
SHIFTED AND SHIFTLESS PARTITION IDENTITIES

F. G. GARVAN

Abstract. In 1987, George Andrews considered the following ques-
tion: For which sets of positive integers S and T is p(S, n) = p(T, n−
1) for all n ≥ 1?, where p(S, n) denotes the number of partitions of

n into elements of S. Andrews found two non-trivial examples and
in 1989, Kalvade found a further six. We prove a new shifted par-

tition identity using the theory of modular functions. We consider
other shifted-type identities and shiftless identities. Let a be a fixed

positive integer, and let S, T be distinct sets of positive integers. A

shiftless identity has the form: p(S, T ) = p(T, n) for all n 6= a. These
other identities arise through certain modular transformations.

1. Introduction

Let S and T be sets of positive integers. Let a be a fixed positive integer.
A shifted partition identity has the form

p(S, n) = p(T, n− a), for all n ≥ a.
We will mainly consider the case a = 1. Assume a = 1. If S or T is finite
then it is not hard to show that S = T = {1}. Andrews [4] found the
following two non-trivial examples:

S = {n : n odd or n ≡ ±4,±6,±8,±10 (mod 32)},
T = {n : n odd or n ≡ ±2,±8,±12,±14 (mod 32)};

and

S = {n : n ≡ ±1,±4,±5,±6,±7,±9,±10,±11,±13,±15,(1.1)

± 16,±19 (mod 40)},
T = {n : n ≡ ±1,±3,±4,±5,±9,±10,±11,±14,±15,±16,

± 17,±19 (mod 40)},
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In these examples, each S and T is the union of arithmetic progressions
modulo M for some M ; namely M = 32 and M = 40. In fact, each is a
union of 24 such arithmetic progressions. Later, Kalvade [10] found five
more identities with M = 42, 48 and 60, each also involving the union of
24 arithmetic progressions. Through a computer search we have found a
further 48 identities with M = 40, 42, 46, 48, 54, 56, 60, 62, 66, 70 and 72.
All but two of these identities involve unions of 24 arithmetic progressions.
The remaining two involve unions of 48 arithmetic progressions. In the
present paper, we show how the theory of modular functions may be used
to prove certain shifted partition identities.

The generating function for p(S, n) is an infinite product:∑
n≥0

p(S, n)qm =
∏
n∈S

1
(1− qn)

,

where |q| < 1. For the case a = 1, we can write a shifted partition identity
as an equivalent q-series identity:

(1.2)
∏
n∈S

1
(1− qn)

− q
∏
n∈T

1
(1− qn)

= 1.

There is a simple proof of Andrews’s mod 32 and 40 shifted partition iden-
tities using Jacobi’s triple product identity [2, p. 21]:

(1.3)
∞∑

n=−∞
(−1)nznqn(n−1)/2 =

∞∏
n=1

(1− zqn−1)(1− z−1qn)(1− qn).

Let T (z, q) denote the left side. By splitting T (z, q) into its even and odd
parts (as a function of z) we easily find that

T (z, q) = T (−z2q, q4)− zT (−z−2q, q4),

or

(1.4)
T (−z2q, q4)
T (z, q)

− z T (−z−2q, q4)
T (z, q)

= 1.

The idea is to replace q by qm, and let z = q in (1.4) so that the numerator
in each term simplifies to 1 after cancellation in the infinite products. This
only occurs in two cases: m = 4 giving Andrews’s mod 32 shifted identity,
and m = 5 giving Andrews’s mod 40 shifted identity. Other choices for m
do not give shifted partition identities but variants in which the parts from
some residue classes must be distinct. These types of identities have been
considered by Alladi [1].
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When comparing shifted identities, quite often it is helpful to write (1.2)
in the form: ∏

n∈T\S

(1− qn)− q
∏

n∈S\T

(1− qn) =
∏

n∈S∪T
(1− qn).

For example, Andrews’s modulus M = 40 result involves

T \ S = {n : n ≡ ±3,±14,±17 (mod 40)},
S \ T = {n : n ≡ ±6,±7,±13 (mod 40)}.

