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Doron Zeilberger has described a method for settling the q-case of the Macdonald-
Morris root system constant term conjecture for any specific root system provided there
is sufficient computer time, memory space and some luck. He illustrated the method
by proving the S(G2)∨ case. His method involves finding and solving a linear system

of equations. We remove the element of luck by showing that it is always possible to
construct a triangular system. We apply the method to the so far open S(F4) and S(F4)∨

cases. A consequence of our triangularity result is that, in the equal parameter case, the

Macdonald-Morris constant terms (for a fixed root system) form a q-hypergeometric
sequence.

1. Introduction

In 1982, Macdonald (1982) presented a collection of constant term conjectures relating
to root systems. The most general of these conjectures (Macdonald, 1982, Conj. 3.3) is
cast in the language of affine root systems S(R) and has the form

C.T.
∏
α∈R+

(qεαxα; quα)kα(quα−εαx−α; quα)kα = a certain explicit product. (1.1)

Here C.T. means constant term in the Laurent polynomial in the x±α; R is the underlying
root system; kα are nonnegative integers satisfying kα = kβ whenever ‖α‖ = ‖β‖; εα,
uα are certain constant integers associated with the affine root system and (a; q)k is the
standard q-notation

(a)k = (a; q)k = (1− a)(1− aq) · · · (1− aqk−1).

The results of this paper were first announced in Macdonald’s constant term conjectures for excep-
tional root systems, Bulletin (new series) A. M. S., 24 (1991), 343–347.

The research for this paper was done while the first author was a postdoctoral fellow at the Institute
for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, and later as
a Macquarie University Research Fellow at the School of Mathematics, Macquarie University, Sydney,
NSW 2109, Australia.
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We note that, except for R = BCn, all εα ≡ 0. The right sides of (1.1) are spelled out
explicitly in Morris’ thesis (Morris, 1982, Appendix C).

The S(An) case is a special case of Andrews’ q-Dyson conjecture (Andrews, 1975)
which was proved by Zeilberger and Bressoud (1985). We should point out that Stem-
bridge (1988) has found a short and elementary proof of the S(An) case. The S(G2)
case was proved independently by Habsieger (1986) and Zeilberger (1987). Zeilberger
(1988) proved the S(G2)∨ and Kadell (to appear) proved the S(BCn) case (and hence
the S(Bn) and S(Dn) cases). Recently, Gustafson (1990) has proved the remaining infi-
nite family cases S(Bn)∨, S(Cn) and S(Cn)∨ using his q-analog of Selberg’s beta integral
(Gustafson, to appear, eq. (2); Gustafson, 1990). We should also mention that the q = 1
case of (1.1) for F4 has been proved by Garvan (1990), the q = 1 case of (1.1) for all root
systems was proved by Opdam (1989) and that in (Garvan, 1989) one of us presented
an algorithmic approach for handling the related Macdonald-Mehta integrals. Hence, the
S(F4), S(F4)∨, S(E6), S(E7) and S(E8) cases of (1.1) have remained open.

Zeilberger (1988) presented a method for handling (1.1):

. . . a method that systematically handles the Macdonald conjectures for any
given, fixed, root system, provided there are sufficient computer resources, and,
for the time being, some luck.. . . Besides, I am almost sure that the element of
luck can be disposed with, and that the method can be proved to constitute an
effective method for settling the Macdonald and Macdonald-Morris conjectures
for any given root system. . . .

In this paper we show how to dispose of the element of luck in Zeilberger’s method.
His method involves an algorithm whose input is a vector and whose output is a linear
equation. This algorithm comes from a certain q-functional. The problem is to find a set
of inputs that will give a system with full rank, and then solve this system on a computer.
We show that it is always possible to choose the q-functional and the set of inputs so
that the the linear system is triangular. This phenomenon of triangularity has also been
observed independently by Stembridge (1988).

In §2 we describe Zeilberger’s method. In §3 we prove the triangularity result mentioned
above, for the S(R) case. The proof, for the S(R)∨ case, is completed in §6. We also prove
an interesting triangularity result for the q = 1 case thus removing the element of luck
in our method described in (Garvan, 1990). In §§4,5 and 7 we apply the method to the
so far open S(F4) and S(F4)∨ cases.

Our method boils down to showing that a certain seemingly monstrous rational func-
tion in q, s and t is in fact identically zero. This is done through the computer algebra
package MAPLE. However, when we first embarked on this project in 1988 we could
not simplify this rational function to zero, in either the S(F4) or S(F4)∨ cases, without
running out of memory. We then tried an interpolation approach. Later, on Wednesday
November 14 16:32:08 MET 1990, using the newest Maple version V, we proved the
S(F4) case directly without using any interpolation. The S(F4)∨ case was proved using
the interpolation approach. The computations were done at Waterloo and later at ETH.
The machines used were watdragon (VAX 8650), watmum (VAX 785), watsol (SUN 4),
daisy (MIPS R2000) and fioni (DEC 3100).

Let the affine root system S be fixed and consider the equal parameter case of (1.1), i.e.
kα ≡ a. A consequence of our triangularity results is that the sequence of constant terms
on the left side of (1.1) for a = 0, 1, . . ., is a q-hypergeometric sequence (see (Zeilberger, to
appear)). More importantly, the method constitutes an effective algorithm for verifying
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(1.1) for a fixed affine root system with parameters not necessarily equal. In §8 we discuss
these results as well as prospects for S(E6), S(E7), S(E8).

1.1. notation

Let R be an irreducible root system of rank ` embedded in the Euclidean space E. Let
B = {γ1, γ2, . . . , γ`} be a Z-basis for R, i.e. a basis for E that satisfies

R ⊂
`

⊕
i=1

Zγi.

Usually we take B to be a base ∆ for R. Zeilberger (1988) takes B to be the standard
basis {ei}`i=1. Let Λ denote the root lattice. For β ∈ Λ we let ci(β) be the i-th coordinate
of β with respect to B so that

β =
∑̀
i=1

ci(β)γi, (ci(β) ∈ Z).

We define

xβ :=
∏̀
i=1

x
ci(β)
i .

We should point out that the left side of (1.1) is well-defined being independent of the
choice of B.

For α ∈ R the reflection wα through the hyperplane orthogonal to α is given by
wα(β) = β − 〈β, α〉α where 〈β, α〉 = 2(β, α)/(α, α). The group W = W (R) generated by
the wα (α ∈ R) is called the Weyl group of R. W acts on monomials by

w(xβ) = xw(β), (w ∈W,β ∈ Λ),

and by linearity on Laurent polynomials.
A Laurent polynomial G is symmetric with respect to the Weyl group W if w(G) = G

for every w in W . The sign of an element w of W , written sgn(w), is defined as (−1)n(w),
where n(w) is the number of positive roots that w turns into negative roots; i.e. as
|w(R+)∩R−|. A Laurent polynomial G is anti-symmetric if for any w in the Weyl group
W , w(G) = sgn(w)G.

The fundamental chamber C is given by

C = C(∆) := {β ∈ E : (α, β) > 0 for all α ∈ ∆}.

For α ∈ E we call α a bad guy if it lies on a reflecting hyperplane; i.e. there is a β ∈ R
such that (β, α) = 0; otherwise, α is a good guy. ∆ defines a natural partial order on E:
define β ≺ α iff α− β has nonnegative coefficients with respect to ∆.

2. Zeilberger’s Method

We describe Zeilberger’s method when the root system, R, is irreducible and has at
most two root lengths, so that all εα ≡ 0. The only irreducible root system with more
than two root lengths is BCn, for which (1.1) is already known. The method can be



4 F.G. Garvan and G.H. Gonnet

easily modified to handle the BCn case as well. Let

kα =
{
a, α short,
b, α long, (2.1)

uα =
{
us, α short,
ul, α long, (2.2)

and define

F ′a,b(x) :=
∏
α∈R+

(xα; quα)kα(quαx−α; quα)kα , (2.3)

H ′a,b := C.T.F ′a,b(x). (2.4)

The Macdonald-Morris conjecture (1.1) asserts that H ′a,b has a nice explicit form. Instead
of F ′ and H ′ we consider

Fa,b(x) :=
∏
α∈R+

(xα; quα)kα(quαx−α; quα)kα−1, (2.5)

Ha,b := C.T.Fa,b(x), (2.6)

where a, b ≥ 1. It can be shown that H ′a,b and Ha,b satisfy

H ′a,b = Ha,b ·W (qaus , qbul), (2.7)

where
W (t, s) =

∑
w∈W

tns(w)snl(w). (2.8)

Here ns(w) = |w(R+
short) ∩ R−| and nl(w) = |w(R+

long) ∩ R−| for w in the Weyl group
W , so that n(w) = ns(w) + nl(w). See (Zeilberger, 1988, §8) for a proof. We note
that Macdonald (1972) has found that W (t, s) may be written as a nice product. The
advantage of Fa,b over F ′a,b is that it is almost anti-symmetric. We have

Fa,b(x) = xδGa,b(x), (2.9)

where

Ga,b(x) :=
∏
α∈R+

(x−α/2 − xα/2)
∏
α∈R

(quαxα; quα)kα−1, (2.10)

δ :=
1
2

∑
α∈R+

α, (2.11)

and Ga,b is anti-symmetric. The proof of (2.7) depends on Zeilberger’s Crucial Lemma
(Zeilberger, 1988, p. 995):

Crucial Lemma 2.1. Let G(x) be anti-symmetric with respect to the Weyl group W ,
let γ be any element of the root lattice Λ, and let w be any element of the Weyl group
W . Then

(i) C.T.
(
xw(γ)G

)
= sgn(w)C.T. (xγG) ,

and
(ii) if γ is a bad guy (i.e. there exists a α ∈ R such that (γ, α) = 0) then

C.T. (xγG) = 0.
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We let R′a,b be the conjectured value of H ′a,b (i.e. the right side of (1.1)) and let

Ra,b := R′a,b/W (qaus , qbul). (2.12)

Our goal is to prove Ha,b = Ra,b for a, b ≥ 1. The idea is to proceed by induction on a.
We want to prove

Ha+1,b

Ha,b
=
Ra+1,b

Ra,b
. (2.13)

Once (2.13) is proved the problem of proving (1.1) for general a, b can be reduced to the
smaller sub-root system Rlong. This does not follow immediately. The problem is that
we cannot plug a = 0 into (2.13) since (2.13) only makes sense for a ≥ 1. There is a way
around this technical hitch.

Lemma 2.2. Suppose (2.13) is true for a, b ≥ 1 and (1.1) holds for S(Rlong) then (1.1)
holds for general a, b.

We leave the proof of Lemma 2.2 until the end of this section. We also need the
following lemma which follows from (Carter, 1972, Prop. 2.3.4).

Lemma 2.3. Let α be a good guy (i.e. α does not lie on a reflecting hyperplane). Then
there is a unique w in the Weyl group W and vector ρ in the fundamental chamber C
such that α = w(ρ).

We now show how Ha+1,b can be expressed in terms of Ha,b and a certain finite number
of “neighbouring” coefficients. Letting t = qa we have

Ha+1,b = C.T.
(
xδGa+1,b

)
(2.14)

= C.T.

xδ ∏
α∈Rshort

(1− txα)Ga,b

 .

There are 5 steps:
Expansion Step 1. Expand xδ

∏
α∈Rshort

(1−txα) to get
∑
ρ′∈S′ aρ′(t)x

ρ′ for some finite
subset S′ ⊂ δ + Λ.

Expansion Step 2. Discard the bad guys; i.e. all terms aρ′(t)xρ
′

for which ρ′ lies on
a reflecting hyperplane. These terms contribute nothing to the constant term via the
Crucial Lemma.

Expansion Step 3. For each good guy ρ′ find the unique w ∈ W and ρ ∈ C such that
ρ′ = w(ρ). Here we have used Lemma 2.3.

Expansion Step 4. Again utilising the Crucial Lemma we replace each aρ′(t)xρ
′

by
sgn(w)aρ′(t)xρ.

Expansion Step 5. Simplify to obtain an expression of the form

Ha+1,b =
∑
ρ∈S

Aρ(t)C.T. (xρGa,b) , (2.15)

for some finite subset S ⊂ (δ + Λ) ∩ C.
Note: (1) If we let ρ0 :=

∑
α∈R+

short
α then it is easily shown that we may take

S = {α ∈ (δ + Λ) ∩ C : α ≺ δ + ρ0} (2.16)
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=
{
δ + α : α ∈ Λ ∩ C, α ≺ ρ0

}
.

