
CONGRUENCES AND RELATIONS FOR r-FISHBURN NUMBERS

F. G. GARVAN

ABSTRACT. Recently Andrews and Sellers proved some amazing congruences for the Fish-
burn numbers. We extend their results to a more general sequence of numbers. As a result we
prove a new congruence mod 23 for the Fishburn numbers and prove their conjectured mod 5
congruence for a related sequence. We also extend and prove some unpublished conjectures
of Garthwaite and Rhoades.

1. INTRODUCTION

The Fishburn numbers ξ(n) [2] are defined by the formal power series

(1.1)
∞∑
n=0

ξ(n)qn = F (1− q),

where

(1.2) F (q) :=
∞∑
n=0

(q; q)n,

and
(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Zagier [10] showed that ξ(n) is the number of linearized chord diagrams of degree n, and also
the number of nonisomorphic interval orders on n unlabeled points. Andrews and Sellers [5]
proved some amazing congruences for the Fishburn numbers. For example, for all n ≥ 0,

ξ(5n+ 3) ≡ ξ(5n+ 4) ≡ 0 (mod 5),(1.3)

ξ(7n+ 6) ≡ 0 (mod 7),(1.4)

ξ(11n+ 8) ≡ ξ(11n+ 9) ≡ ξ(11n+ 10) ≡ 0 (mod 11),(1.5)

ξ(17n+ 16) ≡ 0 (mod 17), and(1.6)

ξ(19n+ 17) ≡ ξ(19n+ 18) ≡ 0 (mod 19).(1.7)

In fact, they prove that there are analogous congruences for all primes p that are quadratic
nonresidues mod 23. For p prime they define

(1.8) S(p) =
{
j : 0 ≤ j ≤ p− 1 such that 1

2
n(3n− 1) ≡ j (mod p) for some n

}
and

(1.9) T (p) = {k : 0 ≤ k ≤ p− 1 such that k is larger than every element of S(p)} .
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We state their main result.

Theorem 1.1 (Andrews and Sellers[5]). If p is a prime and i ∈ T (p) (as defined in (1.9)),
then for all n ≥ 0,

ξ(pn+ i) ≡ 0 (mod p).

Remark 1.2. Congruences (1.3)–(1.7) are the cases p = 5, 7, 11, 17 and 19 of Theorem 1.1.
Andrews and Sellers proved that T (p) is nonempty whenever p is a quadratic nonresidue
mod 23.

Recently Garthwaite and Rhoades [7] observed congruence pairs and triples such as

ξ(5n+ 2)− 2 ξ(5n+ 1) ≡ 0 (mod 5),(1.10)

ξ(11n+ 7)− 3 ξ(11n+ 4) + 2 ξ(11n+ 3) ≡ 0 (mod 11).(1.11)

In Theorem 1.3 and Corollary 1.7 below we prove congruences relations mod p exist for all
primes ≥ 5.

We extend the Andrews and Sellers result to what we call r-Fishburn numbers ξr(n) and
which we define by the formal power series

(1.12)
∞∑
n=0

ξr(n)q
n = F ((1− q)r),

where r is any nonzero integer. The case r = 1 corresponds to the ordinary Fishburn num-
bers. Even in the case r = 1 we are able to augment the set T (p). For p ≥ 5 prime, r
relatively prime to p and nonzero and 0 ≤ s ≤ p− 1 we define

S∗(p, r, s) =
{
j : 0 ≤ j ≤ p− 1 such that 1

2
rn(3n− 1) ≡ j − s (mod p) for some n

(1.13)

and 24(j − s) ̸≡ −r (mod p)}
and
(1.14)
T ∗(p, r, s) = {k : 0 ≤ k ≤ p− 1 such that k is larger than every element of S∗(p, r, s)} .

We state our main

Theorem 1.3. Suppose p ≥ 5 is prime, r is a nonzero integer relatively prime to p and
0 ≤ s ≤ p− 1. If m ∈ T ∗(p, r, s) (as defined in (1.14)), then for all n ≥ 0,

s∑
j=0

(
s

j

)
(−1)jξr(pn+m− j) ≡ 0 (mod p).