There is another shifted result with M = 40 that Andrews missed. It
involves

T \ S = {n : n ≡ ±2,±9,±11,±12 (mod 40)},
S \ T = {n : n ≡ ±4,±6,±7,±13 (mod 40)}.

We prove this identity using the theory of modular functions in section 4.
By considering the effect of modular transformations on shifted identities

we were led to consider shiftless partition identities. Let a be a fixed
positive integer, and let S, T be distinct sets of positive integers. A shiftless
partition identity has the form:

p(S, T ) = p(T, n), for all n 6= a.

Our simplest example is for modulus M = 40. Let

S = {n : n ≡ ±1,±2,±5,±6,±7,±8,±9,±11,

± 12,±13,±15,±19 (mod 40)},
T = {n : n ≡ ±1,±3,±4,±5,±6,±7,±8,±13,

± 14,±15,±17,±19 (mod 40)}.

Then

(1.5) p(S, n) = p(T, n), for all n 6= 2.

This identity follows from our shifted result with M = 40 by applying a
modular transformation. The details are given in section 4. Other shiftless
identities exist for the moduli M = 42, 46, 48, 54, 56, 60, 62, 66 and 72.
In section 5 we present some examples of shifted and shiftless identities.
Details for these other identities will be left to a later paper.

2. Computer search

Our new shifted partition identities were found via a computer search.
The idea is two consider a finite analogue of (1.2). Let N be an integer
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N > 2. A pair of sets [S, T ] is called a truncated ST -pair O(qN ) if

(2.1)
∏
n∈S

1
(1− qn)

− q
∏
n∈T

1
(1− qn)

= 1 + O(qN ),

S ⊂ {1, 2, 3, . . . , N − 1},

and

T ⊂ {1, 2, 3, . . . , N − 2}.

It is clear that if S, T give a shifted partition theorem then they also give
rise to a truncated ST -pair O(qN ), for all N . For N ≥ 3, let TN be the set
of truncated ST -pairs O(qN ). For a given N , we may find all truncated
ST -pairs by a boot-strapping method:

0. Initialize: T3 = {[{1}, {1}]}
1. Suppose we are given TN . For each [S, T ] ∈ TN , we consider four

possible [S′, T ′]:

a. S′ = S, T ′ = T
b. S′ = S ∪ {N}, T ′ = T
c. S′ = S, T ′ = T ∪ {N − 1}
d. S′ = S ∪ {N}, T ′ = T ∪ {N − 1}

For each of these [S′, T ′], if

(2.2)
∏
n∈S′

1
(1− qn)

− q
∏
n∈T ′

1
(1− qn)

= 1 + O(qN+1),

then we include [S′, T ′] in TN+1.

In this way we may construct the sets TN . The computation in (2.2) would
be done using a computer algebra package like Maple. For small N , we
may calculate by hand.

We give some examples.

T3 = {[{1}, {1}]}
T4 = {[{1, 3}, {1, 2}], [{1}, {1}]}
T5 = {[{1, 3, 4}, {1, 2, 3}], [{1, 3}, {1, 2}], [{1, 4}, {1, 3}], [{1}, {1}]}
T6 = {[{1, 3, 4, 5}, {1, 2, 3}], [{1, 3, 5}, {1, 2}], [{1, 4, 5}, {1, 3, 4}],

[{1, 4}, {1, 3}], [{1, 5}, {1, 4}], [{1}, {1}]}

We have calculated the TN for N ≤ 37. Let t(N) = |TN |, ie. the number
of truncated ST -pairs O(qN ). We have the following table:
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n t(n) n t(n)
3 1 21 2447
4 2 22 3425
5 4 23 4962
6 6 24 6839
7 11 25 10000
8 15 26 13989
9 26 27 21383

10 41 28 30781
11 67 29 48292
12 96 30 70456
13 138 31 110214
14 197 32 159686
15 300 33 253265
16 431 34 374385
17 636 35 591648
18 893 36 876405
19 1258 37 1354888
20 1723

It appears that t(n) grows exponentially. We do not have enough data to
make a real conjecture.

