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Abstract. The q-binomial coefficient is a polynomial in q. Given an integer t and

a residue class r modulo t, a sieved q-binomial coefficient is the sum of those terms

whose exponents are congruent to r modulo t. In this paper explicit polynomial
identities in qt are given for sieved q-binomial coefficients. As a limiting case, gener-

ating functions for the sieved partition function are found as multidimensional theta
functions. A striking corollary of this representation is the proof of Ramanujan’s

congruences mod 5, 7, and 11 by exhibiting symmetry groups of orders 5, 7, and 11

of explicit quadratic forms. We also verify the Subbarao conjecture for t = 3, t = 5,
and t = 10.

1. Introduction.
The q-binomial coefficient

(1.1)
[
N
k

]
q

=
(1− qN ) · · · (1− qN−k+1)

(1− q) · · · (1− qk)
=
∑
i≥0

aiq
i

is a polynomial in q with integer coefficients. In this paper we shall consider the
following families of polynomials formed from (1.1). Let t be a positive integer and
consider the terms in (1.1) with residue class r modulo t:

(1.2)
∑
i≥0

ati+rq
ti+r.

We refer to (1.2) as a sieved q-binomial coefficient. We give explicit formulas
(Theorems 1 and 2 of §2) for the sieved q-binomial coefficient as polynomials in
qt. Some limiting cases (Theorems 3A, 3B and 3C of §3) are expressions for sieved
partition functions as multidimensional theta functions. In §4 the symmetry groups
of the quadratic form of the theta function are computed. Applications of these
groups to congruences for the partition function are given in §5.

To set the notation and explain the method, we shall now do the t = 2 case. For
an integer N and complex numbers a and q, |q| < 1 let

(a; q)N =
N−1∏
i=0

(1− aqi).
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We shall also allow N =∞ and note that the generating function for all partitions
of i, p(i), is

∞∑
i=0

p(i)qi = (q; q)−1
∞ = (q)−1

∞ .

We next let t = 2 and r = 0, so that we want the even terms in the q-binomial
coefficient. Recall the terminating q-binomial theorem

(1.3) (−x; q)N =
N∑
k=0

[
N
k

]
q

q(
k
2)xk.

Suppose N is even. Since

(1.4) (−x; q)N + (−x;−q)N = (−x; q2)N/2{(−xq; q2)N/2 + (xq; q2)N/2},

(1.3) clearly implies

(1.5)
[
N
k

]
q

q(
k
2) +

[
N
k

]
−q

(−q)(
k
2) = 2

k/2∑
m=0

[
N/2
2m

]
q2

[
N/2

k − 2m

]
q2

q4m2+2(k−2m
2 ).

We obtain the following proposition.

Proposition 1. If N is even, then

k/2∑
m=0

[
N/2
2m

]
q2

[
N/2

k − 2m

]
q2

q4m2+2(k−2m
2 )−(k2) =


∑
i

a2iq
2i for k ≡ 0 or 1 mod 4∑

i

a2i+1q
2i+1 for k ≡ 2 or 3 mod 4.

The corresponding cases for the difference in (1.4) are the following.

Proposition 2. If N is even, then

k/2∑
m=0

[
N/2

2m+ 1

]
q2

[
N/2

k − 2m− 1

]
q2

q(2m+1)2+2(k−2m−1
2 )−(k2) =

∑
i

a2iq
2i for k ≡ 2 or 3 mod 4∑

i

a2i+1q
2i+1 for k ≡ 0 or 1 mod 4.

Propositions 1 and 2 are evaluations of special well-poised 4φ3’s in the theory of
basic hypergeometric series. It is easy to give the relevant versions of Propositions
1 and 2 for N odd, but we do not do so here.