Remark 1.4. We make some remarks.
(i) The (r, s) = (1, 0) case of the theorem is slightly stronger than the Andrews-Sellers

result. We observe that although 22 ∈ S(23), 22 ̸∈ S∗(23, 1, 0) and we find T ∗(23, 1, 0) =
{18, 19, 20, 21, 22} so that

(1.15)
ξ(23n+18) ≡ ξ(23n+19) ≡ ξ(23n+20) ≡ ξ(23n+21) ≡ ξ(23n+22) ≡ 0 (mod 23).

This is a congruence that Andrews and Sellers missed.
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(ii) We find that S∗(5,−1, 0) = {0, 3} and T ∗(5,−1, 0) = {4} so that

(1.16) ξ−1(5n+ 4) ≡ 0 (mod 5).

This congruence was conjectured by Andrews and Sellers [5]. When (r, s) = (−1, 0)
the Theorem only gives a congruence in the case p = 5. This is because 1 is a
pentagonal number so that when p > 5 we have p− 1 ∈ S∗(p,−1) and T ∗(p,−1, 0)
is empty. Using the facts that

T ∗(5,−1, 2) = {3, 4}, T ∗(5,−1, 3) = {4},

we find that

(1.17) ξ−1(5n+ 3) ≡ 3 ξ−1(5n+ 2) ≡ 2 ξ−1(5n+ 1) (mod 5).

Example 1.5.

S∗(43,−1, 2) = {0, 1, 2, 5, 7, 10, 13, 14, 16, 18, 19, 23, 29, 30, 31, 33, 37, 38, 39, 40, 41},

so that
T ∗(43,−1, 2) = {42},

and
ξ−1(43n+ 42)− 2 ξ−1(43n+ 41) + ξ−1(43n+ 40) ≡ 0 (mod 43),

for all n ≥ 0.

We highlight the s = 0 case of the theorem.

Corollary 1.6. Suppose p ≥ 5 is prime and r is a nonzero integer relatively prime to p. If
m ∈ T ∗(p, r, 0) (as defined in (1.14)), then for all n ≥ 0,

ξr(pn+m) ≡ 0 (mod p).

Corollary 1.7. Suppose p ≥ 5 is prime, and r is a nonzero integer relatively prime to p.
Then there are at least 1

2
(p+1) linearly independent congruence relations mod p of the form

p−1∑
j=0

αj ξr(pn+ j) ≡ 0 (mod p),

where n is any nonnnegative integer and α⃗ ∈ Fp
p.

Remark 1.8. In Section 4 we prove Corollary 1.7 by showing that the relations
s∑

j=0

(
s

j

)
(−1)jξr(pn+ p− 1− j) ≡ 0 (mod p),

where the Legendre symbol
(−24(1+s)r+1

p

)
= −1 or 0, form a set of 1

2
(p+1) linearly indepen-

dent congruence relations mod p. Here rr ≡ 1 (mod p). This also means that s can never
equal p− 1.
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Example 1.9. When p = 7 and r = 1 there are 4 relations mod 7:

ξ(7n+ 6) ≡ 0 (mod 7),

ξ(7n+ 6)− 2 ξ(7n+ 5) + ξ(7n+ 4) ≡ 0 (mod 7),

ξ(7n+ 6)− 3 ξ(7n+ 5) + 3 ξ(7n+ 4)− ξ(7n+ 3) ≡ 0 (mod 7),

ξ(7n+ 6)− 4 ξ(7n+ 5) + 6 ξ(7n+ 4)− 4 ξ(7n+ 3) + ξ(7n+ 2) ≡ 0 (mod 7),

which can be rewritten as

ξ(7n+ 6) ≡ 0 (mod 7),

ξ(7n+ 5) + 5 ξ(7n+ 2) ≡ 0 (mod 7),

ξ(7n+ 4) + 3 ξ(7n+ 2) ≡ 0 (mod 7),

ξ(7n+ 3) + ξ(7n+ 2) ≡ 0 (mod 7).

Conjecture 1.10. Suppose p ≥ 5 is prime, and r is a nonzero integer relatively prime to p.
Then there are exactly 1

2
(p+1) linearly independent congruence relations mod p of the form

p−1∑
j=0

αj ξr(pn+ j) ≡ 0 (mod p),

where n is any nonnnegative integer and α⃗ ∈ Fp
p.

