
COMBINATORIAL INTERPRETATIONS OF

RAMANUJAN’S PARTITION CONGRUENCES

F. G. Garvan†

0. Introduction. This paper is mainly concerned with combinatorial aspects of
the following congruences due to Ramanujan:

p(5n+ 4) ≡ 0 (mod 5),(0.1)

p(7n+ 5) ≡ 0 (mod 7),(0.2)

p(11n+ 6) ≡ 0 (mod 11).(0.3)

In §1 we give a brief survey of Ramanujan’s partition congruences. In §2 we state
Dyson’s [13] combinatorial interpretations of (0.1) and (0.2) in terms of the rank.
See Dyson [14; II] for more background on the rank. Dyson conjectured the ex-
istence of what he called the crank which would explain (0.3) just as the rank
explains (0.1) and (0.2). In §3 we give such a crank. It is in terms of a weighted
count of what we call vector partitions. The results on vector partitions have been
taken from [16], [17]. In §4 we show how these results are related to identities from
Ramanujan’s ‘lost’ notebook, the work of Atkin and Swinnerton-Dyer [6] and the
mock theta conjectures mentioned by George Andrews in his talk.

Finally in §5 we prove some combinatorial results that are related to the crank
and rank differences. The day after this conference ended the true crank (given
in terms of ordinary partitions rather than vector partitions) was discovered by
George Andrews and myself. This result is announced.

1. Ramanujan’s partition congruences. The partition congruences modulo
5 and 7 namely (0.1) and (0.2) were proved by Ramanujan in [20]. In [21] he
proved (0.3) by a different method. These three congruences are special cases of
more general results. In 1919 Ramanujan conjectured that if α ≥ 1 and δt,α is the
reciprocal modulo tα of 24 then

p(5αn+ δ5,α) ≡ 0 (mod 5α),(1.1)

p(7αn+ δ7,α) ≡ 0 (mod 7α),(1.2)

p(11αn+ δ11,α) ≡ 0 (mod 11α).(1.3)

As noticed by Chowla [12] (1.2) fails for α = 3 since p(243) is divisible by 72 but
not by 73. The correct version is

(1.4) p(7αn+ δ7,α) ≡ 0 (mod 7[(α+2)/2]).
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(1.1) and (1.4) were proved by Watson [27] in 1938. (1.3) was finally proved by
Atkin [7] in 1967. Atkin [9] has also simplified Watson’s proofs of (1.1) and (1.4).
Elementary proofs of (1.1) and (1.4) have been given by Hirschhorn and Hunt [18]
and Garvan [15] respectively. Congruences analogous to (0.1) – (0.3) for other
primes have also been found. For example Atkin [8], [10] has found

p(594 · 13n+ 111247) ≡ 0 (mod 13),(1.5)

p(233 · 17n+ 2623) ≡ 0 (mod 17).(1.6)

There are further congruence results to be found in some of Ramanujan’s unpub-
lished manuscripts. As noted by Rushforth [23] and Rankin [22] Hardy extracted
[21] from an unpublished manuscript entitled “Properties of p(n) and τ(n) defined
by the equations

∞∑
n=0

p(n)xn =
1

(1− x)(1− x2)(1− x3) · · ·
,

∞∑
n=1

τ(n)xn = x{(1− x)(1− x2)(1− x3) · · · }24.”

Following Rankin we shall refer to this manuscript as MS. MS was sent to Hardy by
Ramanujan a few months before his death. Apart from Rankin’s and Rushforth’s
papers references to MS may be found in Birch [11] and Watson [25]. In MS
Ramanujan indicates that the case α = 2 of (1.3) can be proved in the same way
as in the case α = 1. The details are carried out by Rushforth in [23, §8]. MS also
contains congruences for p(n) in terms of generalizations of Ramanujan’s τ -function
modulo 13, 17 and 23. See Rushforth [23, §9]. The mod 13 case is closely related
to work of Zuckerman [29]. Rankin [22] notes MS contains some congruences for
p(n) other than those mentioned in Rushforth [23]. For example, it contains the
congruence

p(
11 · 13λ + 1

24
) + 2(5λ−3)/2 ≡ 0 (mod 13).