2. Sieved q-binomial coefficients.
In this section we follow the outline of §1 for a general t, and find an expression

for the sieved q-binomial coefficients (1.2). We must replace the −q in (1.4) by a
sum over all t th roots of unity, so let ω = exp(2πi/t). It is clear from (1.3) that

(2.1)
t−1∑
i=0

(−x;ωiq)N =
N∑
k=0

t−1∑
i=0

[
N
k

]
ωiq

(ωiq)(
k
2)xk.
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If N is a multiple of t, it is easy to see that

(2.2)
t−1∑
i=0

(−x;ωiq)N = (−x; qt)N/t
t−1∑
i=0

t−1∏
k=1

(−xωkiqk; qt)N/t

The coefficient of xk in (2.2) yields

t−1∑
i=0

[
N
k

]
ωiq

(ωiq)(
k
2) =

∑
n1,...,nt

t∏
i=1

[
N/t
ni

]
qt

t−1∑
p=0

θp

where
θ = ω

∑t
i=2(i−1)ni .

The result is the following theorem. Note that the residue class chosen from the
q-binomial coefficient depends upon the value of

(
k
2

)
mod t.

Theorem 1. Let N be a multiple of t, and
(
k
2

)
≡ t− r mod t, 1 ≤ r ≤ t. If ai is

the coefficient of qi in the q-binomial coefficient
[
N
k

]
q

, then

∞∑
i=0

ati+rq
ti+r =

∑
n1,...,nt

t∏
i=1

[
N/t
ni

]
qt
qt(
∑t
i=1 (ni2 )+m)−(k2),

where the summation parameters satisfy n1 + · · ·+nt = k and n2 + 2n3 + · · ·+ (t−
1)nt = tm, for some integer m.

The residue class r in Theorem 1 is determined by k and t. For a given N ,k, and
t, one would like a version for any residue class r. This can be done by inserting
the appropriate roots of unity in the left side of (2.1). We give such a version for
k ≡ 0 mod 2t.

Theorem 2. Let N be a multiple of t, k be a multiple of 2t, and 1 ≤ r ≤ t− 1. If

ai is the coefficient of qi in the q-binomial coefficient
[
N
k

]
q

, then

∞∑
i=0

atiq
ti+t−r =

∑
n1,...,nt

t∏
i=1

[
N/t
ni

]
qt
qt(
∑t
i=1 (ni2 )+m)−(k2),

where the summation parameters satisfy n1 + · · ·+nt = k and n2 + 2n3 + · · ·+ (t−
1)nt = tm+ r, for some integer m.

3. Sieved partition functions.
Theorems 1 and 2 are polynomial identities which imply generating functions for

sieved partition functions. In this section we take the appropriate limits to obtain
these identities: Theorems 3A, 3B, and 3C.

To see this, recall that the q-binomial coefficient (1.1) is the generating function
for partitions which lie inside a k × (N − k) rectangle. If N → ∞, we obtain all
partitions with at most k parts. Next if k → ∞, we find all partitions. We will
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apply this sequence of limits to Theorems 1 and 2 for our results on the sieved
partition function.

First we take the t = 2 case to demonstrate the technique. Let k ≡ 0 mod 4 in
Proposition 1. If N →∞, we find that the right side becomes

k/2∑
m=0

q8m2−4km+2m+k2/2−k/2

(q2; q2)2m(q2; q2)k−2m
.

The exponent of q is a quadratic polynomial in m whose minimum occurs at m =
k/4 − 1/8, 2(m − k/4) + 8(m − k/4)2. Thus replacing m by m + k/4 and letting
k →∞, we find

(3.1)
∞∑
i=0

p(2i)qi =
1

(q)2
∞

∞∑
m=−∞

q4m2+m.

For k ≡ 2 mod 4, Proposition 1 implies

(3.2)
∞∑
i=0

p(2i+ 1)qi =
1

(q)2
∞

∞∑
m=−∞

q4m2−3m.

We do the same sequence of steps for Theorems 1 and 2, which are t−1 fold sums-
the summation parameters being m,n3, . . . , nt. The N →∞ limit of both theorems
is easily computed by replacing the q-binomial coefficients by a single product in
the denominator. For the k → ∞ limit, one must again find the minimum value
of the quadratic function of m,n3, . . . , nt in the exponent of q, and then shift the
domain of these summation parameters so that the minimum occurs at the origin.
For Theorem 2, it can be shown that a minimum value occurs at m = (t− 1)k/2t,
ni = k/t, i 6= r + 2, . . . , nr+2 = k/t− 1, or at m = (t− 1)k/2t, ni = k/t, i 6= r + 1,
. . . , nr+2 = k/t− 1. Explicitly computing the Taylor series of the exponent of q at
these values, shifting the parameters, and taking the limit on k gives the following
two theorems.