(2) The polynomials Aρ(t) are symmetric about tN , where N = |R+
short|. This

follows easily from the fact that the function

f(t;x) :=
∏

α∈Rshort

(1− txα) (2.17)

satisfies
t2Nf(t−1;x) = f(t;x). (2.18)

One of the terms on the right side of (2.15) involves Ha,b since δ ∈ S and Ha,b =
C.T. (xδGa,b). The problem is to get each of the other terms in terms of Ha,b. For ρ ∈
(δ + Λ) ∩ C we define

H(ρ) = Ha,b(ρ) := C.T. (xρGa,b) , (2.19)

so that H(δ) = Ha,b. Zeilberger (1988, §§5,8) has an algorithm for generating linear
equations whose unknowns are the H(ρ). The problem is to find |S| − 1 independent
equations in the H(ρ) (ρ ∈ S), at least one of which involves H(δ) = Ha,b. For S(G2)∨

we have |S| = 4. Zeilberger solves this case by generating 3 independent equations by
trial and error. In §3 we show that for S(R) case (i.e. all uα = 1) a variant of his method
will produce a triangular system of equations.

We describe Zeilberger’s algorithm. We let t = qaus , s = qbul . His algorithm depends on
the observation that the constant term of a Laurent polynomial G(x) is invariant under
xi ← qzixi. We remind the reader that in Zeilberger’s paper vectors are written in terms
of the standard basis {ei}`i=1, so that xei means xi. We must first find a transformation
x := (x1, . . . , x`)← qzx := (qz1x1, . . . , q

z`x`) so that

Ga,b(x← qzx)
Ga,b(x)

=
P (x, t, s, q)
Q(x, t, s, q)

, (cf. (Zeilberger, 1988, (5.5))), (2.20)

for some P, Q ∈ Z[x1, . . . , x`, t, s, q]. x ← qzx is the q-functional referred to in §1. We
note that for the case uα ≡ 1 we may take x1 ← qx1. The transformation x1 ← qx1 is
obviously related to Kadell’s (Kadell, to appear) q-derivative which was used to handle
the S(BCn) case.

The input of the algorithm is a vector β ∈ (δ + Λ) and the output is a homogeneous
linear equation Eβ in the H(ρ). There are 6 steps:

Equation Step 1. Cross-multiply (2.20), multiply both sides by xβ and then apply the
functional C.T. to obtain

C.T.
[
xβQ(x)Ga,b(x← qzx)

]
= C.T.

[
xβP (x)Ga,b(x)

]
. (2.21)

Equation Step 2. On the left side of (2.21) use the relation

C.T. [xγGa,b(x← qzx)] = q−(γ,z)C.T. [xγGa,b(x)] . (2.22)

Then bring everything to one side to obtain an equation of the form∑
γ′∈Ex′(β)

C.T.
(
a′γ′(t, s, q)x

γ′Ga,b(x)
)

= 0, (2.23)

for some finite subset Ex′(β) ⊂ δ + Λ.
Equation Step 3. Now use the Crucial Lemma, discarding all the bad γ′, i.e. those that

are on a reflecting hyperplane.
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Equation Step 4. Using Lemma 2.3, find w ∈W, γ ∈ C, for each good guy γ′, such that
γ′ = w(γ).

Equation Step 5. Again using the Crucial Lemma, replace each remaining term a′γ′(t, s,
q) xγ

′
by sgn(w)a′γ′(t, s, q)x

γ .
Equation Step 6. Simplify to obtain an equation of the form

Eβ :
∑

γ∈Ex(β)

aγ(t, s, q)H(γ) = 0, (2.24)

where H(γ) is defined in (2.19), and Ex(β) is some finite subset of (δ + Λ) ∩ C.
Proof of Lemma 2.2: Suppose (2.13) is true for a, b ≥ 1 and (1.1) holds for S(Rlong).
From (2.7), (2.12), (2.13) we know

H ′a+1,b

H ′a,b
=
R′a+1,b

R′a,b
(2.25)

holds for a, b ≥ 1. We would like to show that it holds for a = 0. The a = 0 case
of (1.1) corresponds to the S(Rlong) case and then the general result would follow by
induction. First, we observe that the right side of (2.25) is a rational function in t, s, q
where t = qaus , s = qbul , i.e.

R′a+1,b

R′a,b
=
P (t, s, q)
Q(t, s, q)

, (2.26)

for some polynomials P and Q. Let b ≥ 1 be fixed and define

K(t, q) := C.T.
∏

α∈R+
short

(xα; qus)∞(qusx−α; qus)∞
(txα; qus)∞(qustx−α; qus)∞

∏
α∈R+

long

(xα; qul)b(qulx−α; qul)b,

(2.27)
so that

K(qaus , q) = H ′a,b, (2.28)

where H ′a,b is defined in (2.3), (2.4). An analog of K was considered by Stembridge (1988)
in his proof of the S(An) case. A routine calculation shows that K(t, q) lies in the formal
power series ring Z[t][[q]]. It follows from (2.25) and (2.28) that

Q(t, qbul , q)K(tqus , q) = P (t, qbul , q)K(t, q) (2.29)

for t = qaus , a ≥ 1. Hence (2.29) holds as an identity in Z[[q]][[t]] ⊃ Z[t][[q]] by (Stem-
bridge, 1988, Lemma 3.2) and thus as an identity in Z[t][[q]]. Therefore, we may plug
t = 1 in (2.29) and (2.25) holds for a = 0, as required. �

3. Triangularity Results and the S(R) Case

In this section we assume that R is an irreducible reduced root system (thus R 6= BC`).
We describe our variant of Zeilberger’s method that will yield the needed triangular
system of equations for the S(R) case; i.e. all uα ≡ 1. We also give some similar results
for the q = 1 case of (1.1). Instead of writing vectors in terms of the ei we write them in

terms of a base ∆ = {γ1, . . . , γ`} so that xγi means xi. Let
∼
β denote the maximal root

(Humphreys, 1972, Lemma A p. 52) of R with respect to the partial order ≺. If there are

two distinct root lengths then the maximal root
∼
β is long (Humphreys, 1972, Lemma D



8 F.G. Garvan and G.H. Gonnet

p. 53). If there is one root length we consider all roots long. If there are two root lengths
R also has a unique maximal short root (Humphreys, 1972, Ex. 11 p. 55) with respect

to the partial order ≺. We shall denote this root by
∧
β. For β ∈ R+ we may write

β =
∑̀
i=1

ci(β)γi, (3.1)

where ci(β) ∈ N. By inspection of the planches of (Bourbaki, 1968, pp. 250-275) we have
the following lemma.

Lemma 3.1. Given an irreducible reduced root system R of rank `, there is an integer
i∗ = i∗(R), 1 ≤ i∗ ≤ `, that satisfies the following properties:

(i) β ∈ R+ ⇒ ci∗(β) = 0, 1, 2,

(ii) β ∈ R+ and ci∗(β) = 2 ⇒ β is the maximal root
∼
β,

(iii) ci∗(
∼
β) = min

j
cj(
∼
β).

We shall use the transformation xi∗ ← qxi∗ . Let S0 = {β ∈ R+ : ci∗(β) > 0}. By
(Zeilberger, 1988, (5.3)-(5.5)) and Lemma 3.1 we find that

Ga,b(xi∗ ← qxi∗)
Ga,b(x)

=


q−δi∗

∏
α∈S0

(1− p(α)xα)

(p(α)
q − xα)

, if ci∗(
∼
β) = 1,

q−δi∗
(1− sqx

∼
β)

( sq − qx
∼
β)

∏
α∈S0

(1− p(α)xα)

(p(α)
q − xα)

, if ci∗(
∼
β) = 2,

(3.2)

where δi∗ = ci∗(δ), and

p(α) =
{
t, α short,
s, α long. (3.3)

We will show that if we start with equation (3.2) and apply Zeilberger’s algorithm
(Equation Steps 1–6) with β ∈ −S \ {−δ} the output will be an equation involving
H(−β) and the other H(ρ) that are involved satisfy ρ ∈ S and ρ ≺ −β. Before we can
prove this result we need another technical lemma.

Lemma 3.2. Let R be an irreducible reduced root system. Then for α ∈ C ∩ Λ \ {0} we

have 〈α, β〉 ≥ 1 for β =
∼
β,
∧
β (the maximal root and the maximal short root).

If, in addition, α 6=
∧
β then we have ci∗(α) ≥ ci∗(

∼
β), where i∗ is defined as in Lemma 3.1.

Proof. Suppose α ∈ C ∩ Λ \ {0}. Then (α, γ) ≥ 0 for all γ ∈ ∆ (base). Since α ∈ C
we have α � 0 (Bourbaki, 1968, p. 156, Lemma 6 p. 79). It follows that there is a

γ0 ∈ ∆ such that (α, γ0) > 0 since α 6= 0. Now
∼
β� γ0 since

∼
β is maximal and we have

(α,
∼
β) ≥ (α, γ0) > 0. It follows that 〈α,

∼
β〉 ≥ 1 since 〈α,

∼
β〉 ∈ Z. Similarly, it can be

shown that 〈α,
∧
β〉 ≥ 1 by working in the dual R∨ and proceeding as in (Humphreys,

1972, Ex. 11 p. 55).
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Now suppose, in addition, that α 6=
∧
β. We want to show that

ci∗(α) ≥ ci∗(
∼
β). (3.4)

The idea is to use the tables (Bourbaki, 1968, pp. 250-275) for the fundamental weights
(Humphreys, 1972, p. 67), treating each root system separately. Let $1, $2, . . . , $` de-
note the fundamental weights as listed in (Bourbaki, 1968). Suppose α =

∑`
i=1 ki$i ∈

C ∩ Λ \ {0,
∧
β} then the ki = 〈α,$i〉 ∈ N (Humphreys, 1972, p. 67). There are 3 cases:

Case 1. R = A`, B`, C`, D`, E6, E7 or E8. We observe that for each of these root systems

we have ci∗($j) ≥ ci∗(
∼
β) for all j. Now,

ci∗(α) =
∑̀
j=1

kjci∗($j) (3.5)

≥ ci∗(
∼
β)

∑̀
j=1

kj

 ≥ ci∗(∼β)

since α 6= 0.
Case 2. R = F4. In this case we have

$1 =
∼
β, $4 =

∧
β, $2, $3 �

∼
β, 2$4 � $1, (3.6)

and

ci∗(
∼
β) = 2, ci∗(

∧
β) = 1, (i∗ = 1). (3.7)

If α 6= 0,
∧
β then k4 ≥ 2 or at least one of k1, k2, k3 > 0. In both cases α �

∼
β so that

ci∗(α) ≥ ci∗(
∼
β).

Case 3. R = G2. In this case we have

$1 =
∧
β, $2 =

∼
β, 2$1 � $2, (3.8)

and

ci∗(
∼
β) = 2, ci∗(

∧
β) = 1, (i∗ = 2). (3.9)

If α 6= 0,
∧
β then k1 ≥ 2 or k2 6= 0. In both cases α �

∼
β so that ci∗(α) ≥ ci∗(

∼
β). 2

Let P and Q be the numerator and denominator of the right side of (3.3). We have

Theorem 3.3. Let β = −α− δ where α ∈ Λ ∩ C and α 6= 0. Then the equation

C.T.
[
xβQ(x)Ga,b(xi∗ ← qxi∗)

]
= C.T.

[
xβP (x)Ga,b(x)

]
(3.10)

can be written as

Eβ :
∑
ρ≺α

ρ∈Λ∩C

pα,ρ(t, s, q)H(ρ+ δ) = 0, (3.11)

where the pα,ρ(t, s, q) = pα,ρ(qa, qb, q) are certain polynomials in q and pα,α 6≡ 0.
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Proof. We prove the result for the hard case ci∗(
∼
β) = 2 leaving the details of the case

ci∗(
∼
β) = 1 to the reader. We let

S1 =
{
β ∈ R+

short : ci∗(β) > 0
}

(3.12)

and
S2 =

{
β ∈ R+

long : ci∗(β) > 0
}
∪ {β∗} , (3.13)

where β∗ is a copy of
∼
β so that S2 is a multiset.