All the known shifted partition identities involve sets of integers S and
T that remain unchanged on multiplication by −1 (mod M) for a certain
modulus M . Armed with T37, we searched for such shifted partition iden-
tities with even modulus up to M = 74.

3. Modular Functions

In this section we set up the necessary theory of modular functions to
prove our shifted partition identities.

3.1. Background theory. The necessary background theory of modular
functions and modular forms may be found in [16], [17], [11] and [15].
Many of the results that we require are contained in [5], [6] and [7]. Let
Γ(1) denote the full modular group and as usual let

Γ0(N) :=
{(

a b
c d

)
∈ Γ(1) : c ≡ 0 (mod N)

}
.

Let Γ be a subgroup of Γ(1) with finite index. For a modular function f
on Γ and a cusp ζ the order of f (mod Γ) at ζ is denoted by Ord (f ; ζ; Γ)
and the invariant order of f at ζ is denoted by ord (f ; ζ). We have

(3.1) Ord (f ; ζ; Γ) = κ(Γ; ζ) ord (f ; ζ)
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where κ(Γ; ζ) denotes the fan width of the cusp ζ (mod Γ), and

(3.2) ord (f | A; ζ) = ord (f ;Aζ),

for A ∈ Γ(1). Here we use the usual stroke operator notation

(f | A)(τ) := f(Aτ).

Any non-zero modular function f must satisfy the valence formula:

(3.3)
∑
s∈F

Ord (f ; s; Γ) = 0,

where F is a fundamental set of Γ and the sum is taken over s with non-
zero order so that this is a finite sum. For s ∈ H the order is interpreted in
the usual sense. See [16] for more details. We shall use the valence formula
to prove certain modular function identities. This is a standard technique.

3.2. Theta products and eta products. We need results from [7] on
transformation formulae and multiplier systems for the Dedekind eta func-
tion

(3.4) η(τ) = exp(πi/12)
∞∏
n=1

(1− exp(2πiτ)),

and the theta function

ϑ1(v | τ) = −i
∞∑

m=−∞
(−1)m exp(πiτ(m+ 1

2 )2) exp(2πiv(m+ 1
2 )),

where τ ∈ H and v ∈ C.

For
(
a b
c d

)
∈ Γ(1), η(τ) and ϑ(τ) have well-known transformation for-

mulae

(3.5) η

(
aτ + b

cτ + d

)
= νη(A)

√
cτ + d η(τ),

and

ϑ1

(
v

cτ + d
|aτ + b

cτ + d

)
= νϑ1(A)

√
cτ + d exp(πicv2/(cτ + d))ϑ1(v | τ).

Here νη(A), νϑ1(A) are explicit 24-th and 8-th roots of unity, respectively.
Formulae for these multipliers are given in [7, §2]. We have

(3.6) νϑ1(A) = ν3
η(A).

Let q = exp(2πiτ). Let N , ρ be integers, N ≥ 1, ρ - N . We define the
theta function θρ;N (τ) by

θρ;N (τ) :=
∞∑

m=−∞
(−1)mq

1
8N (2Nm+2ρ−N)2

(3.7)



SHIFTED AND SHIFTLESS PARTITION IDENTITIES 7

= q
1

8N (N−2ρ)2
∞∏
m=1

(1− qNm−ρ)(1− qNm−(N−ρ))(1− qNm),

by Jacobi’s triple product identity [3, (7.1)]. Our function θρ;N corresponds
to Biagioli’s [7, (2.8)] fN,ρ. From the definition of θρ;N we have

(3.8) θρ+N ;N = θ−ρ;N = θρ;N .

Biagioli [7, Lemma 2.1] gives the following transformation formula:

θρ;N (Aτ) = (−1)bρ+bρa/Nc+bρ/Nc exp(ρ2πiab/N) νϑ1

(
NA
) √

cτ + d θaρ;N (τ),
(3.9)

for A =
(
a b
c d

)
∈ Γ0(N). Here

NA =
(

a Nb
c/N d

)
.