Theorem 3A. Let 1 ≤ r ≤ t− 2. Then

∞∑
n=0

p(tn+ t− r)qn =
1

(q)t∞

∞∑
m,n3,...,nt=−∞

qQ(m,n3,...,nt)+LA(m,n3,...,nt),

where

Q(m,n3, . . . , nt) = t2m2+
t∑
i=3

(i2−3i+3)n2
i+

t∑
i=3

(3−2i)tmni+
∑

3≤i<j≤t

(2ij−3i−3j+5)ninj ,

LA(m,n3, . . . , nt) =
t∑

i=3,i 6=r+2

(1− i)ni + (−r − 2)nr+2 + (1 + t)m.
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Theorem 3B. Let 2 ≤ r ≤ t− 1. Then

∞∑
n=0

p(tn+ t− r)qn =
1

(q)t∞

∞∑
m,n3,...,nt=−∞

qQ(m,n3,...,nt)+LB(m,n3,...,nt),

where Q(m,n3, . . . , nt) is given in Theorem 3A, and

LB(m,n3, . . . , nt) =
t∑

i=3,i 6=r+1

(i− 2)ni + (r − 2)nr+1 + (1− t)m.

Note that for different r, the right sides of Theorems 3A (3B) differ only in the
special linear term related to r. A linear change of variables shows that Theorems
3A and 3B are equivalent where they overlap, 2 ≤ r ≤ t− 2.

The result which follows from Theorem 1 for r = 0 is

Theorem 3C. We have

∞∑
n=0

p(tn)qn =
1

(q)t∞

∞∑
m,n3,...,nt=−∞

qQ(m,n3,...,nt)+LC(m,n3,...,nt),

where Q(m,n3, . . . , nt) is given in Theorem 3A, and LC(m,n3, . . . , nt) = m.

We note that Kolberg [5] has also obtained representations for the generating
functions for p(tn + r). His representations are in terms of t × t determinants of
theta-functions and are different from our results. For the cases t = 2, 3, 5, 7 his
determinants simplify to nice linear combinations of certain infinite products. For
example, Kolberg’s [5, (3.1)] is
(3.3)
∞∑
n=0

p(3n)qn =
(q3; q3)∞(q9; q9)2

∞(q4; q9)2
∞(q5; q9)2

∞
(q)4
∞

− q (q9; q9)2
∞

(q)3
∞(q4; q9)∞(q5; q9)∞

.

We can find similar identities by diagonalizing the quadratic form Q and applying
the Jacobi triple product identity [1, p.21]. For example, let t = 3 in Theorem 3C

∞∑
n=0

p(3n)qn =
1

(q)3
∞

∞∑
m,s=−∞

q3s2+m−9ms+9m2
.

There are several ways to diagonalize this form. One is to note that Q(m + s, 2s)
and Q(m+ s, 2s+ 1) are diagonal, and we find the following evaluation.

∞∑
n=0

p(3n)qn =
(q18; q18)∞(q6; q6)∞

(q)3
∞

{
(−q7; q18)∞(−q11; q18)∞(−q3; q6)2

∞

+ 2q2(−q2; q18)∞(−q16; q18)∞(−q6; q6)2
∞
}

(3.4)

There are also versions of (3.4) for 3n+ 1 and 3n+ 2. Equating the right sides
of (3.3) and (3.4) gives rise to a surprising theta-function identity.
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4. Symmetry groups.
It is natural to ask if Theorems 3A, 3B, or 3C imply congruences for the partition

function p(n); for example the Ramanujan congruences for p(5n + 4), p(7n + 5),
and p(11n+ 6). In this section we find the symmetry groups for Theorems 3A-3C
which will imply congruence theorems in §5.