The right side of (3.10) is

C.T.xβ(1− sqxβ
∗
)
∏
α∈S0

(1− p(α)xα)Ga,b(x) (3.14)

(where p(α) is defined in (3.3))

= C.T.
∑
B⊂S1
C⊂S2

(−1)|B|+|C|t|B|s|C|qχ
∗(C)xsum(B)+sum(C)+β Ga,b(x),

where

χ∗(C) =
{

1, β∗ ∈ C,
0, β∗ 6∈ C. (3.15)

Here sum(B) means the sum of all the elements of B. The left side of (3.10) is

C.T. qδi∗xβ(
s

q
− qxβ

∗
)
∏
α∈S0

(
p(α)
q
− xα)Ga,b(xi∗ ← qxi∗) (3.16)

= C.T. qδi∗−|S0|−1(s− q2xβ
∗
)
∏
α∈S0

(p(α)− qxα)Ga,b(xi∗ ← qxi∗)

= C.T. qδi∗−|S0|−1
∑
B⊂S1
C⊂S2

(−1)|B|+|C|t|S1|−|B|s|S2|−|C|q|B|+|C|+χ
∗(C)

·xsum(B)+sum(C)+β Ga,b(xi∗ ← qxi∗)

= C.T. qδi∗−|S0|−1
∑
B⊂S1
C⊂S2

(−1)|B|+|C|t|S1|−|B|s|S2|−|C|q−βi∗−
∼
χ(C)

·xsum(B)+sum(C)+β Ga,b(x),

by the obvious analogue of (2.22). Here
∼
χ is given by

∼
χ (C) =

{
1,

∼
β∈ C,

0,
∼
β 6∈ C

, (3.17)

and βi∗ = ci∗(β). Hence bringing everything to one side and applying the transformation
γ 7→ −γ (γ ∈ E) we find (3.10) is equivalent to

C.T.
∑
B⊂S1
C⊂S2

(−1)|B|+|C|
{
t|B|s|C|qχ

∗(C) − t|S1|−|B|s|S2|−|C|qαi∗−
∼
χ(C)

}
(3.18)

·xδ−sum(B)−sum(C)+αGa,b(x)
= 0, (c.f. (2.21)).

We have used the fact that 2δi∗ = |S0| + 1 and β = −α − δ. We have thus completed
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Equation Steps 1–2 of Zeilberger’s algorithm. We must show that after applying Equation
Steps 3–6 we obtain an equation as given in (3.11). Let B ⊂ S1 and C ⊂ S2 then

δ − sum(B)− sum(C) + α = (α−m
∼
β) + (δ − sum(B′)), (3.19)

where m = 0 or 1 and B′ is some set (no repeated elements), B′ ⊂ S0 ⊂ R+. Tossing

out the bad guys (Equation Step 3) we assume (α−m
∼
β) + (δ− sum(B′)) is a good guy.

Let w be that element of the Weyl group W such that

γ := w(α−m
∼
β) + w(δ − sum(B′)) ∈ C, (Step 4). (3.20)

We now show that the vector γ given in (3.20) satisfies γ ≺ α + δ. This will mean that
the only unknowns H(ρ + δ) appearing in the equation Eβ (after Equation Steps 5–6)
satisfy ρ ≺ α. Now

w(δ − sum(B′)) (3.21)
= δ − sum(B′′) (for some B′′ ⊂ R+)
≺ δ.

Hence we need to show that

w(α−m
∼
β) ≺ α, (3.22)

for m = 0 or 1. There are two cases:
Case 1. w(

∼
β) � 0. We have

w(α−m
∼
β) = w(α)−mw(

∼
β) (3.23)

≺ w(α)

≺ α
(by (Bourbaki, 1968, Prop. 18 p. 158)
since α ∈ C).

Case 2. w(
∼
β) ≺ 0. Since α ∈ C ∩ Λ \ {0} we have

w(α−m
∼
β) = w(α)−mw(

∼
β) (3.24)

≺ w(α)− 〈α,
∼
β〉w(

∼
β) (by Lemma 3.2)

= ww∼
β

(α)

≺ α (again by(Bourbaki, 1968, Prop. 18 p. 158)).

Equation (3.22) holds in both cases. Combining this with (3.21) we have γ ≺ α + δ, as
required.

Finally, we must show that the coefficient of H(α+ δ) in the equation Eβ is non-zero.

Recall that we have assumed that ci∗(
∼
β) = 2. Here the possibilities are R = E8, F4 or

G2. There are two cases:

Case 1. α 6=
∧
β. From Lemma 3.2 we have

αi∗ = ci∗(α) ≥ 2. (3.25)

By considering the term that corresponds to B = C = φ (the empty set) in the sum in
(3.18) we find that the degree in q of the coefficient of H(α+δ) in Eβ is a|S1|+b|S2|+αi∗ .
Hence the coefficient of H(α+ δ) is non-zero.
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Case 2. α =
∧
β. Since E8 has only one root length we have only to check the result for

F4 and G2. We have verified the result in these two sub-cases by means of a machine
computation. 2

It is now clear what our triangular system is. We choose a linear extension ≤L of the
partial order ≺. We list the elements of S defined in (2.16):

α1 := δ + ρ0 ≥L . . . ≥L α|S| := δ. (3.26)

Let

h :=

 H(α1)
...

H(α|S|)

 , (3.27)

and define the matrix
P :=

(
pαi,αj

)
1≤i≤|S|−1, 1≤j≤|S|−1

, (3.28)

where pαi,αj is the coefficient of H(αj + δ) in the equation E−αi−δ (see (3.11)). Our
system of equations is given by

Ph = 0, (3.29)

and P looks like 
pα1,α1 · · · · · · · · · pα1,α|S|

0
. . .

...
...

. . .
...

0 · · · 0 pα|S|−1,α|S|−1 pα|S|−1,α|S|

 , (3.30)

where each of the polynomials pα1,α1 , . . . , pα|S|−1,α|S|−1 on the main diagonal is 6≡ 0.
Hence P has full rank and each of the H(αi) can be gotten in terms of H(α|S|) = H(δ).

Recently, one of us (Garvan, 1990) found a computer proof of the q = 1 case of (1.1)
for the root system F4. Here the transformation x1 ← qx1 is not of much use. Instead,
the fact that the derivatives of Laurent polynomial have no residues, was used. Corollary
3.5, below, contains an analog of Theorem 3.3 for this case. Let

Ma,b(x) :=
∏
α∈R

(1− xα)kα , (3.31)

so that C.T.Ma,b(x) is the left side of (1.1) when q = 1. Let 1 ≤ i ≤ ` and α ∈ C ∩ Λ.
Then

0 = C.T.xi
∂

∂xi
xαMa,b(x) (3.32)

= C.T.

ci(α)xαMa,b(x)−
∑
β∈R+

kβci(β)
(1 + xβ)
(1− xβ)

xαMa,b(x)

 ,

(c.f. (Garvan, 1990, (4.2)).

We shall find that each term on the right side of (3.32) can be gotten in terms of C.T.xρ

Ma,b(x) where ρ ∈ C ∩ Λ and ρ ≺ α. There are two problems with trying to proceed as
in the proof of Theorem 3.3:
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(i) We can’t use the Crucial Lemma since M is not anti-symmetric!
(ii) How do we get rid of the denominator (1− xβ)?

In answer to (i) we note that M is symmetric with respect to the Weyl group W , so
instead we may use

C.T.xw(α)Ma,b(x) = C.T.xαMa,b(x), for all w ∈W. (3.33)

This time there are no bad guys to kill off. In answer to (ii) we use an observation due
to Kevin Kadell:

xα

1− xβ
+ wβ

(
xα

1− xβ

)
∈ Z[x±1

1 , . . . , x±1
` ], for β ∈ ∆. (3.34)

Theorem 3.4. Let α ∈ C ∩ Λ, β ∈ R+ and suppose kβ ≥ 1. Then there exist cα,ρ ∈ N
such that

C.T.
(1 + xβ)
(1− xβ)

xαMa,b(x) (3.35)

=


−C.T.

xαMa,b(x) +
∑
ρ≺α
6=

ρ∈C∩Λ

cα,ρx
ρMa,b(x)

, if (α, β) > 0,

0, if (α, β) = 0.

Proof. There is a w ∈W such that w(β) ∈ ∆ = {γ1, . . . , γ`}. Without loss of generality
we may suppose that w(β) = γ1. We note that under wγ1 the only coefficient of the γj
in w(α) that changes is the coefficient of γ1 which is given by

c1(wγ1w(α)) = c1(w(α))− 〈w(α), w(β)〉 (3.36)
= c1(w(α))− 〈α, β〉.

We note that 〈α, β〉 ≥ 0 since α ∈ C and β ∈ R+. Recall that xγj = xj (1 ≤ j ≤ `).
We have

C.T.
(1 + xβ)
(1− xβ)

xαMa,b(x) = C.T.
(1 + x1)
(1− x1)

xw(α)Ma,b(x), (by (3.33)). (3.37)

As remarked above, we may use the reflection wγ1 to kill the denominator (1− x1). This
observation is due to Kevin Kadell, who used a special case of it in his proof of the BCn
case (Kadell, to appear). We have

C.T.
(1 + xβ)
(1− xβ)

xαMa,b(x) (3.38)

=
1
2

C.T.
{[

(1 + x1)
(1− x1)

xw(α) + wγ1

(
(1 + x1)
(1− x1)

xw(α)

)]
Ma,b(x)

}
(by (3.33))

= −1
2

C.T.


(

(1 + x1)
(1− x1)

)
x
c1(w(α))−〈α,β〉
1 (1− x〈α,β〉1 )

∏̀
j=2

x
cj(w(α))
j Ma,b(x)


(by (3.36))
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=

 −C.T.
〈α,β〉−1∑
m=0

xw(α)−mγ1Ma,b(x), if (α, β) > 0,

0, if (α, β) = 0.

If (α, β) > 0 then for each 0 ≤ m ≤ (〈α, β〉 − 1) we choose w′ ∈W such that

w′(w(α)−mγ1)) = w′w(α−mβ) ∈ C. (3.39)

By using an argument analogous to that used in proving (3.22) (in the proof of Theorem
3.3) we have

w′w(α−mβ) ≺ α. (3.40)

In fact for 0 < m ≤ (〈α, β〉 − 1) we can show that

w′w(α−mβ) � α. (3.41)

Equation (3.35) follows easily. 2

From (3.32) and Theorem 3.4 we have

Corollary 3.5. Let α ∈ C ∩ Λ, 1 ≤ i ≤ `. Then there exist aα,ρ,i, bα,ρ,i ∈ N such thata
 ∑
β∈R+

short
(α,β)>0

ci(β)

+ b

 ∑
β∈R+

long
(α,β)>0

ci(β)

+ ci(α)

C.T.xαMa,b(x) (3.42)

+ C.T.
∑
ρ�α

ρ∈Λ∩C

(aα,ρ,ia+ bα,ρ,ib)xρMa,b(x)

= 0.

Remark (1) For each α ∈ C ∩ Λ \ {0} and 1 ≤ i ≤ ` it can be shown that ci > 0 so that
C.T.xαMa,b(x) can be gotten in terms of C.T.xρMa,b(x) for ρ � α. Thus, it is possible
to produce a triangular system of equations to be used in verifying (1.1) in the q = 1
case.

(2) Equation (3.42) has some nicer features than (3.11). Firstly, (3.11) depends
on the special transformation xi∗ ← qxi∗ but (3.42) comes from ∂

∂xi
where 1 ≤ i ≤ `,

not necessarily i = i∗. Secondly, the coefficient of C.T.xαMa,b(x) is explicitly given in
(3.42). All we know about the coefficient pα,α in (3.12) is that it is non-zero. There may
be something going on here. For R = F4 we have found that pα,α seems to factor nicely.
A list of some factorisations is given in Table IV.