Following Andrews and Sellers [5], we define

(1.18) F (q,N) =
N∑

n=0

(q; q)n,

and the p-dissection

(1.19) F (q,N) =

p−1∑
i=0

qiAp(N, i, qp).

We consider the coefficients of the polynomials

(1.20) Ap(pn− 1, i, 1− q) =
∑
k≥0

α(p, n, i, k)qk.

The Andrews-Sellers Theorem 1.1 depends crucially on

Lemma 1.11 (Andrews and Sellers [5]). If i ̸∈ S(p), then

α(p, n, i, k) = 0,

for 0 ≤ k ≤ n− 1.

We consider the analog of this result when 24i ≡ −1 (mod p). For p ≥ 5 prime we
define ξ̄p(n) by the formal power series

(1.21)
∞∑
n=0

ξ̄p(n)q
n = (1− q)⌊

p
24

⌋F ((1− q)p),
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where F (q) is defined in (1.2). Observe that when 5 ≤ p ≤ 23,

ξ̄p(n) = ξp(n),

for n ≥ 0. We find the following new relation for Fishburn numbers.

Theorem 1.12. Suppose p ≥ 5 is prime and 24i0 ≡ −1 (mod p) where 1 ≤ i0 ≤ p − 1.
Then

α(p, n, i0, k) = p

(
12

p

)
ξ̄p(k),

for 0 ≤ k ≤ n− 1. Here
(·
·

)
is the Kronecker symbol.

Our main Theorem 1.3 will follow from Lemma 1.11 and Theorem 1.12 in a straightfor-
ward manner.

2. PRELIMINARY RESULTS

Lemma 2.1. Let p be prime and suppose 0 ≤ j ≤ p−1 and 0 ≤ k ≤ M −1 ≤ N −1. Then

α(p,N, j, k) = α(p,M, j, k),

where α(p, n, i, k) is defined in (1.20).

Proof. Let ζ = exp(2πi/p). Then from (1.19) we have

Ap(N, j, q) =
1

p

p−1∑
k=0

ζ−jkq−
j
pF
(
ζkq

1
p , N

)
.

Next we suppose that n ≥ pM . Then(
ζk(1− q)

1
p ; ζk(1− q)

1
p

)
n
=

n∏
j=1

(
1−

(
ζk(1− q)

1
p

)j)

=

⌊n/p⌋∏
j=1

(1− (1− q)j)
n∏

j=1
j ̸≡0 (mod p)

(
1−

(
ζk(1− q)

1
p

)j)

=
M∏
j=1

(jq +O(q2))
n∏

j=1
j ̸≡0 (mod p)

(
1−

(
ζk(1− q)

1
p

)j)

= O
(
qM
)
.

Thus

Ap(pN − 1, j, 1− q) =
1

p

p−1∑
k=0

ζ−jkq−
j
p

pN−1∑
n=0

(
ζk(1− q)

1
p ; ζk(1− q)

1
p

)
n

= Ap(pM − 1, j, 1− q) +O(qM).

The result follows. �
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Andrews and Sellers define a Stirling like array of numbers C(n, i, j, p) for n ≥ 0, 0 ≤
i ≤ p− 1, and 0 ≤ j ≤ n, which are defined by the recursion

(2.1) C(n+ 1, i, j, p) = (i+ jp)C(n, i, j, p) + pC(n, i, j − 1, p),

and the initial value

(2.2) C(0, i, 0, p) = 1.

It is understood that if either of the conditions n ≥ 0 or 0 ≤ j ≤ n are not satisfied, then
C(n, i, j, p) = 0. We note that

C(n, i, 0, p) = in.

We need a generalization of the signless Stirling numbers of the first kind. We define the
numbers s1(n, j,m) for 0 ≤ j ≤ n by

(2.3)
n∑

j=0

s1(n, j,m)xj = (x−m)(x−m+ 1) · · · (x−m+ n− 1).