How would Ramanujan’s congruences follow from Theorems 3A and 3B? We take
as an example p(5n+ 4) ≡ 0 mod 5. Consider Q(m,n3, n4, n5) +LA(m,n3, n4, n5)
from Theorem 3A with t = 5 and r = 1. Suppose there exists an affine transforma-
tion T : Z4 → Z

4, Tx = Mx+ τ , such that
(1) T 5 = identity,
(2) T has no fixed points in Z4,
(3) T preserves the form Q+ LA.

Then each orbit of T on the vectors (m,n3, n4, n5) must consist of five vectors. This
clearly implies Ramanujan’s congruence.

Thus we should compute the symmetry group G of the form Q+LA, and see if
G contains a cycle of order five with property (2). For any of the forms in Theorems
3A, 3B, and 3C, we define G to be the set of affine transformations which preserve
the form and the lattice Zt−1. Table 1 lists these groups. We let Zn denote the
cyclic group of order n, and Dn denote the dihedral group of order 2n.

3n Z2 4n Z2 5n D6 6n Z2 7n D8

3n+1 Z2 4n+1 Z2 5n+1 D4 6n+1 Z2 7n+1 D6

3n+2 Z2 4n+2 Z2 5n+2 D4 6n+2 Z2 7n+2 D8

4n+3 Z2 5n+3 D6 6n+3 Z2 7n+3 D6

5n+4 D5 6n+4 Z2 7n+4 D6

6n+5 Z2 7n+5 D7

7n+6 D8

Table 1

The groups in Table 1 were found in the following way. Let L be the linear
form LA, LB, or LC for Theorems 3A, 3B, and 3C respectively. Any element of G
must permute the set of vectors {(m,n3, . . . , nt)} on which Q+ L is constant. Let
the Q + L = 0 term correspond to a set V with p(r) such vectors, including the
zero vector. (The five vectors for p(5n+ 4) are given in §5.) If V contains at least
t − 1 independent vectors, then any permutation of V induces at most one affine
transformation of Zt−1, which may or may not preserve Q+L. For small values of
t the permutations can be checked by hand; large values of t require a computer.

The following proposition is in agreement with Table 1.

Proposition 3. For any r and t, the symmetry group of the forms Q+LA, Q+LB,
or Q+ LC contains Z2.

Proof. Let x denote the column vector (m,n3, . . . , nt), and let L be a linear form
on x. Let m(Q) be the symmetric matrix such that Qx = transpose(x)m(Q)x. It
is easy to verify that Tx = Mx + τ has order two, and preserves Q + L and the
lattice Zt−1 if, and only if,

(1) M2 = I,
(2) M and τ have integral entries,
(3) Mτ = −τ ,
(4) M preserves Q, QMx = Qx,
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(5) transpose(τ) = (LM − L)(2m(Q))−1.
We now give the (t − 1) × (t − 1) matrix M and the vector τ . The matrix

(2m(Q))−1 can be found explicitly, so that the verifications of (1)-(5) are tedious.
M is independent of the residue class r. The only non-zero entries in rows 2 through
t− 3 are the -1’s at (i, t− 1− i).

M =



1 0 0 · · · 0 0 0
0 0 0 · · · −1 0 0
...

...
... . . .

...
...

...
0 0 −1 · · · 0 0 0
0 −1 0 · · · 0 0 0
−t 2 3 · · · t− 3 t− 2 t− 1
t −1 −2 · · · −(t− 4) −(t− 3) −(t− 2)


The vector τ does depend upon the residue class r and the form L. For r = 0

and L = LC, it is easy to see that τ = 0. For Theorem 3B, τ has at most three
non-zero entries:

(1) if 2 ≤ r ≤ t − 3 and 2r + 1 6= t, the non-zero entries are τr = τt−1−r = 1
and τt−1 = −1,

(2) if 2r + 1 = t, the non-zero entries are τr = 2 and τt−1 = −1,
(3) if r = t− 2, the non-zero entries are τt−2 = 1 and τt−1 = −1,
(4) if r = t− 1, then τ = 0.