4. Implementing the S(F4) Case

Let {e1, e2, e3, e4} be the standard basis of R4. We follow (Garvan, 1990, §2) in the
choice of representation of the roots of F4, Weyl group, fundamental chamber, etc. We
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may take the set of vectors:

±2ei (1 ≤ i ≤ 4), ±ei ± ej (1 ≤ i < j ≤ 4),
(±e1 ± e2 ± e3 ± e4), (4.1)

as our set of roots for F4. See (Bourbaki, 1968, p. 273 eqn. (V)). This set is usually known
as F∨4 but it can be shown that F4 (as in (Bourbaki, 1968, p. 272 eqn. (I))) and F∨4 are
isomorphic as root systems. The advantage of this set is that all components are integers.

We shall prove the S(F4) case of (1.1):

Theorem 4.1. Let a, b ∈ N. Then the constant term of

F ′a,b(x1, x2, x3, x4) (4.2)

:=
∏

1≤i<j≤4

(xixj)a(qx−1
i x−1

j )a(xix−1
j )a(qx−1

i xj)a

·
∏

1≤i≤4

(x2
i )b(qx

2
i )b ·

∏
r2,r3,r4=±1

(x1x
r2
2 x

r3
3 x

r4
4 )b(qx−1

1 x−r22 x−r33 x−r44 )b

is equal to

R′a,b =
(q)6a+6b(q)4a+4b(q)2a+6b(q)4a+2b(q)2a+4b(q)4b(q)3a

(q)5a+6b(q)3a+5b(q)3a+4b(q)3a+3b(q)2a+3b(q)a+3b(q)2a+b
(4.3)

· (q)3b(q)2a(q)2b

(q)a+2b(q)a+b(q)2
a(q)3

b

.

We now describe the Weyl group of F4. Since C4 ⊂ F4 thenH := W (C4) < W (F4).H is
the group of signed permutations that act on the coordinates e1, e2, e3, e4. By considering
left cosets every element w ∈W (F4) can be written

w = (τσ)kh (k = 0, 1, 2) (4.4)

for some h ∈ H, where τ = w2e4 and σ = we1−e2−e3−e4 . See (Garvan, 1990, Lemma
2.11).

We take

γ1 := −e1 + e2 + e3 + e4, γ2 := e1 − e2 − e3 + e4, γ3 := e3 − e4, γ4 := −e3 + e2, (4.5)

as a base. See (Garvan, 1990, (2.16)). The corresponding fundamental chamber is

C = {(x1, x2, x3, x4) ∈ R4 : x1 > x2 > x3 > x4 > 0, (4.6)
x2 + x3 + x4 > x1, x1 + x4 > x2 + x3}.

The set of positive roots and their coordinates with respect to the ∆ = {γ1, γ2, γ3, γ4}
is given in Table I, in the Appendix. The root lattice is given by

Λ = {(x1, x2, x3, x4) ∈ Z4 : x1 + x2 + x3 + x4 ≡ 0 (mod 2)}. (4.7)

Half the sum of the positive roots is

δ := (7, 4, 3, 2) = 8γ1 + 15γ2 + 21γ3 + 11γ4, (4.8)

so that in this case δ + Λ = Λ. The bad guys are those elements (x1, x2, x3, x4) of Λ in
which one component is zero or two components are equal or sum of two components is
zero or r1x1 + r2x2 + r3x3 + r4x4 = 0 for some ri = ±1, i = 1, 2, 3, 4.



16 F.G. Garvan and G.H. Gonnet

From (Macdonald, 1972, p. 168) W (t, s) of (2.8) is given by

W (t1, t2) =
2∏
j=1

(1 + tj)(1 + tj + t2j )(1 + utj)
3∏
i=1

(1 + ui), (4.9)

where u = t1t2.
We let ≺ be the usual root order; i.e. α ≺ β for α, β ∈ Λ iff α− β =

∑4
i=1 ciγi and all

the ci ≥ 0. We describe a nice linear extension of ≺ suggested by Dennis Stanton. The
elements of C∩Λ are partitions of even integers into at most four parts. For π1, π2 ∈ C∩Λ
we define π1 ≤L π2 iff the sum of parts of π1 is less than or equal to the sum of parts
of π2 and if the sum of parts are equal then we require π1 to be “smaller” than π2

lexicographically. It is an easy exercise to show that ≤L is a linear extension of ≺. The
sum of the positive short roots is given by

ρ0 = (6, 4, 2, 0) = 6γ1 + 12γ2 + 18γ3 + 10γ4. (4.10)

There are 37 elements of S defined in (2.16):

S = {δ + v(i)}37
i=1, (4.11)

where v(i) ≺ ρ0 and v(i) ∈ C ∩ Λ. The 37 vectors v(i) are listed in Table II in order
according to ≤L. Let

Fa,b(x1, x2, x3, x4) :=
∏

1≤i<j≤4

(xixj)a(qx−1
i x−1

j )a−1(xix−1
j )a(qx−1

i xj)a−1 (4.12)

·
∏

r2,r3,r4=±1

(x1x
r2
2 x

r3
3 x

r4
4 )b(qx−1

1 x−r22 x−r33 x−r44 )b−1

·
∏

1≤i≤4

(x2
i )b(qx

2
i )b−1

and
Ha,b = C.T.Fa,b. (4.13)

We know Ha,b = H ′a,b/W (qa, qb). So if we let

Ra,b := R′a,b/W (qa, qb), (4.14)

then we must show that Ha,b = Ra,b. We proceed by induction on a; i.e. we want to show
that

Ha+1,b

Ha,b
=
Ra+1,b

Ra,b
. (4.15)

This will be enough in view of Lemma 2.2 since the long roots of F4 are isomorphic to
D4 and (1.1) is known for S(Dn) by Kadell (to appear).

A routine calculation gives (t = qa, s = qb)

Ra+1,b/Ra,b = (1− t2q)(1− t3q2)(1− t3q)(1− t2s4q)(1− t4s2q3) (4.16)
(1 + t2sq)(1− t4s2q)(1 + ts3q)(1− t2s6q)(1− t4s4q3)
(1 + t2s2q)(1− t4s4q)(1− t6s6q5)(1 + t3s3q2)
(1 + t2s2q + t4s4q2)(1− t2s2q)2(1 + t3s3q)(1− t6s6q)
(1 + t)(1 + t+ t2)(1 + t2s)(1 + ts2)(1 + ts)2(1 + t2s2)
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(1− ts+ t2s2)
/((1− t2s3q2)(1− t2s3q)(1− t3s4q3)(1− t3s4q2)

(1− t3s4q)(1− t3s5q3)(1− t3s5q2)(1− t3s5q)
(1− t5s6q)(1− t5s6q2)(1− t5s6q3)(1− t5s6q4)
(1− t5s6q5)).

We have written a FORTRAN program to carry Expansion Steps 1–5 as in §2 for the
case R = F4. After running this program we find

Ha+1,b =
37∑
i=1

y[i]H(δ + v(i)), (c.f. (2.15)) (4.17)

where H(ρ) = C.T. (xρGa,b), the v(i) are given in Table II, and the y[i] ∈ Z[t] are given
in Table III.

Next we generate equations via Zeilberger’s Equation Steps 1–6 modified as in the proof
of Theorem 3.3. For F4 we may take i∗ = 1. Recall that i∗ must satisfy the properties
given in Lemma 3.1. S1, S2 of (3.12), (3.13) are

S1 = {(0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 1, 0, 0)}, (4.18)
S2 = {(1,−1, 1, 1), (0, 0, 2, 0), (−1, 1, 1, 1), (0, 0, 0, 2), (1, 1,−1, 1), (0, 2, 0, 0), (4.19)

(2, 0, 0, 0), (1, 1, 1,−1), (1, 1, 1, 1), (1, 1, 1, 1)∗}.

Here
∼
β= (1, 1, 1, 1) is the maximal (w.r.t. ≺) root and β∗ = (1, 1, 1, 1)∗ is a copy of

(1, 1, 1, 1) so that S2 is a multiset. For C ⊂ S2 we define

χ∗(C) =
{

1, (1, 1, 1, 1)∗ ∈ C,
0, otherwise, (4.20)

and
∼
χ (C) =

{
1, (1, 1, 1, 1) ∈ C,
0, otherwise. (4.21)

For 1 ≤ i ≤ 37 we define

un[i] := C.T. (xδ+v(i)Ga,b)/Ha,b (4.22)
≡ H(δ + v(i))/Ha,b,

so that un[1] ≡ 1 (by definition). Let ci be the coefficient of γ1 when v(i) is written in
terms of the γj . By taking α = v(i) in (3.18) we have

C.T.
∑
B⊂S1
C⊂S2

(−1)|B|+|C|{t|B|s|C|qχ
∗(C) − t|S1|−|B|s|S2|−|C|qci−

∼
χ(C)} (4.23)

·xδ−sum(B)−sum(C)+v(i)Ga,b

= 0.

We note that (3.18) and hence (4.23) were obtained by applying Zeilberger’s Equation
Steps 1-2 with x1 ← qx1 and where xi means xγi .

We have written a FORTRAN program whose input is an integer i, 2 ≤ i ≤ 37, and
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whose output is a linear equation of the form

un[i] =
−1
pi,i

(
i−1∑
j=1

pi,jun[j]), (4.24)

where the pi,j ∈ Z[t, s, q] (t = qa, s = qb) and pi,i 6≡ 0. This program starts with equation
(4.23) and incorporates Equation Steps 3-6 of Zeilberger’s algorithm. The form of (4.24)
is guaranteed by Theorem 3.3. The output was written to a file in MAPLE code so that
it could be used in MAPLE later. For 2 ≤ i ≤ 37 this program took about 5 1

2 hours to
run on an Apollo. The file containing all the equations is about 747 kilobytes.

An interesting observation is that the polynomials pi,i seem to factor very nicely. We list
these factorisations in Table IV. The idea is to feed into MAPLE the equation un[1] = 1
together with our 36 equations for the un[i]. The values of the un[i] would be computed
automatically by back substitution. Once this was done we would compute

Ra+1,b/Ra,b −
37∑
i=1

y[i]un[i]. (4.25)

If the value returned is 0 then by (4.17) we would have verified (4.15), as required.
Unfortunately, when we first tried this back in March 1988, MAPLE runs out of mem-

ory when trying to compute un[12]. At this point Maple failed because one of the poly-
nomials it tried to represent while doing the computation had more than 216 terms. We
developed an interpolation approach to get around this problem. The details are given
in the next section. However, much later using the latest version of MAPLE, version
V, we were able to compute all the un[i] and (4.25) which happily returned zero thus
proving the S(F4) case. This was done on Wednesday November 14 16:32:08 MET 1990.
Unfortunately, the S(F4)∨ case could not be done the same way. The S(F4)∨ case was
proved using the interpolation approach.

5. Symbolic Computations

The main step of the computation is given by (4.24). In that step, we need to expand
a sum of product of polynomials under a common denominator and then remove the gcd
(greatest common divisor) between the numerator and denominator. Both the expansion
and the gcd computations are steps which are likely to fail to compute. The expansion
may produce polynomials which are too large to be represented. The gcd computation
takes O(n3) time, where n is the number of terms in a dense representation of the poly-
nomials. Hence the gcd computation may be a step which makes the whole computation
not feasible (not only in cost, but in waiting time).

The following paradox is apparent: Assuming that the present rate of improve-
ment in computers, (a speed increase of a factor of 10 every 10 years) will continue,
it is better to wait that to start computing.

The first question we asked was: is the gcd computation for each i necessary? The
answer is yes by examples (actually for all values of i, (4.24) allowed some non-trivial
gcd simplification). For example for i = 4 the factor (1 +s+s2)(t3s4q+ 1) was cancelled,
and for i = 24, (1 + s+ s2)(t6s8q5 − 1) was cancelled.
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We are able to predict precisely which factors can be eliminated in this gcd simplifi-
cation. Let nun[i], resp. dun[i] denote the numerator, resp. denominator of un[i] before
simplification. Then it seems that

gcd(nun[i], dun[i]) =
pi,i

gcd(pi,i,denom(Ra+1,b/Ra,b))
. (5.1)

In other words, the gcd comes from those factors of pi,i that do not occur in the denom-
inator of Ra+1,b/Ra,b. However, we are unable to prove (5.1) and we can’t completely
avoid this computation.

Can the un[i] be factored? (This could help controlling the size of the computation,
as in general, a factored form is much smaller than an expanded form.) Although many
un[i] factor, not all of them do, and furthermore there are very few, if any, common
factors.