We note case m = 0 correspond to the signless Stirling numbers of the first kind s1(n, j).
We define

(2.4) f(x, n, k,m) = (−1)n
n∑

j=k

(
j

k

)
s1(n, j,m)xj,

for 0 ≤ k ≤ n, otherwise define f(x, n, k,m) = 0.

Lemma 2.2. For 0 ≤ k ≤ n+ 1 we have

(2.5) f(x, n+ 1, k,m) = −((x+ n−m)f(x, n, k,m) + xf(x, n, k − 1,m)).

Proof. First we observe that

f(x, n, k,m) =
xk

k!

(
∂

∂x

)k

f(x, n, 0,m),

where

f(x, n, 0,m) = (−1)n(x−m)(x−m+ 1) · · · (x−m+ n− 1) (by (2.3)),

for k ≥ 0. Now we let

f̃(x, n, k,m) =

(
∂

∂x

)k

(−1)n(x−m)(x−m+ 1) · · · (x−m+ n− 1),

for 0 ≤ k ≤ n, otherwise define f̃(x, n, k,m) = 0. We show that

(2.6) f̃(x, n+ 1, k,m) = −
(
(x−m+ n)f̃(x, n, k,m) + kf̃(x, n, k − 1,m)

)
where 0 ≤ k ≤ n+ 1. Since

f̃(x, n+ 1, 0,m) = −(x−m+ n)f̃(x, n, 0,m),

we have
∂

∂x
f̃(x, n+ 1, 0,m) = −(x−m+ n)

∂

∂x
f̃(x, n, 0,m)− f̃(x, n, 0,m),
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so that
f̃(x, n+ 1, 1,m) = −

(
(x−m+ n)f̃(x, n, 1,m) + f̃(x, n, 0,m)

)
and (2.6) holds for k = 1. We assume (2.6) holds for k ≤ K.

f̃(x, n+ 1, K + 1,m) =
∂

∂x
f̃(x, n+ 1, K,m)

= − ∂

∂x

[
(x−m+ n)f̃(x, n,K,m) +Kf̃(x, n, k − 1,m)

]
= −

[
(x−m+ n)f̃(x, n,K + 1,m) + f̃(x, n,K,m) +Kf̃(x, n,K,m)

]
= −

[
(x−m+ n)f̃(x, n,K + 1,m) + (K + 1)f̃(x, n,K,m)

]
,

and (2.6) holds for k = K + 1. Hence (2.6) holds for all k by induction. Since

f(x, n, k,m) =
xk

k!
f̃(x, n, k,m),

the result (2.5) follows easily. �
Theorem 2.3. Let i0 = (p2 − 1)z −mp. Suppose that

(2.7)
n∑

ℓ=0

C(n, i0, ℓ, p)A1(ℓ,m) = (−1)nzn
n∑

k=0

(
n

k

)
X(k),

for n ≥ 0. Then

(2.8) A1(n,m) = (−1)n
n∑

k=0

n∑
j=k

(
j

k

)
s1(n, j,m)pj−2kX(k)zj,

for n ≥ 0.

Proof. Since for n ≥ 0 (2.7) forms a triangular system of equations in the unknowns
A1(ℓ,m) (for fixed m) and each diagonal coefficient

C(n, i0, n, p) = pn ̸= 0,

it suffices to show that A1(n,m) given by (2.8) satisfies (2.7). By considering the coefficient
of X(L) it suffices to show that

(2.9)
n∑

ℓ=0

C(n, i0, ℓ, p)f(pz, ℓ, L,m) = G(n, L),

where

G(n, L) = (−1)n
(
n

L

)
znp2L,

for 0 ≤ L ≤ n and m ≥ 0. We proceed by induction on n. The result is clearly true for
n = 0. We assume (2.9) holds for n = N . Now
N+1∑
ℓ=0

C(N + 1, i0, ℓ, p)f(pz, ℓ, L,m)
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=
N+1∑
ℓ=0

(
((p2 − 1)z −mp+ ℓp)C(N, i0, ℓ, p) + pC(N, i0, ℓ− 1, p)

)
f(pz, ℓ, L,m) (by (2.1))

=
N∑
ℓ=0

((p2 − 1)z −mp+ ℓp)C(N, i0, ℓ, p)f(pz, ℓ, L,m)