Results of this type were later discovered by Newman [19]. According to Rankin
[22] there is another unpublished manuscript, referred to by Birch [11] as Fragment
[VII] which is a sequel to MS. It contains amongst other things a sketch of a proof
of (1.1) that is very similar to Watson’s. Birch claims that Ramanujan’s results are
stronger than Watson’s; Ramanujan states that if α ≥ 1 then there is a constant
cα such that

(1.7)
∞∑
n=0

p(5αn+ δ5,α)qn

≡

{
cα5α{(1− q)(1− q2) · · · }19 (mod 5α+1), if α odd,

cα5α{(1− q)(1− q2) · · · }23 (mod 5α+1), if α even,

but this result follows almost immediately from equations (3.43) and (3.44) in
Watson [27] .
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2. Dyson’s rank. In 1944 F.J. Dyson [13] discovered empirically some remark-
able combinatorial interpretations of (0.1) and (0.2). Dyson defined the rank of a
partition as the largest part minus the number of parts. For example, the partition
4 + 4 + 3 + 2 + 1 + 1 + 1 has rank 4− 7 = −3. Let N(m,n) denote the number of
partitions of n with rank m and let N(m, t, n) denote the number of partitions of
n with rank congruent to m modulo t. Dyson conjectured that

N(k, 5, 5n+ 4) =
p(5n+ 4)

5
0 ≤ k ≤ 4,(2.1)

and

N(k, 7, 7n+ 5) =
p(7n+ 5)

7
0 ≤ k ≤ 6.(2.2)

(2.1) and (2.2) were later proved by A.O.L. Atkin and H.P.F. Swinnerton-Dyer [6]
in 1953. These are the combinatorial interpretations of (0.1) and (0.2). Atkin and
Swinnerton-Dyer’s proof is analytic relying heavily on the properties of modular
functions. No combinatorial proof is known. All that is known combinatorially
about the rank is that

(2.3) N(m,n) = N(−m,n),

which follows from the fact that the operation of conjugation reverses the sign of
the rank. A trivial consequence is that

(2.4) N(m, t, n) = N(t−m, t, n).

More than (2.1) and (2.2) is true. Dyson also conjectured

N(1, 5, 5n+ 1) = N(2, 5, 5n+ 1),(2.5)

N(0, 5, 5n+ 2) = N(2, 5, 5n+ 2),(2.6)

N(2, 7, 7n) = N(3, 7, 7n),(2.7)

N(1, 7, 7n+ 1) = N(2, 7, 7n+ 1) = N(3, 7, 7n+ 1),(2.8)

N(0, 7, 7n+ 2) = N(3, 7, 7n+ 2),(2.9)

N(0, 7, 7n+ 3) = N(2, 7, 7n+ 3), N(1, 7, 7n+ 3) = N(3, 7, 7n+ 3),(2.10)

N(0, 7, 7n+ 4) = N(1, 7, 7n+ 4) = N(3, 7, 7n+ 4),(2.11)

N(0, 7, 7n+ 6) +N(1, 7, 7n+ 6) = N(2, 7, 7n+ 6) +N(3, 7, 7n+ 6).(2.12)

These were proved by Atkin and Swinnerton-Dyer. In fact they calculated the
generating functions for N(a, t, tn+ k)−N(b, t, tn+ k) for t = 5, 7 and all possible
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values for a, b and k. Before giving their result for t = 5 we need some notation.
We define

ra(d) = ra(d, t) =
∞∑
n=0

N(a, t, tn+ d)qn(2.13)

and

ra,b(d) = ra,b(d, t) = ra(d)− rb(d).(2.14)

Theorem 1 (Atkin and Swinnerton-Dyer [6]). For t = 5,

r1,2(0) = q

∞∏
n=1

(1− q5n)−1
∞∑

m=−∞
(−1)m

q15m(m+1)/2

1− q5m+1
,(2.15)

r0,2(0) + 2r1,2(0) =
∞∏
n=1

(1− q5n−3)(1− q5n−2)(1− q5n)
(1− q5n−4)2(1− q5n−1)2

− 1,(2.16)

r0,2(1) =
∞∏
n=1

(1− q5n)
(1− q5n−4)(1− q5n−1)

,(2.17)

r1,2(1) = r0,2(2) = 0,(2.18)

r1,2(2) =
∞∏
n=1

(1− q5n)
(1− q5n−3)(1− q5n−2)

,(2.19)

r0,2(3) = −q
∞∏
n=1

(1− q5n)−1
∞∑

m=−∞
(−1)m

q15m(m+1)/2

1− q5m+2
,(2.20)

r0,1(3) + r0,2(3) =
∞∏
n=1

(1− q5n−4)(1− q5n−1)(1− q5n)
(1− q5n−3)2(1− q5n−2)2

,(2.21)

r0,2(4) = r1,2(4) = 0.(2.22)

We shall show later that Theorem 1 is embodied in an identity from Ramanujan’s
‘lost’ notebook. We note that (2.1), (2.5) and (2.6) follow directly from (2.18) and
(2.22). Dyson also conjectured some identities for the generating functions for the
rank, namely

