frac{4}{5} \right)$$

For each $0 \leq j \leq 4$, the map

$$\sigma : P^{j}_{5\text{-core}}(5n+4) \longrightarrow P^{j+1}_{5\text{-core}}(5n+4)$$

is a bijection.

The key to finding a crank for partitions of 25n + 24 in [6] was a bijective proof of the identity

$$(3.2) a_5(5n+4) = 5a_5(n)$$

The map

$$\theta : P_{5\text{-core}}(n) \longrightarrow P_{5\text{-core}}^0(5n+4)$$

defined by

$$\vec{n} \mapsto (n_1 + 2n_2 + 2n_4 + 1, -n_1 - n_2 + n_3 + n_4 + 1, 2n_1 + n_2 + 2n_3 - 2n_2 - 2n_3 - n_4 - 1, -2n_1 - n_3 - 2n_4 - 1)$$

is a bijection. See [6, p.8]. This together with Theorem 3.2 yields a combinatorial proof of (3.2).

We now describe the crank for 5-cores of 25n + 24 found in [6]. For $\lambda \in P_{5-\text{core}}(25n + 24)$ choose the unique $\lambda' \in P_{5-\text{core}}^0(25n + 24)$ which is in the same orbit as λ under the 5-cycle σ . Define

$$(3.3) c_2(\lambda) := c_1(\theta^{-1}(\lambda')).$$

Let $\vec{n} = \theta^{-1}(\lambda')$. By (2.1)

$$c_2(\lambda') = c_1(\vec{n}) = 2n_1 + n_2 + 2n_3.$$

Observe that this is the third component in the *n*-vector of $\theta(\vec{n}) = \lambda'$. It follows that

(3.4)
$$c_2(\lambda') = r_2 - r_3,$$

where \vec{r} is the r-vector of λ' . Unfortunately, it is not true in general that $c_2(\lambda') \equiv$ $c_2(\lambda) \pmod{5}$. Nonetheless we can find a crank for 5-cores of 25n+24 independent of the two maps σ and θ . We have the following

Theorem 3.3. Let $\vec{r} = (r_0, r_1, ..., r_4)$ be the *r*-vector of λ , a 5-core of 25n + 24. Then

(3.5)
$$c(\lambda) := (c_1(\lambda), c_2(\lambda))$$
$$= (2r_1 - r_2 + r_3 - 2r_4, r_2 - r_3) \pmod{5} \in \mathbb{Z}_5 \times \mathbb{Z}_5$$

is a crank for 5-cores of 25n + 24.

 $\langle \mathbf{n} \rangle$

Proof. For each (i, j) in $\mathbb{Z}_5 \times \mathbb{Z}_5$, we let $P_{5\text{-core}}^{i,j}(25n+24)$ be the set of 5-cores λ of 25n+24 such that $c(\lambda) \equiv (i, j) \pmod{5}$. The map

$$\Psi = \theta \sigma \theta^{-1} : P^{0,j}_{5\text{-core}}(25n+24) \longrightarrow P^{0,j+1}_{5\text{-core}}(25n+24)$$

is a bijection. We have calculated the effect σ has on our crank statistics c_1, c_2 . A calculation shows that the map

$$\sigma : P_{5\text{-core}}^{i,j}(25n+24) \longrightarrow P_{5\text{-core}}^{i+1,i^2+i+j+2}(25n+24)$$

is a bijection. We omit the details. We note that the indices are reduced mod 5. Using the maps Ψ and σ we find that

$$\left|P_{5\text{-core}}^{i,j}(25n+24)\right| = \left|P_{5\text{-core}}^{0,0}(25n+24)\right| = \frac{1}{25}a_5(25n+24),$$

for $0 \leq i, j \leq 4$. Hence $c = (c_1, c_2) \pmod{5}$ is a crank for 5-cores of 25n + 24(mod 25).