+
N∑
ℓ=0

pC(N, i0, ℓ, p)f(pz, ℓ+ 1, L,m)

=
N∑
ℓ=0

((p2 − 1)z −mp+ ℓp)C(N, i0, ℓ, p)f(pz, ℓ, L,m)

−
N∑
ℓ=0

pC(N, i0, ℓ, p)

(
(pz + ℓ−m)f(pz, ℓ, L,m) + pzf(pz, ℓ, L− 1,m)

)

= −z
N∑
ℓ=0

C(N, i0, ℓ, p)f(pz, ℓ, L,m)− p2z
N∑
ℓ=0

C(N, i0, ℓ, p)f(pz, ℓ, L− 1,m)

(by (2.5))

= −zG(N,L)− p2zG(N,L− 1)

= (−1)N+1

((
N

L

)
zN+1p2L +

(
N

L− 1

)
zN+1p2L

)
= (−1)N+1

(
N + 1

L

)
zN+1p2L = G(N + 1, L),

and (2.9) holds for n = N + 1, thus completing our induction proof. �

We will also need some results of Zagier [10] on the Fishburn numbers. We need the
following formal power series identity [10, Eqn.(4),p.946]

(2.10) et/24
∞∑
n=0

(1− et) · · · (1− ent) =
∞∑
n=0

Tn

n!

(
−t

24

)n

,

where Tn are the Glaisher T -numbers [1] and which are given explicitly by

(2.11) Tn = 6
(−144)n

n+ 1

[
B2n+2

(
1

12

)
−B2n+2

(
5

12

)]
,

where Bn(x) denotes the n-th Bernoulli polynomial. We remark that letting t = log(1 − q)
in (2.10) and using (3.10) below we find that

(2.12) ξ(n) =
n∑

m=0

m∑
k=0

(−1)n+k

(
−1/24

n−m

)
s1(m, k)

m!24k
Tk,
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which is useful for calculation. Zagier [10] also determined the behaviour of F (q) when q is
near a root of unity. In particular, if ζ = ζp is a p-th root of unity and N = 12p then

(2.13) et/24F (ζet) =
∞∑
n=0

cn(ζ)

n!

(
−t

24

)n

,

where

(2.14) cn(ζ) =
(−1)nN2n+1

2n+ 2

N/2∑
m=1

χ(m)ζ
1
24

(m2−1)B2n+2

(m
N

)
,

and where χ is the character mod 12 given by

(2.15) χ(n) =

(
12

n

)
=


1 if n ≡ ±1 (mod 12),
−1 if n ≡ ±5 (mod 12),
0 otherwise.

This character occurs in the statement of Theorem 1.12.

3. PROOF OF THEOREM 1.12

In this section we assume p > 3 is prime, N = 12p and ζ is any p-th root of unity.
Following [10] we define the sequence (bn(ζ)) formally by

(3.1) F (ζet) =
∞∑
n=0

bn(ζ)

n!
tn.

From (2.10), (2.13), (2.14) we have for n ≥ 0

(3.2) bn(ζ) =
(−1)n

24n

n∑
j=0

(
n

j

) p−1∑
i=0

γ(j, i)ζ i,

where

(3.3) γ(j, i) =
(−1)jN2j+1

2j + 2

N/2∑
m=1

(m2−1)/24≡i (mod p)

χ(m)B2j+2

(m
N

)
.

As in [5] we have for n ≥ 0

bn(ζ) =

(
d

dt

)n

F (ζet)

∣∣∣∣
t=0

=

(
q
d

dq

)n

F (q)

∣∣∣∣
q=ζ

=

(
q
d

dq

)n

F (q,m)

∣∣∣∣
q=ζ

for m ≥ (n + 1)p − 1. Proceeding as in the proof of [5, lemma 2.5] we have from (2.14),
(3.2) and Lemma 2.1 that

bn(ζ) =

(
q
d

dq

)n

F (q, (n+ 1)p− 1)

∣∣∣∣
q=ζ

=
n∑

j=0

p−1∑
i=0

C(n, i, j, p)ζ iA(j)
p (p(n+ 1)− 1, i, 1)
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=
n∑

j=0

p−1∑
i=0

C(n, i, j, p)ζ iA(j)
p (p(j + 1)− 1, i, 1)

=
(−1)n

24n

n∑
j=0

(
n

j

) p−1∑
i=0

γ(j, i)ζ i.