The final residue class is r = 1 in Theorem 3A. In this case the non-zero entries are
τ2 = 1, τt−3 = 1, and τt−2 = −1. �

5. Congruences.
The groups listed in §4 can be used to derive congruence theorems. We do so

in this section, proving the Ramanujan congruences and verifying the Subbarao
conjecture for t = 3 and t = 5. The basic idea is that elements of G of order k
should give us information about p(tn + r) mod k. This information is given in
the next proposition.

Proposition 4. Let g ∈ G have order pa, for some prime p. If FP is the fixed
point set of g in Zt−1, then

∞∑
n=0

p(tn+ r)qn ≡ 1
(q)t∞

∑
(m,n3,...,nt)∈FP

qQ(m,n3,...,nt)+LA(m,n3,...,nt) mod p.

For the first application of Proposition 4 and Table 1 we take p(5n + 4) ≡ 0
mod 5. Table 1 shows that the symmetry group for 5n + 4 contains an element g
of order five. Thus we need FP (g) = ∅.

Here is the explicit construction of g = T . The five vectors which correspond
to p(4) in Theorem 3A are (−1, 1,−1,−1), (0, 1, 1,−1), (0, 2,−1, 0), (0, 0, 0, 0), and
(0, 1, 0, 0). We then take the unique affine transformation which cycles these five
vectors in this order; it is Tx = Mx+ τ , where the matrix M and the vector τ are

M =


4 −1 −2 −3
−1 0 1 0

2 −1 −2 −2
5 −1 −2 −3

 , τ =


0
1
0
0

 .
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It is easy to verify that T has no fixed points in Z4.
The transformation T satisfies another nice property,

(5.1) x+ Tx+ T 2x+ T 3x+ T 4x = (−1, 5,−1, 2).

Clearly (5.1) implies that we could insert −5m, n3,−5n4, or −5n5/2 on the right
side of Theorem 3A, which directly proves Ramanujan’s congruence.

Corollary 1. We have

∞∑
n=0

p(5n+ 4)qn =
−5

(q)5
∞

∞∑
m,n3,n4,n5=−∞

mqQ(m,n3,n4,n5)+LA(m,n3,n4,n5),

where Q and LA are given in Theorem 3A.

The proofs for p(7n + 5) and p(11n + 6) are similar. Note that corresponding
dihedral groups contain a seven cycle and an eleven cycle. The corresponding affine
transformations again have no fixed points. The analogues of the right side of (5.1)
are (−2, 1, 7,−1,−2,−3) and (−5, 3, 2, 1, 0, 10,−2,−3,−4,−5), so we obtain the
next two corollaries.

Corollary 2. We have

∞∑
n=0

p(7n+ 5)qn =
7

(q)7
∞

∞∑
m,n3,...,n7=−∞

n3q
Q(m,n3,...,n7)+LA(m,n3,...,n7),

where Q and LA are given in Theorem 3A.

Corollary 3. We have

∞∑
n=0

p(11n+ 6)qn =
11

(q)11
∞

∞∑
m,n3,...,n11=−∞

n5q
Q(m,n3,...,n11)+LA(m,n3,...,n11),

where Q and LA are given in Theorem 3A.

The next application is to consider the mod 2 behavior of p(tn + r). We take
the element g of order two in the proof of Proposition 3, for which it can be shown
that dimension(FP (g)) = bt/2c. Thus, from Proposition 4, the generating function
for p(tn+ r) mod 2 is a bt/2c-fold sum.

For t = 3 the sets FP (g) are

FP (g) =


{(2m, 3m) : m ∈ Z} for r = 0,

{(2m, 3m) : m ∈ Z} for r = 1,

{(m, 3m− 1) : m ∈ Z} for r = 2.

An explicit computation of the form and the Jacobi triple product identity give the
next proposition.