The first positive step towards a solution came from the simple observation that the
un[i] form some natural classes, having each member of the class similar denominators.
The classes were: {1, 2}, {3, 4}, {5, . . . , 8}, {9, 10, 11}, {12, . . . , 24}, {26, . . . , 31, 33, 34, 35}
and {25, 32, 36, 37}. To take advantage of this classification we can perform the summa-
tion in (4.24) in two steps. First add terms within the classes, simplify (gcd elimination)
and then add the results together.

The second positive step was to perform all additions of rational expressions of poly-
nomials, one term at at time, i.e.

(((a+ b) + c) + d) + e+ . . .

and eliminate gcds after each individual addition. With these observations, the computa-
tion could be carried up to i = 24 inclusive; a significant improvement but unfortunately
not enough.

As a by product of this exercise we learned a better technique to compute gcds. Let
a(X) and b(X) be multivariate polynomials over Z[X]. There are various algorithms for
computing gcds (see (Char et. al., 1984), (Knuth, 1981), (Wang, 1980) and (Zippel, 1979))
which are based directly or indirectly on Euclid’s algorithm. Of course, if a(X) and b(X)
are fully factored, it is trivial to find the gcd, we simply make all factors primitive (with
no integer divisors) and scan for matching (or complement-matching) terms. Factoring
is, in general, much harder and time consuming than computing gcds.

But for this problem, we typically have one of the polynomials, (the one corresponding
to the denominator) almost factored. The improved gcd algorithm is applicable when one
of the polynomials is completely factored (or it is significantly smaller, so that factoring
is insignificant compared to the gcd computation) and consists of trial synthetic divisions
of the factors of one polynomial against the other.

Consequently, by keeping the denominators of un[i] factored we could significantly
reduce the simplification time. It should be remarked that computing up to un[24] was
using about 13 hours of cpu time on a relatively fast computer (a Digital VAX/8650,
rated at 6,000,000 instructions per second).

At this point, back in 1988 when using the earlier version of MAPLE, it was almost
impossible to make further progress since we perceived that un[25] had a numerator,
which even factored, could not be represented due to its size. Two methods were devised
to break this problem. Because one was successful, we never explored the second one
to its full extent, although it is worth mentioning it as a potential solution for similar
problems. Both methods are suitable for a situation where the goal is relatively trivial
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(prove that some expression is identically zero). The first method uses exact evaluation
of polynomials over Z[X] and the second uses a technique of manipulation called “lazy
evaluation”.

As mentioned before, we were later (November 1990) able to compute all of the un[i]
and prove the result directly using the improved version of MAPLE. Hence we could avoid
the evaluation method for the S(F4) case. This presents a formidable task in symbolic
computation, some of the solutions would require more than 0.75 Megabytes to print in
their most compact representation.

As before, we had to take special computational care with the last steps of the com-
putation. The final linear combination cannot be computed directly, as taking common
denominators and expanding would produce monstrous expressions, impossible to repre-
sent with present day memories, and too time consuming to simplify. The technique we
used was to do this addition pair by pair. At each step we would select the pair which
had the highest degree gcd of their denominators. This meant, in practical terms, that
the terms being added had almost equal denominators, and the expansion of the numer-
ators was kept to a minimum. Each pair was immediately simplified (removing common
gcd between numerator and denominator eliminated) and the process was repeated re-
cursively. This process ended with a single term, 0, and the conjectured S(F4) case was
proved for a second time.

When we started these computations more than three years ago, the computers and
symbolic computation technology were unable to handle such a big problem. A sign of the
evolutions of these fields is the present solution. The methods that we described in this
paper are still very valid in the sense that we will always find problems whose solutions
are beyond the capacity of present day systems.

The evaluation method is needed for the S(F4)∨ case. In §§5.1,3 we show how the
result may be proved using the evaluation method assuming un[i] is known exactly for
i ≤ 24.

5.1. exact evaluation

For this method we use the well known theorem: Let p(x) be a polynomial over Z[x],
of degree d. If p(0) = p(1) = p(2) = . . . = p(d) = 0 then p(x) is identically 0.

We need a lemma extending this theorem:

Lemma 5.1. If p(x, y, .., z) is a polynomial in Z[x, y, .., z] with degree dx in x, then if

p(0, y, .., z) = p(1, y, .., z) = . . . = p(dx, y, .., z) = 0 (5.2)

then p(x, y, .., z) is identically 0.

This can be proved by looking at the polynomial factors of each monomial in y, .., z.
(Please note that we are talking about exact evaluation of polynomials over Z[X] in a
symbolic computation system, and not about floating point or approximate evaluation.)

The main idea is to do all the computation for a sufficiently large number of values of
one of the variables. The number of such evaluations should be larger than the degree
(or an upper bound on the degree) of the numerator of the final result since in principle
we the know the denominator of the final result. We must be careful to avoid evaluations
that would produce a zero in the denominator.

A note on the complexity of operations is in order. Most algorithms in computer algebra
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use time and space proportional to the size of the problem they are solving. In particular,
computing gcds requires time O(n3) where n is the number of terms in the expanded
representation of the input. A polynomial of degree d on k variables has (d+ 1)k terms.
Computing gcds on such polynomials will cost

O((d+ 1)3k). (5.3)

If we only want to test for zero on the final result, then d + 1 computations with k − 1
variables are sufficient, requiring

O((d+ 1)(d+ 1)3(k−1)) = O((d+ 1)3k−2) (5.4)

(for this we assume that the O(n3) computations dominate the total computation). Sav-
ing a factor of (d + 1)2, where d is in the hundreds may be the difference between
computing for few days or a few lifetimes.

We may write the result (4.25) as a rational function num∗/den∗ where num∗, den∗

are polynomials in q, s, t and den∗ is known precisely. The idea is to find a bound for the
degrees of num∗ in s or t and show that num∗ is identically zero by evaluating (4.25)
at enough values of s or t. The result will follow provided the number of evaluations is
greater than the corresponding degree and that we check that den∗ does not vanish at
any of these values. A rough estimate can be obtained by taking den∗ =

∏37
i=2 pi,i. In

this case it is a simple matter to show that

degt num
∗ ≤ 240 and degs num

∗ ≤ 360. (5.5)

With this estimate we would require 241 evaluations in t, but this is impractical. More
accurate bounds will mean less computation. With a better choice of den∗ we can obtain
the following bounds

degt num
∗ ≤ 82 and degs num

∗ ≤ 85. (5.6)

This is achieved by computing the un[i] precisely for i ≤ 24, and studying the form of
the equations for the un[i] (i > 24) to get more precise bounds on the degrees. We give
the details in §5.3. At one time we considered using a bootstrap technique to determine
exact values for the degrees of the un[i] but we found that this would have required a
prohibitive number of evaluations. Some details of this other approach are also given in
§5.3.

Thus to prove the result via the evaluation method at least 83 distinct evaluations
if t or 86 evaluations in s are needed. Since we were later able to avoid the evaluation
method for the S(F4) case we omit further details.

5.2. the “lazy evaluation” approach

The triangularity of the system, and the fact that we want to test for zero equivalence
on a linear expression in the un[i], suggests another approach. Loosely speaking, what
we did in the previous section is to solve sequentially for all un[i] from 1 to 37 and then
compute the final answer. What we can do is compute backwards, i.e. start with equation
(4.25) as an equations on the symbols un[i] and use the triangularity to substitute un[37]
in terms of the other un[i], simplify, then substitute un[36], simplify, etc. Equation (4.25)
is, at any step, a linear polynomial in all the unknowns un[i]. Hence, it can be kept
separate, i.e. keep just the coefficients of the un[i].

The first observation is that if we continue the process to the very end, it is likely to
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be of the same complexity as the direct solution. So complete backward solution is not
necessarily the goal, as the coefficients of the un[i] will now be the ones which may grow
unboundedly. The most promising approach is to compute backwards just enough as to
meet the forward computation, i.e. compute backwards until we obtain a polynomial in
the first 24 un[i]. At this point we can substitute, simplify and add all the terms.

The success of the previous method killed any further investigation of this approach.
The bottom line is that the main result is proven and there is no need to do additional
expensive computations.

5.3. bounding the degree

In this section we explain how we came by the bounds for the degrees given in (5.6).
We also discuss an alternative approach. It is clear from (3.18) that

degt pi,i = |S1| = 6, degs pi,i = |S2| = 10, (5.7)

and
degt pi,j ≤ degt pi,i, degs pi,j ≤ degs pi,i, (5.8)

for 2 ≤ i ≤ 37 and 1 ≤ j ≤ i. It follows from (4.24) that for 2 ≤ i ≤ 37 we have

degx numer(un[i]) ≤ degx denom(un[i]) (5.9)

where x = s or t. Recall that we are able to compute un[i] precisely for i ≤ 24. To obtain
good estimates for the degrees of the remaining un[i] we study the equations for the un[i]
more closely. We recall that each such equation (see (4.24) gives un[i] in terms of un[j]
for 1 ≤ j < i. However closer examination of the actual equations reveals that quite often
not all of the un[j] for 1 ≤ j < i are present. For example, for i = 26 un[j] is missing
for j = 8, 15, 16, 19, 20, 21, 22, 23, 24, 25. For 2 ≤ i ≤ 37 we denote by Mi the set
of j (1 ≤ j ≤ i for which un[j] is missing from the equation giving un[i]. For example,
M26 = {8, 15, 16, 19, 20, . . . , 25}. A complete list of the Mi is given in Table VI. These
were computed by running a modified version of the FORTRAN program that produced
the equations. We denote by Pi the complement of Mi in the interval 1 ≤ j ≤ i; i.e. the
set of j for which un[j] is present in the equation giving un[i]. We can now compute a
reasonable multiple of the true denominator of each un[i] which we will call den∗[i]. We
define den∗[i] recursively as follows:

if 1 ≤ i ≤ 24 then
den∗[i] := denom(un[i])

else

den∗[i] := pi,i lcm
j∈Pi

(den∗[j]).

The den∗[i] are easily computed and are given in Table X. We note that the algorithm for
the lcm computation was not the usual one used in MAPLE. Here we kept all polynomials
factored and the lcm was computed by scanning as in our gcd computations. It is easily
seen that un[i]den∗[i] ∈ Z[s, t, q]. We observe that

den∗ := lcm
1≤i≤37

den∗[i] = den∗[37]. (5.10)
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We let

num :=
37∑
i=1

y[i] numer(un[i])
(

den∗

denom(un[i])

)
, (5.11)

and num ∈ Z[s, t, q]. Although we cannot compute num we can easily estimate its de-
grees. The y[i] are defined in (4.17) and are given in Table III. For 1 ≤ i ≤ 37 we
have

degt y[i] ≤ 24, degs y[i] = 0, (5.12)

degt den
∗ = 58, degs den

∗ = 85; (5.13)

so that, by (5.9) we have

degt num ≤ 24 + 58 = 82 and degs num ≤ 85. (5.14)

We observe that den∗ is a multiple of the denominator of Ra+1,b/Ra,b (given in (4.16))
and that

degt

(
Ra+1,b

Ra,b

)
= 24, degs

(
Ra+1,b

Ra,b

)
= 0. (5.15)

Here degree of a rational function means degree of the numerator minus degree of the
denominator. Hence

num∗ := den∗
Ra+1,b

Ra,b
− num ∈ Z[s, t, q]. (5.16)

Now (4.25) is

Ra+1,b

Ra,b
−

37∑
i=1

y[i]un[i] =
num∗

den∗
, (5.17)

where den∗ = den∗[37] (see Table X),

degt num
∗ ≤ 24 + 58 = 82 (5.18)

and
degs num

∗ ≤ 85, (5.19)

which are the estimates given in (5.6).
As mentioned before, at one time we considered using a bootstrap technique for deter-

mining the exact values for the degrees of the un[i]. We now discuss this technique and
why it was abandoned. Suppose we know the degrees of the un[i] exactly for i < i0. To
determine the degree of un[i0] we do enough substitutions in s to determine the degree
in t and enough substitutions in t to determine the degree in s. For the sorts of rational
functions we have this technique will work, but the number of substitutions required is
too high to be practical.

The problem at hand is as follows: Suppose we are given a polynomial f(s, t, q) and
we know g(s, t, q) for a finite set T of values of t. Also suppose f(s, t, q) divides g(s, t, q)
for t ∈ T . By choosing the size of T large enough can we conclude that f divides g in
Z[s, t, q]? How big must T be ?