Since this identity holds for all p-th roots of unity ζ (including ζ = 1) and all the coefficients
involved are all rational numbers we may equate coefficients of ζ i on both sides to obtain

(3.4)
n∑

j=0

C(n, i, j, p)A(j)
p (p(j + 1)− 1, i, 1) =

(−1)n

24n

n∑
j=0

(
n

j

)
γ(j, i),

for 0 ≤ i ≤ p − 1. Now we let i0 be the least nonnegative integer satisfying 24i0 ≡ −1
(mod p). We find that

(3.5) i0 =
p2 − 1

24
−
⌊ p

24

⌋
p.

We now calculate γ(j, i0). We see that

m2 − 1

24
≡ i0 (mod p) if and only if m ≡ 0 (mod p).

In the sum (3.3) (with (N = 12p) we only consider the terms with m = p, 5p to find that

(3.6) γ(j, i0) = χ(p)
(−1)j122j+1p2j+1

2j + 2

(
B2j+2

(
1

12

)
−B2j+2

(
5

12

))
.

We apply Theorem 2.3 with z = 1
24

and m =
⌊

p
24

⌋
to equation (3.4) with i = i0 to obtain

A(n)
p (p(n+ 1)− 1, i0, 1) = (−1)n

n∑
k=0

n∑
j=k

(
j

k

)
s1(n, j, ⌊p/24⌋)

pj+1

24j

χ(p)
(−1)k122k+1

2k + 2

(
B2k+2

(
1

12

)
−B2k+2

(
5

12

))
= (−1)nχ(p)

n∑
k=0

n∑
j=k

(
j

k

)
s1(n, j, ⌊p/24⌋)

pj+1

24j
Tk,

by (2.11). From (1.20) we see that

α(p, n+ 1, i0, n) =
(−1)n

n!
A(n)

p (p(n+ 1)− 1, i0, 1).

Hence
∞∑
n=0

α(p, n+ 1, i0, n)x
n = pχ(p)

∞∑
n=0

xn

n!

n∑
k=0

n∑
j=k

(
j

k

)
s1(n, j, ⌊p/24⌋)

pj

24j
Tk,

= pχ(p)
∞∑
j=0

j∑
k=0

(
∞∑
n=j

s1(n, j, ⌊p/24⌋)
xn

n!

)
pj

24j

(
j

k

)
Tk(3.7)
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It is well-known that the signless Stirling numbers of the first kind have generating function

(3.8) G(x, u) = exp (−u log 1− x) = (1− x)−u =
∞∑
n=0

n∑
j=0

s1(n, j)u
j x

n

n!
.

Our generalized signless Stirling numbers have generating function

(3.9) Gk(x, u) = (1− x)k exp (−u log 1− x) = (1− x)k−u =
∞∑
n=0

n∑
j=0

s1(n, j, k)u
j x

n

n!
.

Thus

(3.10)
∞∑
n=j

s1(n, j, k)
xn

n!
= (1− x)k

(− log(1− x))j

j!
.

Hence from (3.10) and (3.7) we have
∞∑
n=0

α(p, n+ 1, i0, n)q
n = pχ(p)(1− q)⌊p/24⌋

∞∑
j=0

(
j∑

k=0

(
j

k

)
Tk

)
(−p log(1− q))j

24jj!
(3.11)

From Zagier’s result (2.10) we have

(3.12) F (exp(t)) =
∞∑
n=0

(
n∑

k=0

(
n

k

)
Tk

)
(−t)n

24nn!
.

Thus using this result in (3.11) we have
∞∑
n=0

α(p, n+ 1, i0, n)q
n = pχ(p)(1− q)⌊p/24⌋F (exp(p log(1− q))

= pχ(p)(1− q)⌊p/24⌋F ((1− q)p).(3.13)

Theorem 1.12 follows from (1.21) and (3.13) since

α(p, n, i0, k) = α(p, k + 1, i0, k),

for 0 ≤ k ≤ n− 1 by Lemma 2.1.