SIEVED PARTITION FUNCTIONS AND Q-BINOMIAL COEFFICIENTS 9

Proposition 5. We have

∞∑
n=0

p(3n+ 2)qn ≡ 1
(q)3
∞

∞∑
m=−∞

q9m2−8m+1 ≡ q(q18; q18)∞(−q; q18)∞(−q17; q18)∞
(q)3
∞

mod 2,

∞∑
n=0

p(3n+ 1)qn ≡ 1
(q)3
∞

∞∑
m=−∞

q9m2−4m ≡ (q18; q18)∞(−q5; q18)∞(−q13; q18)∞
(q)3
∞

mod 2,

∞∑
n=0

p(3n)qn ≡ 1
(q)3
∞

∞∑
m=−∞

q9m2+2m ≡ (q18; q18)∞(−q7; q18)∞(−q11; q18)∞
(q)3
∞

mod 2.

For t = 4 or t = 5 the set FP (g) is two-dimensional, and cannot be evaluated by
the Jacobi triple product identity. However, there are other available involutions
in the appropriate dihedral group for t = 5. One may hope that for each residue
class r, there is at least one involution g such that dimension(FP (g)) = 1. This is
true for t = 5, r 6= 4, and we obtain product identities analogous to Proposition
5. For p(5n + 4), each of the five involutions has a two-dimensional fixed point
set. However, the generating function for FP of one these involutions is obviously
diagonalizable to give the mod 2 version of Ramanujan’s generating function for
p(5n+ 4).

We next use these identities and Proposition 5 to verify the following conjecture
for t = 3 and t = 5. A variant of this conjecture is given in [7, p. 854, §5]. Its
history is given in §6.

Subbarao’s Conjecture. For 0 ≤ r ≤ t − 1, p(tn + r) is infinitely often even,
and infinitely often odd.

Theorem 4. Subbarao’s conjecture holds for t = 3 and t = 5.

Before proving Theorem 4, we give a technical lemma for establishing Subbarao’s
Conjecture.

Lemma 1. Let 0 ≤ r ≤ t − 1, and let Q1(n) (Q2(y)) be non-negative quadratic
functions in one (several) variable(s), with Q1(n) strictly increasing. Suppose

∞∑
n=0

qQ1(n)
∞∑
n=0

p(tn+ r)qn ≡
∑
y

qQ2(y) mod 2.

If there exists an integer s, an odd integer j, and an integer 0 ≤ i ≤ j− 1 such that
(1) the equation Q2(y) = Q1(jm+ i) + s has no integral solutions y,
(2) p(st+ r) ≡ 1 mod 2,

then Subbarao’s Conjecture holds for r and t.

Proof. If we find the coefficient of qM we see that

∞∑
n=0

p(t(M −Q1(n)) + r) ≡ |{y : Q2(y) = M}| mod 2.

Next let M = Q1(k)+s, and assume that p(tn+r) mod 2 is eventually the constant
c. Then for large values of k,

p(ts+ r) + kc ≡ |{y : Q2(y) = Q1(k) + s}| mod 2.
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By (1), there is no solution y for the right side if k ≡ i mod j, so p(ts+r)+kc ≡ 0
mod 2. If c = 0, this contradicts (2); if c = 1, then (2) implies k must be odd.
However we can take k to be even, by taking k = 2mj + i for i even, or taking
k = 2mj + j + i for i odd. �

Proof of Theorem 4. Here is an outline of our proof. We will use Propositions 4
and 5 for the generating function identity assumed in Lemma 1. Then we must
find an odd residue class which is missed by the quadratic function function on the
right side, and hit by the quadratic function on the left side. Hopefully this class
will yield a viable choice for s in (2).

For the generating functions, Proposition 4 implies

(5.2) (q)t∞
∞∑
n=0

p(tn+ r)qn ≡
∑

x∈FP (g)

q(Q+L)x mod 2,

for an appropriate form L. Thus we need to eliminate (q)t∞ to apply Lemma 1.
Jacobi’s identity will do this for t = 3 and t = 5,

(q)3
∞ =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2

≡
∞∑
n=0

qn(n+1)/2 mod 2.

For t = 5 we use

(q)5
∞ = (q)6

∞/(q)∞ ≡ (q2; q2)3
∞/(q)∞ mod 2

and the Euler Pentagonal Number Theorem [1, 1.3.1].
For t = 3 (5.2) becomes

(5.3)
∞∑
n=0

qn(n+1)/2
∞∑
n=0

p(3n+ r)qn ≡
∑

x∈FP (g)

q(Q+L)x mod 2

while the t = 5 version of (5.2) is

(5.4)
∞∑
n=0

qn(n+1)
∞∑
n=0

p(5n+ r)qn ≡
∞∑

n=−∞
qn(3n+1)/2

∑
x∈FP (g)

q(Q+L)x mod 2.