∞∑
n=0

N(m,n)qn =
∞∑
n=1

(−1)n−1q
1
2n(3n−1)+|m|n(1− qn)

∞∏
k=1

(1− qk)−1,

(2.23)

∞∑
n=0

N(m, t, n)qn =
∞∑

n=−∞
n 6=0

(−1)nq
1
2n(3n+1) (qmn + qn(t−m))

(1− qtn)

∞∏
k=1

(1− qk)−1,

(2.24)
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which were also proved by Atkin and Swinnerton-Dyer.
Finally Dyson conjectures that there exists some analog of the rank that will

explain (0.3):
I hold in fact:
That there exists an arithmetical coefficient similar to, but more recondite

than, the rank of a partition; I shall call this hypothetical coefficient the
“crank” of the partition, and denote by M(m, q, n) the number of partitions
of n whose crank is congruent to m modulo q;

that M(m, q, n) = M(q −m, q, n);
that

M(0, 11, 11n+ 6) = M(1, 11, 11n+ 6) = M(2, 11, 11n+ 6)

= M(3, 11, 11n+ 6) = M(4, 11, 11n+ 6);

that numerous other relations exist analogous to (12)–(19), and in partic-
ular

M(1, 11, 11n+ 1) = M(2, 11, 11n+ 1)

= M(3, 11, 11n+ 1) = M(4, 11, 11n+ 1);

that M(m, 11, n) has a generating function not completely different in form
from (24);

that the values of the differences such asM(0, 11, n)−M(4, 11, n) are always
extremely small compared with p(n).

Whether these guesses are warranted by the evidence, I leave to the reader
to decide. Whatever the final verdict of posterity may be, I believe the “crank”
is unique among arithmetical functions in having been named before it was
discovered. May it be preserved from the ignominious fate of the planet
Vulcan!
The equations (12)–(19) and (24) referred to in the quotation above correspond

to (2.5)–(2.12) and (2.24).

3. The crank for vector partitions. In this section we give a combinatorial
interpretation of (0.3) as well as new interpretations of (0.1) and (0.2). Our main
result does not actually divide the partitions of 11n + 6 into 11 equal classes but
rather it gives a combinatorial interpretation of p(11n+6)

11 in terms of the crank of
vector partitions.

To describe our main result we need some more notation. For a partition, π,
let ](π) be the number of parts of π and σ(π) be the sum of the parts of π (or
the number π is partitioning) with the convention ](φ) = σ(φ) = 0 for the empty
partition, φ, of 0. Let,

V = { (π1, π2, π3) |π1 is a partition into distinct parts

π2, π3 are unrestricted partitions}.
We shall call the elements of V vector partitions . For ~π = (π1, π2, π3) in V we
define the sum of parts, s, a weight, ω, and a crank, r, by

s(~π) = σ(π1) + σ(π2) + σ(π3),(3.1)

ω(~π) = (−1)](π1),(3.2)

r(~π) = ](π2)− ](π3).(3.3)
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We say ~π is a vector partition of n if s(~π) = n. For example, if ~π = (5 + 3 + 2, 2 +
2 + 1, 2 + 1 + 1) then s(~π) = 19, ω(~π) = −1, r(~π) = 0 and ~π is a vector partition of
19. The number of vector partitions of n (counted according to the weight ω) with
crank m is denoted by NV (m,n), so that

(3.4) NV (m,n) =
∑
~π∈V
s(~π)=n
r(~π)=m

ω(~π).

The number of vector partitions of n (counted according to the weight ω) with
crank congruent to k modulo t is denoted by NV (k, t, n), so that

(3.5) NV (k, t, n) =
∞∑

m=−∞
NV (mt+ k, n) =

∑
~π∈V
s(~π)=n

r(~π)≡k (mod t)

ω(~π).

By considering the transformation that interchanges π2 and π3 we have

NV (m,n) = NV (−m,n)(3.6)

so that

NV (t−m, t, n) = NV (m, t, n).(3.7)

We have the following generating function for NV (m,n):

(3.8)
∞∑

m=−∞

∞∑
n=0

NV (m,n)zmqn =
∞∏
n=1

(1− qn)
(1− zqn)(1− z−1qn)

.

By putting z = 1 in (3.8) we find

(3.9)
∞∑

m=−∞
NV (m,n) = p(n).
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Our main result is

Theorem 2.