We are able to answer these questions for a generic case. Let f and g have the form

f = bms
m + bm−1s

m−1 + . . .+ b0, (5.20)
g = ans

n + an−1s
n−1 + . . .+ a0, (5.21)
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where the bj and ai are in Z[t, q] and n ≥ m. Define

M := max{degt bm−1,degt bmbm−2, . . . ,degt b
m−1
m b0}. (5.22)

Lemma 5.2. Let f , g and M be as above. If

(i) bm does not divide f or bm = ±1,
(ii) T is a set of integers (or rationals),

(iii) t′ ∈ T implies bm(t′, q) is not zero,
(iv) |T | > degtg + (n+m− 1)degtbm + (n−m+ 1)M ,
(v) f(s, t′, q) divides g(s, t′, q) for t′ ∈ T ,

then f(s, t, q) divides g(s, t, q).

Proof. The idea is to divide f into g as a polynomial in s. The coefficients may be
rational functions in t and q. We obtain something like

g(s, t, q) = f(s, t, q)u(s, t, q)(bm)−k1 + r(s, t, q)(bm)−k2 , (5.23)

where u and r are in Z[s, t, q], degs r < degs f and k1, k2 are some nonnegative integers.
We may assume that u and bm are relatively prime. We know f divides g for t ∈ T . It
follows by the uniqueness of the remainder that

r(s, t, q) = 0 for t ∈ T .

We would like to conclude that r(s, t, q) is identically zero. The problem is that the degree
of r in t might be quite large compared with degt and degs of g! The right side of the
inequality (iv) above is an estimate for degt r. So we have |T | > degt r. It follows that r
is identically zero. Finally, from (i) it follows that we may take k1 = 0 and we are done.
2

Example. Let f = t3s4q3 + 1 and let g be the numerator of un[37] before cancellation.
We suspect that f divides g. In this case m = 4, bm = t3q3 and we assume that n = 69
and degt g = 50. We get the bound

degt r ≤ 50 + 69(3) + (69− 4 + 1)9 + 3(3) = 860,

which is quite large. Hence we must take |T | > 860 and t′ = 0 is not allowed.

6. Triangularity Results and the S(R)∨ Case

In this section we prove that the analog of Theorem 3.3 holds for the S(R)∨ case, where
R is a reduced irreducible root system. The possibilities are S(B`)∨, S(C`)∨, S(F4)∨ and
S(G2)∨. In the S(R)∨ case, (1.1) has the form

C.T.
∏

α∈R∨+

(xα; quα)kα(quαx−α; quα)kα = a certain explicit product. (6.1)

The main difference between this and the S(R) case is that the product on the left side
is over R∨+ instead of over R+. Also, for S(R) we have uα ≡ 1; but for S(R)∨ we have
us = 1 and ul = 2 (for S(B`)∨, S(C`)∨, S(F4)∨) or ul = 3 (for S(G2)∨).

In §3 we handled the S(R) case by using the transformation xi∗ ← qxi∗ , where i∗
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satisfied the properties of Lemma 3.1. This led to a triangular system of equations. The
proof of the triangularity depended on the fact that our transformation added at most one
extra product for each root in Ga,b, except for possibly one root. The possible exception

was the maximal root
∼
β, which could give two extra factors.

This time, for S(R)∨, we will use the transformation xi∗∗ ← qxi∗∗ , where i∗∗ is given
below in Lemma 6.1. This transformation will have the property that at most one extra

product in Ga,b is produced for each root except possibly the maximal short root
∧
β,

which could give rise to two extra factors.
If ∆ = {γ1, . . . , γ`} is a base for R then ∆∨ = {γ∨1 , . . . , γ∨` } is a base for R∨. This time

we write vectors in terms of ∆∨ so that xγ
∨
i means xi, and for β ∈ R∨+ we may write

β =
∑̀
i=1

ci(β)γ∨i ,

where ci(β) ∈ N. We have the following analog of Lemma 3.1.

Lemma 6.1. Let R be a reduced irreducible root system of rank `. There is an integer
i∗∗ = i∗∗(R∨), 1 ≤ i∗∗ ≤ `, that satisfies the following properties:

(i) β ∈ R∨+ ⇒ ci∗∗(β) = 0, uβ , 2uβ,

(ii) β ∈ R∨+ and ci∗∗(β) = 2uβ ⇒ β is the maximal short root
∧
β.

Let S∨0 = {β ∈ R∨+ : ci∗∗(β) > 0}. The analog of (3.2) is

Ga,b(xi∗∗ ← qxi∗∗)
Ga,b(x)

=


q−δi∗∗

∏
α∈S∨0

(1− p(α)xα)
(p(α)/quα − xα)

, if ci∗∗(
∧
β) = u∧

β
,

q−δi∗∗
(1− tqx

∧
β)

(t/q − qx
∧
β)

∏
α∈S∨0

(1− p(α)xα)
(p(α)/quα − xα)

, if ci∗∗(
∧
β) = 2u∧

β
,

(6.2)
where δi∗∗ = ci∗∗(δ), and

p(α) =
{
t = qaus , α short,
s = qbul , α long. (6.3)

We note that ci∗∗(
∧
β) = u∧

β
for S(B`)∨, S(C`)∨ and ci∗∗(

∧
β) = 2u∧

β
for S(F4)∨, S(G2)∨.

Let P and Q be the numerator and denominator of the right side of (6.2). The proof
of the following theorem is analogous to that of Theorem 3.3.

Theorem 6.2. Consider the affine root system S(R)∨. Let β = −α− δ where α ∈ Λ∩C
and α 6= 0. Then the equation

C.T.
[
xβQ(x)Ga,b(xi∗∗ ← qxi∗∗)

]
= C.T.

[
xβP (x)Ga,b(x)

]
(6.4)

can be written as

Eβ :
∑
ρ≺α

ρ∈Λ∩C

pα,ρ(t, s, q)H(ρ+ δ) = 0, (6.5)
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where the pα,ρ(t, s, q) = pα,ρ(qaus , qbul , q) are certain polynomials in q and pα,α 6≡ 0.

To aid the reader we give the analog of (3.18), for the case ci∗∗(
∧
β) = 2u∧

β
. Let

S∨1 =
{
β ∈ R∨+

short : ci∗∗(β) > 0
}
∪ {
∧
β
∗
} (6.6)

and
S∨2 = {β ∈ R∨+

long : ci∗∗(β) > 0}, (6.7)

where
∧
β
∗

is a copy of
∧
β, the maximal short root, so that S∨1 is a multiset. We find that

(6.4) is equivalent to

C.T.
∑
B⊂S∨1
C⊂S∨2

(−1)|B|+|C|
{
t|B|s|C|q

∧
χ
∗
(B) − t|S

∨
1 |−|B|s|S

∨
2 |−|C|qαi∗∗−

∧
χ(B)

}
(6.8)

·xδ−sum(B)−sum(C)+αGa,b(x)
= 0,

where
∧
χ (B) =

{
1,

∧
β∈ B,

0, otherwise,
(6.9)

and
∧
χ
∗

(B) =

{
1,

∧
β
∗
∈ B,

0, otherwise.
(6.10)

7. Implementing the S(F4)∨ Case

We shall prove the S(F4)∨ case of (1.1):

Theorem 7.1. Let a, b ∈ N. Then the constant term of

F ′a,b(x1, x2, x3, x4) (7.1)

:=
∏

1≤i<j≤4

(xixj ; q)a(qx−1
i x−1

j ; q)a(xix−1
j ; q)a(qx−1

i xj ; q)a

·
∏

1≤i≤4

(x2
i ; q

2)b(q2x2
i ; q

2)b

·
∏

r2,r3,r4=±1

(x1x
r2
2 x

r3
3 x

r4
4 ; q2)b(q2x−1

1 x−r22 x−r33 x−r44 ; q2)b

is equal to

R′a,b =
(q; q)6a+6b(q; q)4a+4b(q; q)2a+6b(q; q)4a+2b(q; q)4b(q; q)3a(q; q)2b

(q; q)5a+6b(q; q)3a+6b(q; q)3a+4b(q; q)3a+2b(q; q)a+4b(q; q)a+2b(q; q)3
a

(7.2)

· (q
2; q2)3a+6b(q2; q2)2a+4b(q2; q2)3a+2b(q2; q2)a+4b(q2; q2)3b(q2; q2)2a

(q2; q2)3a+5b(q2; q2)3a+3b(q2; q2)2a+3b(q2; q2)a+3b(q2; q2)2a+b

· (q2; q2)a
(q2; q2)a+b(q2; q2)3

b

.
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Let

Fa,b(x1, x2, x3, x4) (7.3)

:=
∏

1≤i<j≤4

(xixj ; q)a(qx−1
i x−1

j ; q)a−1(xix−1
j ; q)a(qx−1

i xj ; q)a−1

·
∏

1≤i≤4

(x2
i ; q

2)b(q2x2
i ; q

2)b−1

·
∏

r2,r3,r4=±1

(x1x
r2
2 x

r3
3 x

r4
4 ; q2)b(q2x−1

1 x−r22 x−r33 x−r44 ; q2)b−1

and

Ha,b := C.T.Fa,b. (7.4)

We know

Ha,b = H ′a,b/W (qa, q2b), (7.5)

where H ′a,b := C.T.F ′a,b and W (t1, t2) is given in (4.9). So if we let

Ra,b := R′a,b/W (qa, q2b), (7.6)

then we must show that Ha,b = Ra,b. Again we proceed by induction on a; i.e. we want
to show that

Ha+1,b

Ha,b
=
Ra+1,b

Ra,b
. (7.7)

As before, this will be enough in view of Lemma 2.2 since the long roots of F4 are
isomorphic to D4 and (1.1) is known for S(D4) by Kadell (to appear). Hence, again all
we need to show is (7.7). We let

Ga,b(x) := x−δFa,b(x), (7.8)

where δ is given by (4.8), Fa,b is defined in (7.3), and Ga,b is antisymmetric. A routine
calculation gives (t = qa, s = q2b)

Ra+1,b/Ra,b = (t3q3 + t2q2 + tq + 1)(−1 + t4q2)(t3sq3 + 1)(t3sq2 + 1) (7.9)
(t3sq + 1)(−1 + t4s4q2)(t3s3q2 + 1)(t3s3q + 1)(−1 + t3q2)
(−1 + t3q)(−1 + t4sq3)(−1 + t4sq)(−1 + t2s3q)
(−1 + t4s2q3)(−1 + t4s2q2)(−1 + t4s2q)(−1 + t6s3q5)
(−1 + t6s3q3)(−1 + t6s3q)(1 + t)(1 + t+ t2)(1 + ts2)
(1 + st2)(1 + ts)(1 + t2s2)(1 + t3s3)
/((−1 + t5s3q5)(−1 + t5s3q4)(−1 + t5s3q3)(−1 + t5s3q2)

((−1 + t5s3q)(−1 + t3s2q)(−1 + t3s2q2)(−1 + t3s2q3)
(−1 + t6s5q2)(−1 + t6s5q4)(−1 + t6s5q6)(−1 + t4s3q2)
(−1 + t4s3q4))

We take the same base ∆ = {γ1, γ2, γ3, γ4} and fundamental chamber as in §4. See
(4.5), (4.6). We note that that part of the product in Fa,b that corresponds to the short
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roots is the same as in the S(F4) case. This means that (4.17) holds, i.e. we have

Ha+1,b =
37∑
i=1

y[i]H(δ + v(i)), (7.10)

where H(ρ) = C.T. (xρGa,b), the v(i) are the same as those in the S(F4) case, and the
y[i] are the exact same polynomials as in the S(F4) case. See Tables II and III. Hence,
as before, we need to find and solve 36 equations in the 37 unknowns H(δ + v(i)).

Next we generate equations via Zeilberger’s Equation Steps 1-6 modified using the
results of §6. For S(F4)∨ we may take i∗∗ = 4. Recall that i∗∗ must satisfy the properties
given in Lemma 6.1. S∨1 , S∨2 of (6.6), (6.7) are

S∨1 = {(0, 1,−1, 0), (1, 0,−1, 0), (0, 1, 0, 1), (0, 1, 0,−1), (7.11)
(1, 0, 1, 0), (1, 0, 0, 1), (1, 0, 0,−1), (0, 1, 1, 0),
(1, 1, 0, 0), (1, 1, 0, 0)∗},

and

S∨2 = {(1, 1,−1, 1), (1, 1,−1,−1), (0, 2, 0, 0), (2, 0, 0, 0), (7.12)
(1, 1, 1, 1), (1, 1, 1,−1)}.