Similarly, from (3.5) we find that

(3.10) η(Nτ) |A = νη
(
NA
) √

cτ + d η(Nτ).

For a set of integers ρ = {ρ1, ρ2, . . . , ρk}, where each ρj - N , we define
the following theta product

θρ;N (τ) :=
k∏
j=1

θρj ;N (τ).

From (3.9) we have the following transformation formula. For A ∈ Γ0(N),
(3.11)
θρ;N (Aτ) = (−1)bL(ρ)+M(ρ,a) exp(Q(ρ)πiab/N) νkϑ1

(NA) (cτ+d)k/2 θaρ;N (τ),

where
L(ρ) :=

∑
j

ρj ,

M(ρ, x) :=
∑
j

bρjx/Nc+ bρj/Nc,

Q(ρ) :=
∑
j

ρ2
j ,

and where aρ = {aρ1, . . . , aρk}.
In view of (3.8) we define a relation on Z. Let N be a fixed positive

integer. For x, y ∈ Z we define x ∼N y if either x ≡ y (mod N) or x ≡ −y
(mod N). This is an equivalence relation. If x ∼N y then

(3.12) θx;N = θy;N ,

by (3.8). This equivalence relation extends naturally to certain sets of
integers. We consider finite sets of integers whose elements are inequivalent
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mod ∼N . For any two such sets of integers ρ and σ we define ρ ∼N σ if
each element ρ of ρ is equivalent to some element σ of σ modulo ∼N and
vice versa. For example,

{3, 9, 12, 15, 18, 21, 39, 45, 48, 51} ∼40 {1, 3, 5, 8, 9, 11, 12, 15, 18, 19}

The analogue of (3.12) holds for theta products. Thus, if ρ ∼N σ then

(3.13) θρ;N = θσ;N ,

There is a group action of Z×N on equivalence classes ρ. For (a,N) = 1,
we define aρ in the natural way by

(3.14) aρ = {aρ : ρ ∈ ρ}.

Since (a,N) = 1, the aρ are distinct modulo ∼N . In later sections we will
need to compute the orbit of certain sets ρ.

3.3. Orders at cusps. We will need the following lemmas

Lemma 3.1, [7]. If (r, s) = 1, then the fan width of Γ0(N) at r
s is

(3.15) κ
(

Γ0(N);
r

s

)
=

N

(N, s2)
.

Lemma 3.2, [9]. Let SN be the set of integer pairs (c, a) satisfying
(0) (1, 0) ∈ SN ;
(1) c > 1, c | N , 1 ≤ a < c, gcd(c, a) = 1, and;
(2) If (c, a), (c, a′) ∈ SN and a′ ≡ a (mod gcd(c,N/c)), then a = a′.

Then the set
{a
c

: (c, a) ∈ SN}

is a complete set of inequivalent cusps for Γ0(N).

We will need results on the orders at cusps of eta-products and theta-
functions. Newman [14] has found necessary and sufficient conditions under
which an eta-product is a modular function on Γ0(N). Ligozat [12] has
computed the order of a general eta-product at the cusps of Γ0(N). We
need the behavior of the modular form η(Nτ) near each cusp of Γ0(N).
The following result follows from [9, Lemma 3.5].

Lemma 3.4, [12]. The order at the cusp s = b
c (assuming (b, c) = 1) of the

eta function η(Nτ) is

(3.16) ord (η(Nτ); s) =
c2

24N
.
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Biagoli [7] has computed the order of the theta function θρ;N at any
cusp.

Lemma 3.5, [7, Lemma 3.2, p.285]. The order at the cusp s = b
c (assuming

(b, c) = 1) of the theta function θρ;N (τ) (defined above and assuming ρ - N)
is

(3.17) ord (θρ;N (τ); s) =
e2

2N

(
bρ

e
−
⌊
bρ

e

⌋
− 1

2

)2

,

where e = (N, c) and b c is the greatest integer function.