A crank for partitions of 25n + 24 is given in [6, Theorem 6]. This crank is algorithmic in nature. It depends on Bijection 1, and the map θ . In view of Lemma 2.1 and Theorem 3.3, we may define a crank independent of these maps. For a partition λ : $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$, with *r*-vector $\vec{r} = (r_0, \ldots, r_{t-1})$, the definition of $c_1(\lambda)$ and $c_2(\lambda)$ is analogous to that given for t-cores in (3.1), (3.4) respectively. We need two more statistics. We define

(3.6)
$$s(\lambda) := r_0 - \left(\sum_{i=0}^{t-1} r_i^2 - r_i r_{i+1}\right),$$

and

(3.7)
$$c_3(\lambda) := \sum_{j=1}^m (\lambda_j - j) \left[\frac{\lambda_j - j}{t} \right] - \sum_{i=1}^{t-1} i d_i \left(\frac{1}{2} (d_i + 1) + \left[\frac{m - i - 1}{t} \right] \right),$$

where $d_i(\lambda)$ is the number of elements of the sequence

$$\lambda_1-1,\lambda_2-2,\ldots,\lambda_m-m,$$

which are congruent to $i \pmod{t}$. Now let λ be any partition of 25n + 24, and suppose

$$\phi_1(\lambda) = (\widetilde{\lambda}, \widehat{\lambda}_0, \widehat{\lambda}_1, \dots, \widehat{\lambda}_4).$$

Then by Lemma 2.1,

$$\sum_{i=0}^{4} |\widehat{\lambda}_i| = s(\lambda),$$

and

$$\sum_{i=0}^{4} i|\widehat{\lambda}_i| \equiv c_3(\lambda) \pmod{5}.$$

If $s(\lambda) \equiv 0 \pmod{5}$, then $\widetilde{\lambda}$ is a 5-core with $|\widetilde{\lambda}| \equiv 24 \pmod{25}$ and

$$c(\lambda) := (c_1(\lambda), c_2(\lambda)) \equiv (c_1(\lambda), c_2(\lambda)) \pmod{5},$$

since the sum of the coefficients in the definitions of c_1 , c_2 is zero. By rewriting [6, Theorem 6] in terms of our new statistics we obtain a bijection independent crank. **Theorem 3.4.** Let $\vec{r} = (r_0, r_1, \ldots, r_4)$ be the r-vector of a partition λ of 25n + 24. We define a crank $c(\lambda) \in \mathbb{Z}_5 \times \mathbb{Z}_5$ as follows.

If $s(\lambda) \equiv 0 \pmod{5}$ we define

$$c(\lambda) := (c_1(\lambda), c_2(\lambda))$$

$$(3.8) = (2r_1 - r_2 + r_3 - 2r_4, r_2 - r_3).$$
If $s(\lambda) \not\equiv 0 \pmod{5}$ we define

(3.9)
$$c(\lambda) := (c_1(\lambda), c_3(\lambda))$$

Then $c(\lambda)$ is a crank for the partitions of $25n + 24 \mod 25$.

The proof utilises Theorem 3.3 and follows from [6, Theorem 6].

3.2. Cranks for partitions of 7n + 5 and 49n + 47. For 7-cores of 7n + 5 there is no analog of (3.2) and so there is no analog of the map θ . Nonetheless we are able to find a crank $c(\lambda) \in \mathbb{Z}_7 \times \mathbb{Z}_7$ for the partitions of 49n + 47.

Theorem 3.5. ([6, p.7]) Let $\vec{r} = (r_0, r_1, ..., r_6)$ be the *r*-vector of λ , a 7-core of 7n + 5. Then

(3.10)
$$c_1(\lambda) := 5r_1 - r_2 - r_3 + r_4 + r_5 - 5r_6 \pmod{7} \in \mathbb{Z}_7$$

is a crank for 7-cores of 7n + 5.

We make explicit the 7-cycle σ that acts of 7-cores of 7n + 5. We define the 7-cycle σ in terms of *n*-vectors. Since $\sum_{i=0}^{6} n_i = 0$, we omit the last component n_6 , and let $\vec{n} = (n_0, n_1, \ldots, n_5)^T$. The map

$$\sigma : P_{7\text{-core}}(7n+5) \longrightarrow P_{7\text{-core}}(7n+5)$$

is defined by

$$\sigma(\vec{n}) = M \,\vec{n} + \vec{\tau}$$

where

$$M = \frac{1}{7} \begin{pmatrix} -8 & -2 & -3 & -4 & -5 & -6 \\ 1 & 2 & 3 & 4 & -2 & 6 \\ 3 & -1 & 2 & 5 & 1 & -3 \\ -2 & -4 & 1 & -1 & 4 & 2 \\ 0 & 0 & -7 & 0 & 0 & 0 \\ 2 & -3 & -1 & -6 & -4 & -2 \end{pmatrix}, \quad \vec{\tau} = \frac{1}{7} \begin{pmatrix} 5 \\ 2 \\ -1 \\ 0 \\ -3 \end{pmatrix}$$