Here
∧
β
∗
= (1, 1, 0, 0)∗ is a copy of

∧
β= (1, 1, 0, 0), the maximal short root, so that S∨1 is a

multiset. For B ⊂ S∨1 we define

∧
χ
∗

(B) =
{

1, (1, 1, 0, 0)∗ ∈ B,
0, otherwise, (7.13)

and
∧
χ (B) =

{
1, (1, 1, 0, 0) ∈ B,
0, otherwise. (7.14)

By taking α = v(i) in (6.8) we have

C.T.
∑
B⊂S∨1
C⊂S∨2

(−1)|B|+|C|{t|B|s|C|q
∧
χ
∗
(B) − t|S

∨
1 |−|B|s|S

∨
2 |−|C|qdi−

∧
χ(B)} (7.15)

·xδ−sum(B)−sum(C)+v(i)Ga,b

= 0,

where di = c4(v(i)).
For 1 ≤ i ≤ 37, un[i] is defined as in (4.22). We have written a FORTRAN program

whose input is an integer i, 2 ≤ i ≤ 37, and whose output is a linear equation in the un[j]
of the same form as in (4.24). Everything proceeds as before. The classes with similar
denominators are the same as before. This time, due to the fact that the degrees of the
numerators are smaller, we were able to compute directly up to un[26]. From (7.15) we
have

degt pi,i = |S∨1 | = 10, degs pi,i = |S∨2 | = 6, (7.16)

and the analogs of (5.8)–(5.9) hold. The sets of missing unknowns Mi are given in Table
VII. The den∗[i] (see Table XI), den∗, num and num∗ are defined as before, except that
den∗[i] is assigned denom(un[i]) for i ≤ 26 (instead of i ≤ 24). The y[i] are the same as



The q-cases of Macdonald’s Conjecture for F4 via Zeilberger’s Method 29

before and we have
degt den

∗ = 113, degs den
∗ = 73; (7.17)

so that
degt num ≤ 137 and degs num ≤ 73. (7.18)

As before, we observe that den∗ is a multiple of the denominator of Ra+1,b/Ra,b (given
in (7.9)) and we have

degt num
∗ ≤ 137, degs num

∗ ≤ 73. (7.19)

To prove the result we computed all un[i] and the analog of (4.25) for s = 0, 1, 2, . . . , 47,
48 excluding s = 4, 9, 16, 25, 36 and for s = −1,−2, . . . ,−39,−40, a total of 84 different
values (by (7.19) at least 74 values were required). The final result (the analog of (4.25))
was zero for all these computations. Since these computations were first done, we have
been able to compute exactly up to un[36]. This would allow even fewer evaluations
necessary.

8. Further Results and Prospects

A consequence of our triangularity results is that a result “like” (1.1) must hold. To
be precise, let’s fix the affine root system S and consider the equal parameter case of
(1.1), i.e. kα ≡ a. As in §2 let Ha

′, Ra′ denote the left and right sides respectively of
(1.1). It can be shown that the Ha

′ satisfy a certain homogeneous linear recurrence with
polynomial coefficients (in q and qa) using I.N. Berstein’s theory of holonomic systems.
See (Zeilberger, to appear). However, the bound on the order of this recurrence from the
theory is quite large. On the other hand it is clear that the right sides of (1.1), i.e. the
Ra
′, satisfy a first order recurrence or if you like form a q-hypergeometric sequence. This

means that there exist polynomials P (q, qa), Q(q, qa) such that

Ra+1
′/Ra

′ = P (q, qa)/Q(q, qa). (8.1)

From our triangularity results it follows that the left sides of (1.1) also form a q-
hypergeometric sequence. In fact we can give bounds on the degrees of the polynomials
involved. We have

Theorem 8.1. The sequence {Ha
′}∞a=0 is a q-hypergeometric sequence, i.e. there exist

polynomials U , V ∈ Z[q, t] (where t = qa) such that

Ha+1
′/Ha

′ = U(q, t)/V (q, t), (8.2)

and

degreet(U) ≤ 2(|Rshort|+ ul|Rlong|) + (|S′1|+ ul|S′2|)(|S′| − 1) (8.3)
degreet(V ) ≤ (|Rshort|+ ul|Rlong|) + (|S′1|+ ul|S′2|)(|S′| − 1) (8.4)

where
S′ = {α ∈ (δ + Λ) ∩ C : α ≺ 3δ} (8.5)

and for i = 1, 2 S′i = Si (resp. Si∨) for S = S(R) (resp. S(R∨)).

Remarks. If there is only one root length S′ coincides with S given in (2.16). Si and
Si
∨ are given in (3.12), (3.13) and (6.6), (6.7) respectively. We note also that, for fixed
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b, the Ha,b
′ form a q-hypergeometric sequence, and upper bounds on the degrees of the

polynomials involved can be calculated. We leave this as an exercise for the reader. We
have omitted the proof of Theorem 8.1 since its proof is straightforward.

For the remaining exceptional cases S(E6), S(E7), S(E8) we have the following table:

Affine root system |S′1|+ ul|S′2| |S′|
S(E6) 16 4679
S(E7) 27 60800
S(E8) 58 1055250

Hence the upper bounds given in Theorem 8.1 are a far cry from their “expected” values.
S(E6) might be in range with the help of a suitable computer and a sufficiently gener-
ous benefactor. However S(E8) certainly is not. This would involve solving a triangular
system involving 1055249 equations in 1055250 unknowns. If this isn’t bad enough each
of the equations comes from calculating the analog of the sum given in (3.18), which, in
this case, is a sum over 258 subsets.
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Appendix: Tables

Table I. Positive roots of F4.

Short roots Long roots
coord. w.r.t. coord. w.r.t. coord. w.r.t. coord. w.r.t.
the ei the base the ei the base

1 -1 0 0 0 1 1 0 1 -1 1 1 1 2 2 0
0 0 1 1 1 1 1 0 1 -1 1 -1 0 1 2 0
0 0 1 -1 0 0 1 0 0 0 2 0 1 1 2 0
0 1 -1 0 0 0 0 1 -1 1 1 1 1 0 0 0
1 0 -1 0 0 1 1 1 1 -1 -1 1 0 1 0 0
0 1 0 1 1 1 1 1 0 0 0 2 1 1 0 0
0 1 0 -1 0 0 1 1 1 1 -1 1 1 2 2 2
1 0 1 0 1 2 3 1 1 1 -1 -1 0 1 2 2
1 0 0 1 1 2 2 1 0 2 0 0 1 1 2 2
1 0 0 -1 0 1 2 1 2 0 0 0 1 3 4 2
0 1 1 0 1 1 2 1 1 1 1 1 2 3 4 2
1 1 0 0 1 2 3 2 1 1 1 -1 1 2 4 2

Table II. The first 37 vectors in C ∩ Λ.

coord. of coord. of coord. of coord. of
i v(i) w.r.t. v(i) w.r.t. i v(i) w.r.t. v(i) w.r.t.

the ei the base the ei the base

1 0 0 0 0 0 0 0 0 20 4 4 1 1 5 9 13 8
2 1 1 0 0 1 2 3 2 21 5 2 2 1 5 10 14 7
3 1 1 1 1 2 3 4 2 22 5 3 1 1 5 10 14 8
4 2 1 1 0 2 4 6 3 23 5 3 2 0 5 10 15 8
5 2 2 0 0 2 4 6 4 24 5 4 1 0 5 10 15 9
6 2 2 1 1 3 5 7 4 25 5 5 0 0 5 10 15 10
7 3 1 1 1 3 6 8 4 26 3 3 3 3 6 9 12 6
8 3 2 1 0 3 6 9 5 27 4 3 3 2 6 10 14 7
9 3 3 0 0 3 6 9 6 28 4 4 2 2 6 10 14 8
10 2 2 2 2 4 6 8 4 29 5 3 2 2 6 11 15 8
11 3 2 2 1 4 7 10 5 30 5 3 3 1 6 11 16 8
12 3 3 1 1 4 7 10 6 31 5 4 2 1 6 11 16 9
13 4 2 1 1 4 8 11 6 32 5 5 1 1 6 11 16 10
14 4 2 2 0 4 8 12 6 33 6 2 2 2 6 12 16 8
15 4 3 1 0 4 8 12 7 34 6 3 2 1 6 12 17 9
16 4 4 0 0 4 8 12 8 35 6 3 3 0 6 12 18 9
17 3 3 2 2 5 8 11 6 36 6 4 1 1 6 12 17 10
18 4 2 2 2 5 9 12 6 37 6 4 2 0 6 12 18 10
19 4 3 2 1 5 9 13 7
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Table III. The polynomials y[i] in (4.17).

i y[i]

1 1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 + 8t7 + 9t8 + 9t9 + 9t10 + 9t11 + 9t12 + 9t13

+9t14 + 9t15 + 9t16 + 8t17 + 7t18 + 6t19 + 5t20 + 4t21 + 3t22 + 2t23 + t24

2 −t− 2t2 − 3t3 − 4t4 − 5t5 − 6t6 − 7t7 − 7t8 − 8t9 − 8t10 − 8t11 − 8t12 − 8t13 − 8t14

−8t15 − 7t16 − 7t17 − 6t18 − 5t19 − 4t20 − 3t21 − 2t22 − t23

3 t2 + 2t3 + 3t4 + 4t5 + 5t6 + 5t7 + 5t8 + 5t9 + 6t10 + 6t11 + 6t12 + 6t13 + 6t14 + 5t15

+5t16 + 5t17 + 5t18 + 4t19 + 3t20 + 2t21 + t22

4 t2 + t3 + t4 + t5 + 2t6 + 2t7 + 3t8 + 3t9 + 4t10 + 3t11 + 3t12

+3t13 + 4t14 + 3t15 + 3t16 + 2t17 + 2t18 + t19 + t20 + t21 + t22

5 t4 + t5 + t6 + t7 + 2t8 + t9 + t10 + t11 + 2t12 + t13 + t14 + t15

+2t16 + t17 + t18 + t19 + t20

6 −t3 − t4 − 2t5 − 2t6 − 3t7 − 3t8 − 4t9 − 3t10 − 4t11 − 3t12

−4t13 − 3t14 − 4t15 − 3t16 − 3t17 − 2t18 − 2t19 − t20 − t21

7 −t3 − 2t4 − 3t5 − 3t6 − 4t7 − 4t8 − 5t9 − 5t10 − 7t11 − 7t12

−7t13 − 5t14 − 5t15 − 4t16 − 4t17 − 3t18 − 3t19 − 2t20 − t21

8 t4 + t5 + 2t6 + t7 + 2t8 + t9 + 3t10 + 2t11 + 4t12 + 2t13 + 3t14

+t15 + 2t16 + t17 + 2t18 + t19 + t20

9 −t5 − t6 − t7 − t9 − t10 − 2t11 − t12 − 2t13 − t14 − t15 − t17 − t18 − t19

10 t4 + t5 + t6 + t7 + 2t8 + 2t9 + 2t10 + 2t11 + 3t12 + 2t13

+2t14 + 2t15 + 2t16 + t17 + t18 + t19 + t20

11 t4 + t5 + 2t6 + 2t7 + 4t8 + 3t9 + 4t10 + 3t11 + 5t12 + 3t13

+4t14 + 3t15 + 4t16 + 2t17 + 2t18 + t19 + t20

12 −t5 − t7 − t8 − 2t9 − 2t11 − t12 − 2t13 − 2t15 − t16 − t17 − t19

13 t6 + t8 + 2t10 + t12 + 2t14 + t16 + t18

14 −t5 − 2t6 − 3t7 − 2t8 − 4t9 − 4t10 − 5t11 − 3t12 − 5t13

−4t14 − 4t15 − 2t16 − 3t17 − 2t18 − t19

15 t6 + t8 + 2t10 + 2t12 + 2t14 + t16 + t18

16 t8 + t12 + t16

17 −t5 − t6 − 2t7 − 2t8 − 3t9 − 3t10 − 4t11 − 3t12 − 4t13 − 3t14 − 3t15 − 2t16 − 2t17