4. PROOF OF THEOREM 1.3 AND COROLLARY 1.7

We assume p ≥ 5 is prime and 24i0 ≡ −1 (mod p) where 1 ≤ i0 ≤ p − 1. For two
formal power series

A =
∞∑
n=0

anq
n, B =

∞∑
n=0

bnq
n ∈ Z[[q]],

we write
A ≡ B (mod p) if an ≡ bn (mod p),

for all n ≥ 0. If p is prime and m is a nonnegative integer

m = jp+ r, where 0 ≤ r < p and j, r ∈ N,
then

(4.1) (1− q)m = (1− q)r(1− q)pj ≡ (1− q)r(1− qp)j (mod p).
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Now suppose r is a nonzero integer relatively prime to p and 0 ≤ s ≤ p − 1. We consider
two cases.

Case I. r > 0. We proceed as in [5, Section 3]. We note that

(4.2)
∞∑
n=0

ξ(n)qn = F (1− q,N) +O(qN+1).

Now from (1.19) we have

F (q, pn− 1) =

p−1∑
i=0

qiAp(pn− 1, i, qp)

=
∑

i∈S(p)\{i0}

qiAp(pn− 1, i, qp) + qi0Ap(pn− 1, i0, q
p)

+
∑
i̸∈S(p)

qiAp(pn− 1, i, qp).

Hence

F ((1− q)r, pn− 1) =
∑

i∈S(p)\{i0}

(1− q)riAp(pn− 1, i, (1− q)rp)

+ (1− q)ri0Ap(pn− 1, i0, (1− q)rp)

+
∑
i̸∈S(p)

(1− q)riAp(pn− 1, i, (1− q)rp).

For i ̸∈ S(p) we have

Ap(pn− 1, i, q) =
∑
k≥0

α(p, n, i, k)(1− q)k,

and

Ap(pn− 1, i, (1− q)rp) =
∑
k≥0

α(p, n, i, k)(1− (1− q)rp)k

≡
∑
k≥0

α(p, n, i, k)(1− (1− qp)r)k (mod p)

≡ O(qpn) (mod p),

by Lemma 1.11. In a similar fashion we have

Ap(pn− 1, i0, (1− q)rp) ≡ O(qpn) (mod p),

using Theorem 1.12. Thus

(1−q)sF ((1−q)r, pn−1) ≡
∑

i∈S(p)\{i0}

(1−q)ri+sAp(pn−1, i, (1−qp)r)+O(qpn) (mod p).

By (4.1) we see that the only terms qj
′ that occur in (1 − q)ri+s (where i ∈ S(p) \ {i0})

satisfy
j′ ≡ j (mod p) where 0 ≤ j ≤ m and m ∈ S∗(p, r, s).
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This is because i ∈ S(p) \ {i0} if and only if ri+ s is congruent to an element of S∗(p, r, s).
Since Ap(pn− 1, i, (1− qp)r) is a polynomial in qp the result follows by letting n → ∞; i.e.
every term qj

′ in

(1− q)sF ((1− q)r) =
∞∑
n=0

s∑
j=0

(
s

j

)
(−1)jξr(n− j)qn

where j′ is congruent to an element of T ∗(p, r, s) must have a coefficient that is congruent to
0 mod p.

Case II. r < 0. This time we choose integers β and m such that

r = mp+ β,

where 0 < β ≤ p− 1 and m < 0. We find that

(1− q)r = (1− q)βΦ(qp) + pΨ(q) ≡ (1− q)βΦ(qp) (mod p),

where Φ(q), Ψ(q) ∈ Z[[q]] and Φ(q) has constant term 1 so that it is a unit in the ring of
formal power series. In fact,

Φ(q) = (1− q)m = 1 +
∞∑
k=1

(
k −m− 1

k

)
qk = 1−mq +

m(m− 1)

2
q2 + . . . .