We have the following

Theorem 3.6. Let $\vec{r} = (r_0, r_1, \dots, r_6)$ be the r-vector of λ , a 7-core of 49n + 47. Then

 $c(\lambda) := (c_1(\lambda), c_2(\lambda))$ (3.11) = $(5r_1 - r_2 - r_3 + r_4 + r_5 - 5r_6, r_3 + 4r_4 - 4r_5 - r_6) \pmod{7} \in \mathbb{Z}_7 \times \mathbb{Z}_7$

is a crank for 7-cores of 49n + 47.

Proof. For each (i, j) in $\mathbb{Z}_7 \times \mathbb{Z}_7$, we let $P_{7\text{-core}}^{i,j}(49n + 47)$ be the set of 7-cores λ of 49n + 47 such that $c(\lambda) \equiv (i, j) \pmod{7}$. We construct 7 bijections

$$\Psi_j \ : \ P^{0,j}_{7\text{-core}}(49n+47) \longrightarrow P^{0,j+1}_{7\text{-core}}(49n+47), \qquad 0 \le j \le 6.$$
 Each map Ψ_j has the form

$$\Psi_j(\vec{n}) = M_j \, \vec{n} + \vec{\tau}_j,$$

where M_j is a 6×6 matrix, and $\vec{\tau}_j$ is a constant vector, and which are given below.

$$\begin{split} M_0 &= \frac{1}{49} \begin{pmatrix} -24 & -36 & -2 & -5 & 13 & -4 \\ 40 & 17 & -20 & -1 & 4 & 2 \\ -15 & -37 & -17 & -18 & 23 & -13 \\ 0 & 0 & 0 & 49 & 0 & 0 \\ 15 & 2 & 38 & -3 & -2 & -22 \\ -40 & -38 & -36 & -41 & -60 & -23 \end{pmatrix}, \quad \vec{\tau}_0 &= \frac{1}{49} \begin{pmatrix} 22 \\ -4 \\ 26 \\ 0 \\ -26 \\ 4 \end{pmatrix} \\ M_1 &= \frac{1}{49} \begin{pmatrix} 32 & 1 & -30 & -5 & 6 & 10 \\ -9 & -46 & 8 & -15 & 4 & 2 \\ -36 & 12 & -17 & -11 & 16 & 8 \\ 0 & 0 & 0 & 49 & 0 & 0 \\ 36 & 44 & 52 & 25 & 19 & 48 \\ 9 & 11 & 13 & -6 & 17 & -37 \end{pmatrix}, \\ \vec{\tau}_1 &= \frac{1}{49} \begin{pmatrix} 15 \\ 31 \\ 26 \\ 0 \\ -26 \\ -31 \end{pmatrix} \\ M_2 &= \frac{1}{49} \begin{pmatrix} 36 & 58 & 24 & 18 & 12 & 27 \\ 24 & 6 & 16 & 12 & 57 & 18 \\ -23 & -18 & -48 & -36 & -24 & -54 \\ 0 & 0 & 0 & 49 & 0 & 0 \\ 23 & -31 & -1 & -13 & -25 & 5 \\ -24 & -6 & 33 & -12 & -8 & -18 \end{pmatrix}, \\ \vec{\tau}_2 &= \frac{1}{49} \begin{pmatrix} -5 \\ 13 \\ 10 \\ 0 \\ -10 \\ -13 \end{pmatrix} \\ M_3 &= \frac{1}{49} \begin{pmatrix} 4 & 8 & -44 & -19 & -8 & -25 \\ -9 & -4 & 22 & -15 & -10 & -40 \\ 48 & 54 & 46 & 31 & 37 & 50 \\ 0 & 0 & 0 & 49 & 0 & 0 \\ -48 & 2 & -11 & -17 & -2 & 6 \\ 9 & -31 & -1 & -6 & 31 & 5 \end{pmatrix}, \\ \vec{\tau}_3 &= \frac{1}{49} \begin{pmatrix} 15 \\ 3 \\ -16 \\ 0 \\ 16 \\ -3 \end{pmatrix} \\ M_4 &= \frac{1}{49} \begin{pmatrix} -12 & 39 & 6 & -6 & -18 & -2 \\ -36 & -30 & 18 & -18 & -5 & -6 \\ 31 & -15 & 9 & -9 & -27 & -3 \\ 0 & 0 & 0 & 49 & 0 & 0 \\ -31 & -34 & -58 & -40 & -22 & -46 \\ 36 & 30 & 31 & 18 & 54 & 6 \end{pmatrix}, \\ \vec{\tau}_4 &= \frac{1}{49} \begin{pmatrix} 11 \\ 33 \\ -8 \\ 0 \\ 8 \\ -33 \end{pmatrix} \end{split}$$