4. Proof of a shifted partition identity with M = 40

There are two shifted partition identities with modulus M = 40 and
a = 1. The first one is the identity (1.1) found by Andrews. We found the
second one via a computer search. Let

S = {n : ±1,±3,±4,±5,±6,±7,±13,±15,±16,±17,(4.1)

± 18,±19 (mod 40)},
T = {n : ±1,±2,±3,±5,±9,±11,±12,±15,±16,±17,

± 18,±19 (mod 40)}.

Then
p(S, n) = p(T, n− 1),

for all n ≥ 1. In this section we prove (4.1) in detail. We show how this
identity is equivalent to other shifted partition identities and how it leads to
a shiftless partition identity (1.5). The proofs of our other shifted partition
identities are analogous. Some of the details are given in the next section.

We identify S with the set of “positive” residue classes mod 40:

S ↔ ρ1 := {1, 3, 4, 5, 6, 7, 13, 15, 16, 17, 18, 19},

and T with another set of “positive” residue class mod 40:

T ↔ σ1 := {1, 2, 3, 5, 9, 11, 12, 15, 16, 17, 18, 19}.

From (3.4), (3.7), we have∑
n≥0

p(S, n)qn =
η12(40τ)
θρ1;40(τ)

,

and

q
∑
n≥0

p(T, n)qn =
η12(40τ)
θσ1;40(τ)

.
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Hence, our shifted partition identity is equivalent to showing that

(4.2)
(

1
θρ1;40(τ)

− 1
θσ1;40(τ)

)
η12(40τ) = 1.

In view of (3.11) we calculate the set of theta functions θaρ1;40 for
(a, 40) = 1. This reduces to calculating the orbit of the equivalence class
ρ1 modulo ∼40 under multiplication by the group Z×40. A calculation shows
that this orbit is

{ρ1,ρ3,ρ7,ρ9},
where

ρ3 := {1, 3, 5, 8, 9, 11, 12, 14, 15, 17, 18, 19} ∼40 3ρ1,

ρ7 := {1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 15, 19} ∼40 7ρ1,

ρ9 := {2, 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17} ∼40 9ρ1.

We may extend the definition of ρj to all j ∈ Z×40, by

ρm = ρ−m, ρm+20 = ρm.

In this way, we find that
aρj ∼40 ρaj ,

for all a, j ∈ Z×40. Similarly, we find that the orbit of the equivalence class
σ1 modulo ∼40 under multiplication by the group Z×40 is

{σ1,σ3,σ7,σ9},

where

σ3 := {3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 17} ∼40 3σ1,

σ7 := {1, 3, 4, 5, 6, 7, 8, 13, 14, 15, 17, 19} ∼40 7σ1,

σ9 := {1, 2, 5, 7, 9, 11, 12, 13, 15, 16, 18, 19} ∼40 9σ1,

and we may extend the definition of σj in analogous way so that

aσj ∼40 σaj ,

for all a, j ∈ Z×40.
We calculate θρ;40(Aτ), for A ∈ Γ0(40), and ρ = ρj , σj . A calculation

shows that

(4.3) Q(ρj) ≡ Q(σj) ≡ 0 (mod 80),

(4.4) L(ρj) ≡ L(σj) ≡ 0 (mod 2),

and

(4.5) M(ρj , x) ≡M(σj , x) (mod 2),
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for j = 1, 3, 7 and 9 and (x, 10) = 1. Assuming (x, 10) = 1,

(4.6) M(ρ1, x) ≡ 1 (mod 2),

if and only if x ≡ ±3 (mod 20);

(4.7) M(ρ3, x) ≡ 1 (mod 2),

if and only if x 6≡ ±1 (mod 20);

(4.8) M(ρ7, x) ≡ 1 (mod 2),

if and only if x ≡ ±9 (mod 20); and

(4.9) M(ρ9, x) ≡ 1 (mod 2),

if and only if x ≡ ±7 (mod 20).
We define four functions:

f1(τ) :=
(

1
θρ1

(τ)
− 1
θσ1(τ)

)
η12(40τ),(4.10)

f3(τ) :=
(

1
θσ3(τ)