−t18 − t19

18 −t7 − t8 − 2t9 − t10 − t11 − t13 − t14 − 2t15 − t16 − t17

19 t6 + t7 + 3t8 + 2t9 + 4t10 + 2t11 + 4t12 + 2t13 + 4t14 + 2t15 + 3t16 + t17 + t18

20 −t7 − t8 − 2t9 − t10 − 2t11 − t12 − 2t13 − t14 − 2t15 − t16 − t17

21 t8 + t10 + t12 + t14 + t16

22 −t7 − t8 − 2t9 − t10 − 3t11 − 2t12 − 3t13 − t14 − 2t15 − t16 − t17

23 −t9 − t11 + t12 − t13 − t15

24 t8 + t9 + 2t10 + t11 + 2t12 + t13 + 2t14 + t15 + t16

25 −t9 − t10 − t11 − t12 − t13 − t14 − t15

26 t6 + 2t7 + 3t8 + 4t9 + 5t10 + 5t11 + 5t12 + 5t13 + 5t14 + 4t15 + 3t16 + 2t17 + t18

27 −t7 − 2t8 − 3t9 − 3t10 − 4t11 − 4t12 − 4t13 − 3t14 − 3t15 − 2t16 − t17

28 t8 + t9 + t10 + t11 + 2t12 + t13 + t14 + t15 + t16

29 t8 + t9 + 2t10 + 2t11 + 3t12 + 2t13 + 2t14 + t15 + t16

30 t10 + t14

31 −t9 − t10 − 2t11 − t12 − 2t13 − t14 − t15

32 t10 + t11 + t12 + t13 + t14

33 −t9 − 2t10 − 3t11 − 3t12 − 3t13 − 2t14 − t15

34 t10 + t11 + 2t12 + t13 + t14

35 −t11 − t12 − t13

36 −t11 − t12 − t13

37 t12
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Table IV. Factorisations of pi,i, the leading co-
efficients in (4.24).

i pi,i

2 2(1 + s+ s2)(1 + s2t)(1− s6t5q)
3 (1− s5t3q)(1 + s5t3q)
4 (1 + s+ s2)(1− s4t3q)(1 + s4t3q)
5 (1 + s+ s2)(1 + s2t)(1− s6t5q2)
6 1− s10t6q3

7 (1 + s)(1− s3t2q)(1 + s3t2q + s6t4q2)
8 (1 + s+ s2)(1− s8t6q3)
9 (1 + s+ s2)(1 + s2t)(1− s6t5q3)

10-12 (1− s5t3q2)(1 + s5t3q2)
13 (1 + s)(1− s9t6q4)

14-15 (1 + s+ s2)(1− s4t3q2)(1 + s4t3q2)
16 (1 + s+ s2)(1 + s2t)(1− s6t5q4)

17-20 1− s10t6q5

21-22 (1 + s)(1− s9t6q5)
23-24 (1 + s+ s2)(1− s8t6q5)
25 (1 + s+ s2)(1 + s2t)(1− s6t5q5)

26-32 (1− s5t3q3)(1 + s5t3q3)
33-34,36 (1 + s)(1− s3t2q2)(1 + s3t2q2 + s6t4q4)

35,37 (1 + s+ s2)(1− s4t3q3)(1 + s4t3q3)

Table V. Factorisations of pi,i, the leading coefficients in the
analog of (4.24) for S(F4)∨.

i pi,i

2 (1− s3t5q)(1 + s3t5q)
3 (1 + t+ t2)(1 + st2)(1− s5t6q2)
4 (1 + t)(1− s2t3q)(1 + s2t3q + s4t6q2)

5-6 (1− s3t5q2)(1 + s3t5q2)
7 (1 + t+ t2)(1− s3t4q2)(1 + s3t4q2)
8 1− s6t10q5

9,17 (1− s3t5q3)(1 + s3t5q3)
10 (1 + t+ t2)(1 + st2)(1− s5t6q4)
11 (1 + t)(1− s6t9q5)

12-13 (1− s3t5q3)(1 + s3t5q3)
14 (1 + t)(1− s2t3q2)(1 + s2t3q2 + s4t6q4)

15,19 1− s6t10q7

16,20,22,23,28,29 (1− s3t5q4)(1 + s3t5q4)
18 (1 + t+ t2)(1− s3t4q3)(1 + s3t4q3)

21,27 (1 + t)(1− s6t9q7)
24 1− s6t10q9

25 (1− s3t5q5)(1 + s3t5q5)
26 (1 + t+ t2)(1 + st2)(1− s5t6q6)
30 (1 + t)(1− s6t9q8)

31,34 (1− s6t10q9)
32,36,37 (1− s3t5q5)(1 + s3t5q5)

33 (1 + t+ t2)(1− s3t4q4)(1 + s3t4q4)
35 (1 + t)(1− s2t3q3)(1 + s2t3q3 + s4t6q6)



34 F.G. Garvan and G.H. Gonnet

Table VI. Sets of missing unknowns in the equa-
tions for S(F4).

i Mi

2-9,13,14,23 {}
10 {8, 9}
11 {9, 10}
12 {10, 11}

15,16 {14}
17 {14, 15, 16}
18 {15, 16, 17}
19 {16, 17, 18}
20 {14, 17, 18, 19}
21 {16, 20}
22 {21}

24,25 {21, 23}
26 {8, 15, 16, 19, 20, 21, 22, 23, 24, 25}
27 {16, 20, 22, 23, 24, 25, 26}
28 {21, 23, 24, 25, 26, 27}
29 {24, 25, 26, 27, 28}
30 {24, 25, 26, 27, 28, 29}
31 {25, 26, 27, 28, 29, 30}
32 {18, 21, 23, 26, 27, 28, 29, 30, 31}
33 {24, 25, 31, 32}
34 {25, 32, 33}
35 {25, 32}
36 {30, 33, 34, 35}
37 {33, 35}

Table VII. Sets of missing unknowns in the equa-
tions for S(F4)∨.

i Mi

2-5,7-9,14,15,24 {}
6 {5}
10 {8, 9}

11,12 {9}
13 {9, 12}
16 {14}
17 {9, 12, 13, 14, 15, 16}

18,19 {15, 16}
20 {16}

21,22 {16, 20}
23 {16, 20, 22}
25 {21, 23}
26 {15, 16, 19, 20, 21, 22, 23, 24, 25}
27 {16, 20, 21, 22, 23, 24, 25}
28 {14, 15, 16, 20, 21, 22, 23, 24, 25}
29 {16, 20, 22, 23, 24, 25, 28}
30 {24, 25}
31 {16, 24, 25}
32 {25, 30}

33,34 {24, 25, 31, 32}
35 {25, 26, 32, 33}
36 {25, 32, 35}
37 {25, 32, 33, 36}
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Table VIII. Polynomials that occur as
factors in the factorisations of the den∗[i]
for S(F4).

Factor number Factor

1 1 + s+ s2

2 1 + s2t
3 1− s6t5q
4 1− s5t3q
5 1− s4t3q
6 1− s6t5q2

7 1 + s
8 1− s3t2q
9 1− s6t5q3

10 1− s5t3q2

11 1− s4t3q2

12 1− s6t5q4

13 1− s6t5q5

14 1− s5t3q3

15 1 + s5t3q3

16 1− s3t2q2

17 1 + s3t2q2 + s6t4q4

18 1− s4t3q3

19 1 + s4t3q3

Table IX. Polynomials that occur as fac-
tors in the factorisations of the den∗[i] for
S(F4)∨.

Factor number Factor

1 1− s3t5q
2 1 + t+ t2

3 1− s5t6q2

4 1 + t
5 1− s2t3q
6 1− s3t5q2

7 1− s3t4q2

8 1− s3t5q3

9 1− s5t6q4

10 1− s2t3q2

11 1− s3t5q4

12 1 + s3t5q4

13 1− s6t9q7

14 1− s6t10q9

15 1− s3t5q5

16 1 + s3t5q5

17 1− s5t6q6

18 1− s6t9q8

19 1− s3t4q4

20 1 + s3t4q4

21 1− s2t3q3

22 1 + s2t3q3 + s4t6q6
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Table X. Factorisations and degrees of the den∗[i]. The entry in the
i-th row and j-th column in the main part of the table gives the power
of the j-th polynomial from Table VIII in the factorisation of den∗[i].

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 degt degs degq
2 1 5 6 1
3 1 1 8 11 2
4 1 1 1 11 15 3
5 1 1 1 1 16 21 5
6 1 1 1 1 16 21 5
7 1 1 1 1 1 18 24 6
8 1 1 1 1 1 18 24 6
9 1 1 1 1 1 1 23 30 9
10 1 1 1 1 1 1 21 29 8
11 1 1 1 1 1 1 21 29 8
12 1 1 1 1 1 1 1 26 35 11
13 1 1 1 1 1 1 1 26 35 11
14 1 1 1 1 1 1 1 1 29 39 13
15 1 1 1 1 1 1 1 1 29 39 13
16 1 1 1 1 1 1 1 1 1 34 45 17
17 1 1 1 1 1 1 1 26 35 11
18 1 1 1 1 1 1 1 1 29 39 13
19 1 1 1 1 1 1 1 1 29 39 13
20 1 1 1 1 1 1 1 1 1 34 45 17
21 1 1 1 1 1 1 1 1 29 39 13
22 1 1 1 1 1 1 1 1 1 34 45 17
23 1 1 1 1 1 1 1 1 1 34 45 17
24 1 1 1 1 1 1 1 1 1 34 45 17
25 1 1 1 1 1 1 1 1 1 1 1 1 40 55 22
26 1 1 1 1 1 1 1 1 1 1 35 49 19
27 1 1 1 1 1 1 1 1 1 1 35 49 19
28 1 1 1 1 1 1 1 1 1 1 1 40 55 23
29 1 1 1 1 1 1 1 1 1 1 1 40 55 23
30 1 1 1 1 1 1 1 1 1 1 1 40 55 23
31 1 1 1 1 1 1 1 1 1 1 1 40 55 23
32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 46 65 28
33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 46 65 29
34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 46 65 29
35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 52 75 35
36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 52 75 34
37 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 58 85 40
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Table XI. Factorisations and degrees of the den∗[i] for S(F4)∨. The
entry in the i-th row and j-th column in the main part of the table gives
the power of the j-th polynomial from Table IX in the factorisation of
den∗[i].

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 degt degs degq
2 1 5 3 1
3 1 1 11 8 3
4 1 1 1 14 10 4
5 1 1 1 1 19 13 6
6 1 1 1 1 19 13 6
7 1 1 1 1 1 23 16 8
8 1 1 1 1 1 23 16 8
9 1 1 1 1 1 1 28 19 11
10 1 1 1 1 1 1 29 21 12
11 1 1 1 1 1 1 29 21 12
12 1 1 1 1 1 1 1 34 24 15
13 1 1 1 1 1 1 1 34 24 15
14 1 1 1 1 1 1 1 1 37 26 17
15 1 1 1 1 1 1 1 1 37 26 17
16 1 1 1 1 1 1 1 1 1 42 29 21
17 1 1 1 1 1 1 1 34 24 15
18 1 1 1 1 1 1 1 1 37 26 17
19 1 1 1 1 1 1 1 1 37 26 17
20 1 1 1 1 1 1 1 1 1 42 29 21
21 1 1 1 1 1 1 1 1 37 26 17
22 1 1 1 1 1 1 1 1 1 42 29 21
23 1 1 1 1 1 1 1 1 1 42 29 21
24 1 1 1 1 1 1 1 1 1 42 29 21
25 1 1 1 1 1 1 1 1 1 1 47 32 26
26 1 1 1 1 1 1 1 1 1 43 31 23
27 1 1 1 1 1 1 1 1 1 1 1 53 37 30
28 1 1 1 1 1 1 1 1 1 1 1 1 1 63 43 38
29 1 1 1 1 1 1 1 1 1 1 1 1 1 63 43 38
30 1 1 2 1 1 1 1 1 1 1 1 1 1 1 73 49 46
31 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 83 55 55
32 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 61 65
33 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 83 55 54
34 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 93 61 63
35 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 103 67 72
36 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 103 67 73
37 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 113 73 82