$$M_{5} = \frac{1}{49} \begin{pmatrix} -31 & -34 & -58 & -40 & -22 & -46 \\ 12 & 10 & -6 & 6 & 18 & 51 \\ -36 & -30 & 18 & -18 & -5 & -6 \\ 0 & 0 & 0 & 49 & 0 & 0 \\ 36 & 30 & 31 & 18 & 54 & 6 \\ -12 & 39 & 6 & -6 & -18 & -2 \end{pmatrix}, \vec{\tau}_{5} = \frac{1}{49} \begin{pmatrix} 36 \\ 24 \\ 26 \\ 0 \\ -26 \\ -24 \end{pmatrix}$$
$$M_{6} = \frac{1}{49} \begin{pmatrix} 36 & 44 & 52 & 25 & 19 & 48 \\ -32 & -22 & -26 & -37 & -62 & -31 \\ -9 & -46 & 8 & -15 & 4 & 2 \\ 0 & 0 & 0 & 49 & 0 & 0 \\ 9 & 11 & 13 & -6 & 17 & -37 \\ 32 & 1 & -30 & -5 & 6 & 10 \end{pmatrix}, \vec{\tau}_{6} = \frac{1}{49} \begin{pmatrix} 2 \\ 20 \\ 24 \\ 0 \\ -24 \\ -20 \end{pmatrix}$$

Let

(3.12)
$$w(\vec{n}) := w(n_0, n_1, \dots, n_5)$$
$$= \frac{7}{2}(n_0^2 + \dots + n_5^2 + (n_0 + \dots + n_5)^2)$$
$$+ n_1 + 2n_2 + \dots + 5n_5 - 6(n_0 + \dots + n_5).$$

In terms of the *n*-vector c_1 , c_2 are given by

$$c_1(\vec{n}) = 5n_1 + 4n_2 + 3n_3 + 4n_4 + 5n_5,$$

$$c_2(\vec{n}) = n_3 + 5n_4 + n_5.$$

In order to show the Ψ_j are bijections, we have used computer algebra to show for each j, (i) Ψ_j preserves the form w, (ii) $\det(M_j) = \pm 1$, and (iii) $\vec{n} \in \mathbb{Z}^6$, $(c_1(\vec{n}), c_2(\vec{n})) = (0, j), w(\vec{n}) \equiv 47 \pmod{49}$ implies $\Psi(\vec{n}) \in \mathbb{Z}^6$ and $(c_1(\vec{n}), c_2(\vec{n})) = (0, j + 1)$. We have calculated the effect of the 7-cycle σ has on our crank statistics c_1, c_2 . A calculation shows that the map

$$\sigma : P_{7\text{-core}}^{i,j}(49n+47) \longrightarrow P_{7\text{-core}}^{i+1,4i+j}(49n+47)$$

is a bijection. We omit the details. We note that the indices are reduced mod 7. Using the seven maps Ψ_j and the 7-cycle σ we find that

$$\left|P_{7\text{-core}}^{i,j}(49n+47)\right| = \left|P_{7\text{-core}}^{0,0}(49n+47)\right| = \frac{1}{49}a_7(49n+47),$$

for $0 \le i, j \le 6$. Hence $c = (c_1, c_2) \pmod{7}$ is a crank for 7-cores of $49n + 47 \pmod{49}$.