− 1
θρ3

(τ)

)
η12(40τ),(4.11)

f7(τ) :=
(

1
θρ7

(τ)
− 1
θσ7(τ)

)
η12(40τ),(4.12)

f9(τ) :=
(

1
θρ9

(τ)
− 1
θσ9(τ)

)
η12(40τ).(4.13)

We note that {f1, f3, f7, f9} is the orbit of f1 by the group Γ0(40). We
have

Theorem 4.1. For A =
(
a b
c d

)
∈ Γ0(40),

(4.14) fk(Aτ) = fak(τ),

where ±ak is reduced (mod 20).

Proof. The functions f3, f7, and f9 are obtained by applying a modular
transformation to f1. In fact, from (3.6), (3.10), (3.11) and (4.3)–(4.6) we
have

(4.15) f1 |A = fa,

for A =
(
a b
c d

)
∈ Γ0(40). In the subscript of fa we have reduced ±a

(mod 20). For k ∈ {1, 3, 7, 9}, choose a fixed matrix Ak = ( k ∗∗ ∗ ) ∈ Γ0(40),
so that

fk = f1 |Ak.
For any A =

(
a b
c d

)
∈ Γ0(40), and k ∈ {1, 3, 7, 9},

fk |A = (f1 |Ak) |A
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= f1 | (AkA)
= fak,

since AkA ≡ ( ak ∗∗ ∗ ) (mod 40). �

It is well-known that the theta functions θρ, θσ and the eta function
η12(40τ), are meromorphic at all cusps A∞, A ∈ Γ(1). This together with
the above theorem gives the

Corollary 4.2. Any symmetric polynomial in f1, f3, f7, f9 is a modular
function of Γ0(40).

Now we are in a position to complete the proof of our shifted partition
identity (4.1). This identity is equivalent to showing that

(4.16) f1 ≡ 1.

We define F (τ) by

(4.17) F := (f1 − 1)(f3 − 1)(f7 − 1)(f9 − 1).

Our result is equivalent to showing that F ≡ 0. Clearly, if (4.16) holds,
then F ≡ 0. Conversely, if F ≡ 0, then fj ≡ 0, for some j. But Γ0(40) acts
transitively on the {fk}, and so

(4.18) f1 = f3 = f7 = f9 ≡ 1.

Let F be a fundamental set for Γ0(40). By the valence formula (3.3), either
F ≡ 0 or

(4.19)
∑
s∈F

Ord (F ; s; Γ0(40)) = 0.

A set of inequivalent cusps for Γ0(40) is

(4.20)
{

0
1
,

1
40
,

1
20
,

1
10
,

1
8
,

1
5
,

1
4
,

1
2
.

}
From the definition of the fj we find that

ord (fj ; s) ≥ min {−ord (θρ1
; s),−ord (θσ1 ; s)}+ 12 ord (η(40τ), s).

Using (3.1), (3.15), (3.16) and (3.17) this gives lower bounds for Ord (fj ; s;
Γ0(40)) at each cusp s of Γ0(40), and j = 1, 3, 7, 9. We denote this lower
bound by `(j, s). We have

(4.21) Ord (fj ; s; Γ0(40)) ≥ `(j, s),
where

`(j, 0) = −1, for all j,

`(7, 1/40) = −2,
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`(1, 1/20) = −1

and
`(j, s) = 0,

for all other (j, s). Since F has no poles in the complex upper half plane,
we have ∑

s 6=i∞

Ord (F ; s; Γ0(40)) ≥ −5.

We only need calculate the first couple of terms in the q-expansion of each
fj . The lowest power in the q-expansion gives the order at the cusp i∞,
which is equivalent to 1/40 mod Γ0(40). Now,

f1 =
1

(1− q)(1− q3) · · ·
− q 1

(1− q)(1− q2) · · ·
= 1 +O(q3),

f3 =
1

(1− q3) · · ·
− q3 1

(1− q) · · ·
= 1 +O(q4),

f7 =
1

q2(1− q)(1− q2) · · ·
− 1
q2(1− q)(1− q3) · · ·

= O(1),

and

f9 =
1

(1− q2)(1− q3) · · ·
− q2 1

(1− q)(1− q2) · · ·
= 1 +O(q3).