We basically proceed as in Case I. We have

F ((1− q)r, pn− 1) = F ((1− q)βΦ(qp) + pΨ(q), pn− 1)

=

p−1∑
i=0

((1− q)βΦ(qp) + pΨ(q))iAp(pn− 1, i, ((1− q)βΦ(qp) + pΨ(q))p)

≡
p−1∑
i=0

(1− q)βi [Φ(qp)]i Ap(pn− 1, i, ((1− qp)β [Φ(qp)]p) (mod p)

≡
∑

i∈S(p)\{i0}

(1− q)βi [Φ(qp)]pAp(pn− 1, i, ((1− qp)β [Φ(qp)]p) +O(qpn) (mod p),

and

(1− q)sF ((1− q)r, pn− 1)

≡
∑

i∈S(p)\{i0}

(1− q)βi+s [Φ(qp)]pAp(pn− 1, i, ((1− qp)β [Φ(qp)]p) +O(qpn) (mod p),

arguing as before. This time instead of the term

Ap(pn− 1, i, (1− qp)r),

which is a polynomial in qp with integer coefficients we have the term

[Φ(qp)]p Ap(pn− 1, i, ((1− qp)β [Φ(qp)]p),

which is a formal power series in qp with integer coefficients. The result follows as before
by letting n → ∞. This completes the proof of our main theorem.
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We now prove Corollary 1.7. As before suppose p ≥ 5 is prime and let r be a fixed
nonzero integer relatively prime to p. Suppose r is the multiplicative inverse of r mod p. We
see that

r 1
2
n(3n−1) ≡ −1−s (mod p) if and only if (6n−1)2 ≡ −24(1+s)r+1 (mod p).

Thus p − 1 ̸∈ S∗(p, r, s) if −24(1 + s)r + 1 is either a quadratic nonresidue mod p or
congruent to zero mod p. There are 1

2
(p+ 1) such values of s for 0 ≤ s ≤ p− 1. Thus

(4.3)
s∑

j=0

(
s

j

)
(−1)jξr(pn+ p− 1− j) ≡ 0 (mod p),

for all n ≥ 0 provided
(−24(1+s)r+1

p

)
= −1 or 0. It is clear that this set of 1

2
(p+1) congruence

relations mod p is linearly independent. This completes the proof of Corollary 1.7.
We illustrate (4.3) with some examples.

Example 4.1. s = 0 We have

ξ(pn+ p− 1) ≡ 0 (mod p)

for all n ≥ 0 provided p ≥ 5 is prime and
(−23

p

)
= 0 or −1; i.e. p ≡ 0, 5, 7, 10, 11, 14, 15, 17,

19, 20, 21, or 22 (mod 23).

Example 4.2. s = 1 We have

ξ(pn+ p− 1) ≡ ξ(pn+ p− 2) (mod p)

for all n ≥ 0 provided p ≥ 5 is prime and
(−47

p

)
= 0 or −1; i.e. p ≡ 0, 5, 10, 11, 13, 15, 19, 20,

22, 23, 26, 29, 30, 31, 33, 35, 38, 39, 40, 41, 43, 44, 45, or 46 (mod 47).

Example 4.3. s = 2 We have

ξ(pn+ p− 1)− 2 ξ(pn+ p− 2) + ξ(pn+ p− 3) ≡ 0 (mod p)

for all n ≥ 0 provided p ≥ 5 is prime and
(−71

p

)
= 0 or −1; i.e. p = 71 or

(
71
p

)
= −1. We

have

ξ−1(pn+ p− 1)− 2 ξ−1(pn+ p− 2) + ξ−1(pn+ p− 3) ≡ 0 (mod p)

for all n ≥ 0 provided p ≥ 5 is prime and
(
73
p

)
= 0 or −1; i.e. p = 73 or

(
73
p

)
= −1.

5. CONCLUSION

We pose the following problems.
(i) The numbers ξ(n) and ξ−1(n) have many combinatorial interpretations [6], [8], [9].

Use one of the interpretations to find a rank or crank-type function [3] to explain
combinatorially the simplest congruences

ξ(5n+ 3) ≡ ξ(5n+ 4) ≡ 0 (mod 5),

ξ−1(5n+ 4) ≡ 0 (mod 5).
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(ii) Zagier [10] showed that q1/24F (q) is a so-called quantum modular form [11]. Find
and prove congruences for the coefficients of other quantum modular forms. In par-
ticular look at the functions considered by Andrews, Jiménez-Urroz and Ono [4].
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