Corollary 3.1. Let $\vec{r} = (r_0, r_1, \ldots, r_6)$ be the *r*-vector of a partition λ of 49n + 47. We define a crank $c(\lambda) \in \mathbb{Z}_7 \times \mathbb{Z}_7$ as follows.

If $s(\lambda) \equiv 0 \pmod{7}$ we define

$$c(\lambda) := (c_1(\lambda), c_2(\lambda))$$

$$(3.13) \qquad = (5r_1 - r_2 - r_3 + r_4 + r_5 - 5r_6, r_3 + 4r_4 - 4r_5 - r_6).$$

If
$$s(\lambda) \not\equiv 0 \pmod{7}$$
 we define

(3.14)
$$c(\lambda) := (c_1(\lambda), c_3(\lambda)),$$

where c_3 is defined in (3.7).

Then $c(\lambda)$ is a crank for the partitions of $49n + 47 \mod 49$.

F. G. GARVAN

The proof is analogous to that of Theorem 3.4.

4. Remarks

Our cranks for the partitions of 25n+24 and 49n+47 depend crucially on finding the two crank functions c_1 and c_2 . The first crank function c_1 arises naturally from the *t*-cycle one gets from Theorem 3.1. For 5-cores the second crank function c_2 arises from the map θ . We describe another way the second crank function arises. Let $w(\vec{n})$ be defined as in (3.12). Then since $w(\vec{n}) \equiv 5 \pmod{7}$ and assuming $c_1(\vec{n}) \equiv 0 \pmod{7}$, there are integers k, ℓ such that

$$n_0 = 7k + 5 - 2n_1 - 3n_2 - 4n_3 - 5n_4 - 6n_5,$$

$$n_1 = 7\ell - n_5 - 5n_2 - 2n_3 - 5n_4.$$

Now assume the second crank function takes the form

$$c_2(\vec{n}) = ab_2 + n_3 + bn_4 + cn_5$$

for some integers a, b, c. If we assume $c_2(\vec{n}) \equiv 0 \pmod{7}$, then there is an integer m such that

$$n_3 = 7m - an_2 - bn_4 - cn_5.$$

We want $w(\vec{n})$ to be a linear form mod 49 in the remaining variables n_2 , n_4 , n_5 . A calculation shows that this can only happen if

$$(a, b, c) \equiv (0, 5, 1) \pmod{7}$$

which nails down the second crank function c_2 . We have considered the analogous problem for 11-cores of 121n + 116, and found there is no second crank function of a similar form which makes the corresponding $w(\vec{n})$ linear mod 121. So if there is a crank for 11-cores of 121n + 116 it must be more complicated.

It would be interesting to find other occurrences of pairs of crank functions (c_1, c_2) which give combinatorial congruences. Zoltan Reti [8] found a pair of crank functions which explains that the congruence

$$s(9n+8) \equiv 0 \pmod{9},$$

where s(n) is the number of partitions of n in which an even part may have two colors. It was Reti's result which led us to search for a function c_2 for 7-cores of 49n + 47.

References

- G.E. Andrews, *The theory of partitions*, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
- [2] G.E. Andrews and F.G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc., 18 (1988), 167–171.
- [3] A.O.L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J., 8 (1967), 14-32.
- A.O.L. Atkin and H.P.F. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84–106.
- [5] F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge), 8 (1944), 10–15.
- [6] F.G. Garvan, D. Kim and D. Stanton, Cranks and t-cores, Inventiones math. 101 (1990), 1–17.
- [7] J.G. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Reading, MA, 1981.
- [8] Z. Reti, Five problems in combinatorial number theory, Ph.D. thesis, University of Florida, 1994.

MORE CRANKS AND *t*-CORES

 [9] G.N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine. Angew. Math., 179 (1938), 97–128.

Department of Mathematics, University of Florida, Gainesville, Florida 32611 E-mail address: frank@math.ufl.edu