Hence,
Ord (F, i∞,Γ0(40)) ≥ 3 + 4 + 0 + 3 = 10,

and ∑
s∈F

Ord (F ; s; Γ0(40)) ≥ 5.

Hence,
F ≡ 0,

and our result follows.
We see that our shifted partition identity (4.1) is equivalent to the four

identities given in (4.18). We collect these together into the following

Theorem 4.2
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(i) Let S ≡ ±{1, 3, 4, 5, 6, 7, 13, 15, 16, 17, 18, 19} (mod 40), and
T ≡ ±{1, 2, 3, 5, 9, 11, 12, 15, 16, 17, 18, 19} (mod 40). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(ii) Let S ≡ ±{3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 17} (mod 40), and
T ≡ ±{1, 3, 5, 8, 9, 11, 12, 14, 15, 17, 18, 19} (mod 40). Then
p(S, n) = p(T, n− 3), for all n 6= 0.

(iii) Let S ≡ ±{1, 2, 5, 6, 7, 8, 9, 11, 12, 13, 15, 19} (mod 40), and
T ≡ ±{1, 3, 4, 5, 6, 7, 8, 13, 14, 15, 17, 19} (mod 40). Then
p(S, n) = p(T, n), for all n 6= 2.

(iv) Let S ≡ ±{2, 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17} (mod 40), and
T ≡ ±{1, 2, 5, 7, 9, 11, 12, 13, 15, 16, 18, 19} (mod 40). Then
p(S, n) = p(T, n− 2), for all n 6= 0.

Part (i) is our shifted partition identity (4.1). Part (iii) is equivalent to
the identity

f7 ≡ 1,

and is our shiftless partition identity (1.5).

5. Other shifted and shiftless partition identities

In this section we present some other shifted and shiftless partition iden-
tities. Details of proofs of these and other identities we have found will be
presented in a later paper.

(i) Let S ≡ ±{1, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 19} (mod 42), and
T ≡ ±{1, 3, 4, 7, 8, 11, 12, 13, 15, 17, 19, 20} (mod 42). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(ii) Let S ≡ ±{1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 15, 17} (mod 42), and
T ≡ ±{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 17, 19} (mod 42). Then
p(S, n) = p(T, n), for all n 6= 8.

(iii) Let S ≡ ±{1, 3, 4, 5, 7, 13, 15, 16, 17, 18, 19, 22} (mod 46), and
T ≡ ±{1, 2, 3, 7, 11, 12, 15, 16, 17, 19, 20, 21} (mod 46). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(iv) Let S ≡ ±{1, 2, 3, 5, 6, 9, 10, 11, 13, 14, 17, 21} (mod 46), and
T ≡ ±{1, 2, 3, 5, 7, 8, 9, 11, 12, 15, 20, 21} (mod 46). Then
p(S, n) = p(T, n), for all n 6= 6.
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(v) Let S ≡ ±{1, 5, 6, 8, 9, 10, 11, 13, 15, 19, 20, 23} (mod 48), and
T ≡ ±{1, 4, 5, 7, 9, 10, 15, 17, 18, 19, 20, 23} (mod 48). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(vi) Let S ≡ ±{1, 2, 3, 4, 5, 6, 11, 13, 19, 20, 21, 23} (mod 48), and
T ≡ ±{1, 2, 3, 4, 5, 7, 8, 17, 18, 19, 21, 23} (mod 48). Then
p(S, n) = p(T, n), for all n 6= 6.

(vii) Let S ≡ ±{1, 3, 5, 7, 11, 12, 13, 20, 22, 23, 24, 25} (mod 54), and
T ≡ ±{1, 2, 5, 9, 11, 12, 17, 19, 22, 23, 24, 25} (mod 54). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(viii) Let S ≡ ±{1, 2, 3, 4, 5, 7, 9, 11, 16, 17, 24, 25} (mod 54), and
T ≡ ±{1, 2, 3, 4, 5, 7, 9, 12, 13, 20, 23, 25} (mod 54). Then
p(S, n) = p(T, n), for all n 6= 11.