We now apply Lemma 1 with Q1(n) = n(n + 1)/2 and Q2(x) = (Q + L)(x) for
t = 3; and Q1(n) = n(n + 1) and Q2(x, n) = n(3n + 1)/2 + (Q + L)(x) for t = 5.
Here is the list of the appropriate values for s, j, and i, and the form Q + L in
Lemma 1.

(1) 3n: Q+ L = 9m2 + 2m, s = 0, i = 3, j = 5,
(2) 3n+ 1: Q+ L = 9m2 − 4m, s = 0, i = 1, j = 5,
(3) 3n+ 2: Q+ L = 9m2 − 8m+ 1, s = 1, i = 4, j = 5,
(4) 5n: Q+ L = 5m2 + 2m, s = 0, i = 6, j = 49,
(5) 5n+ 1: Q+ L = 10m2 + 4m, s = 1, i = 3, j = 49,
(6) 5n+ 2: Q+ L = 10m2 + 8m+ 1, s = 1, i = 0, j = 49,
(7) 5n+ 3: Q+ L = 5m2 + 4m, s = 2, i = 4, j = 49.

The remaining case is p(5n+ 4), which has been done by Kolberg [6]. �
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6. Remarks.
Ramanujan [3, p.288-289] gave elementary proofs of the congruences for p(5n+4)

and p(7n + 5), while Winquist [8] gave such a proof for p(11n + 6). Our proof is
also elementary, and extends to mod 2 results.

Unfortunately we are unable to give a geometric interpretation for the elements
in the symmetry group G. It would be very interesting to have some geometric
intuition for these elements, as opposed to our computational approach. For ex-
ample, one could hope for reasonable version of a fundamental domain for the five
cycle in 5n+ 4 which would give Ramanujan’s generating function [5, (4.21)]. Such
a fundamental domain, together with a bijection proving Theorems 3A, 3B, and
3C, may be related to the crank of Andrews and Garvan [2]. For 11n+ 6 the group
G is again the dihedral group of order 22. One may also hope for an interpretation
of Atkin’s congruence theorem [1, p.160].

The first proof of a result analogous to Subbarao’s conjecture is due to Kolberg
[6], who proved the t = 1 case. Kolberg and Subbarao did the t = 2 case (see
[7, p. 854], where Subbarao also mentions the t = 4 case). One can try to apply
Lemma 1 to prove the Subbarao Conjecture for values of t besides 3 or 5. For t = 4,
where the fixed point set is two dimensional, a slight variation of Lemma 1 gives
the Subbarao Conjecture for t = 16. Recently Hirschhorn and Subbarao [4] did this
case. We could not find appropriate residue classes for the three variable quadratic
functions which occur for t = 6. However, for t = 7, the eight cycle for r = 0, 2, or
6 (see Table 1) has a one dimensional fixed point set, and we find a one variable
quadratic function. Lemma 1, with modulus 169, gives the Subbarao conjecture
in these cases. In fact since Q1(n) is always divisible by 8, we also get the t = 56
case, when r ≡ 0, 2 or 6 mod 7. Similar reasoning shows that we can establish the
t = 10 case from our t = 5 theorem. Kolberg [6] has done the 7n+5 case. No other
cases are known.

Proposition 6. Subbarao’s conjecture holds for t = 10, and t = 56 and r ≡ 0, 2,
or 6 mod 7.

For t = 5 Kolberg gave the generating function for p(5n + r) as a sum of two
infinite products [5, (4.17)-(4.21)]. The mod 2 versions for 5n+1, 5n+2 and 5n+4
agree with our results. Note that 3 divides the order of the groups for 5n+ 2 and
5n+ 3. We could find a mod 3 result which agrees with Kolberg’s mod 3 versions
for 5n+ 2 and 5n+ 3.
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