(ix) Let S ≡ ±{1, 3, 4, 5, 7, 18, 21, 22, 23, 24, 25, 27} (mod 56), and
T ≡ ±{1, 2, 3, 7, 11, 17, 20, 21, 24, 25, 26, 27} (mod 56). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(x) Let S ≡ ±{1, 5, 7, 8, 10, 12, 13, 15, 18, 21, 23, 27} (mod 56), and
T ≡ ±{2, 3, 5, 7, 8, 13, 15, 20, 21, 22, 23, 25} (mod 56). Then
p(S, n) = p(T, n), for all n 6= 1.

(xi) Let S ≡ ±{1, 7, 8, 10, 11, 13, 14, 17, 19, 20, 23, 29} (mod 60), and
T ≡ ±{1, 6, 7, 9, 10, 13, 17, 20, 21, 23, 28, 29} (mod 60). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(xii) Let S ≡ ±{1, 2, 7, 10, 11, 13, 16, 17, 19, 20, 23, 29} (mod 60), and
T ≡ ±{1, 3, 4, 10, 11, 13, 17, 18, 19, 20, 27, 29} (mod 60). Then
p(S, n) = p(T, n), for all n 6= 2.

(xiii) Let S ≡ ±{1, 3, 5, 7, 8, 19, 21, 23, 25, 26, 28, 30} (mod 62), and
T ≡ ±{1, 2, 5, 7, 13, 18, 21, 23, 24, 27, 29, 30} (mod 62). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(xiv) Let S ≡ ±{1, 3, 5, 7, 9, 13, 15, 16, 21, 22, 24, 28} (mod 62), and
T ≡ ±{1, 3, 6, 7, 8, 10, 15, 19, 21, 23, 25, 28} (mod 62). Then
p(S, n) = p(T, n), for all n 6= 5.

(xv) Let S ≡ ±{1, 10, 11, 12, 13, 14, 15, 16, 19, 21, 23, 25} (mod 66), and
T ≡ ±{1, 9, 10, 11, 12, 13, 14, 15, 25, 29, 31, 32} (mod 66). Then
p(S, n) = p(T, n− 1), for all n 6= 0.
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(xvi) Let S ≡ ±{1, 4, 5, 6, 7, 9, 11, 13, 16, 21, 23, 28} (mod 66), and
T ≡ ±{1, 4, 5, 6, 7, 9, 11, 14, 16, 17, 27, 29} (mod 66). Then
p(S, n) = p(T, n), for all n 6= 13.

(xvii) Let S ≡ ±{1, 3, 4, 5, 6, 7, 9, 11, 13, 14, 15, 16, 17, 19, 23, 24, 25,
26, 27, 28, 29, 31, 33, 34} (mod 70), and
T ≡ ±{1, 2, 3, 5, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25,
27, 28, 29, 31, 32, 33} (mod 70). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(xix) Let S ≡ ±{1, 3, 5, 7, 8, 26, 28, 29, 30, 31, 33, 35} (mod 72), and
T ≡ ±{1, 2, 5, 7, 13, 23, 28, 29, 31, 32, 34, 35} (mod 72). Then
p(S, n) = p(T, n− 1), for all n 6= 0.

(xx) Let S ≡ ±{1, 4, 5, 6, 11, 14, 15, 21, 25, 31, 32, 35} (mod 72), and
T ≡ ±{1, 4, 5, 7, 10, 11, 16, 25, 26, 29, 31, 35} (mod 72). Then
p(S, n) = p(T, n), for all n 6= 6.

(xxi) Let S ≡ ±{1, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 23, 25,
27, 29, 31, 32, 33, 34, 35} (mod 72), and
T ≡ ±{1, 2, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26,
27, 29, 31, 32, 35} (mod 72). Then
p(S, n) = p(T, n− 1), for all n 6= 0.
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