NV (k, 5, 5n+ 4) =
p(5n+ 4)

5
0 ≤ k ≤ 4,(3.10)

NV (k, 7, 7n+ 5) =
p(7n+ 5)

7
0 ≤ k ≤ 6,(3.11)

NV (k, 11, 11n+ 6) =
p(11n+ 6)

11
0 ≤ k ≤ 10.(3.12)

We illustrate (3.10) with an example. The 41 vector partitions of 4 are given in
the table below. From the this table we have

NV (0, 5, 4) = ω(~π6) + ω(~π9) + ω(~π12) + ω(~π13) + ω(~π24)

+ ω(~π26) + ω(~π33) + ω(~π40) + ω(~π41)
= 1 + 1 + 1 + 1− 1− 1− 1− 1 + 1
= 1.

Similarly

NV (0, 5, 4) = NV (1, 5, 4) = · · · = NV (4, 5, 4) = 1 =
p(4)

5
,

which is (3.10) with n = 0.
Weight Crank Weight Crank

~π1 = (φ, φ, 4) +1 −1 ~π22 = (1, φ, 2 + 1) −1 −2
~π2 = (φ, φ, 3 + 1) +1 −2 ~π23 = (1, φ, 1 + 1 + 1) −1 −3
~π3 = (φ, φ, 2 + 2) +1 −2 ~π24 = (1, 1, 2) −1 0
~π4 = (φ, φ, 2 + 1 + 1) +1 −3 ~π25 = (1, 1, 1 + 1) −1 −1
~π5 = (φ, φ, 1 + 1 + 1 + 1) +1 −4 ~π26 = (1, 2, 1) −1 0
~π6 = (φ, 1, 3) +1 0 ~π27 = (1, 1 + 1, 1) −1 1
~π7 = (φ, 1, 2 + 1) +1 −1 ~π28 = (1, 3, φ) −1 1
~π8 = (φ, 1, 1 + 1 + 1) +1 −2 ~π29 = (1, 2 + 1, φ) −1 2
~π9 = (φ, 2, 2) +1 0 ~π30 = (1, 1 + 1 + 1, φ) −1 3
~π10 = (φ, 2, 1 + 1) +1 −1 ~π31 = (2, φ, 2) −1 −1
~π11 = (φ, 1 + 1, 2) +1 1 ~π32 = (2, φ, 1 + 1) −1 −2
~π12 = (φ, 1 + 1, 1 + 1) +1 0 ~π33 = (2, 1, 1) −1 0
~π13 = (φ, 3, 1) +1 0 ~π34 = (2, 2, φ) −1 1
~π14 = (φ, 2 + 1, 1) +1 1 ~π35 = (2, 1 + 1, φ) −1 2
~π15 = (φ, 1 + 1 + 1, 1) +1 2 ~π36 = (3, φ, 1) −1 −1
~π16 = (φ, 4, φ) +1 1 ~π37 = (2 + 1, φ, 1) +1 −1
~π17 = (φ, 3 + 1, φ) +1 2 ~π38 = (3, 1, φ) −1 1
~π18 = (φ, 2 + 2, φ) +1 2 ~π39 = (2 + 1, 1, φ) +1 1
~π19 = (φ, 2 + 1 + 1, φ) +1 3 ~π40 = (4, φ, φ) −1 0
~π20 = (φ, 1 + 1 + 1 + 1, φ) +1 4 ~π41 = (3 + 1, φ, φ) +1 0
~π21 = (1, φ, 3) −1 −1



36 F. G. GARVAN†

4. A page from Ramanujan’s ‘lost’ notebook. For an introduction to the
‘lost’ notebook see Andrews [2]. We give this page below correcting typos and
adding equation numbers:

F (q) =
(1− q)(1− q2)(1− q3) · · ·

(1− 2q cos 2nπ
5 + q2)(1− 2q2 cos 2nπ

5 + q4) · · ·
,

(4.1)

f(q) = 1 +
q

(1− 2q cos 2nπ
5 + q2)

(4.2)

+
q4

(1− 2q cos 2nπ
5 + q2)(1− 2q2 cos 2nπ

5 + q4)
+ · · · , n = 1 or 2,

F (q
1
5 ) = A(q)− 4q

1
5 cos2 2nπ

5
B(q) + 2q

2
5 cos

4nπ
5
C(q)(4.3)

− 2q
3
5 cos

2nπ
5
D(q),

f(q
1
5 ) =

{
A(q)− 4 sin2 nπ

5
φ(q)

}
+ q

1
5B(q) + 2q

2
5 cos

2nπ
5
C(q)(4.4)

− 2q
3
5 cos

2nπ
5

{
D(q) + 4 sin2 2nπ

5
ψ(q)
q

}
,

A(q) =
1− q2 − q3 + q9 + · · ·

(1− q)2(1− q4)2(1− q6)2 · · ·
,(4.5)

B(q) =
(1− q5)(1− q10)(1− q15) · · ·

(1− q)(1− q4)(1− q6) · · ·
,(4.6)

C(q) =
(1− q5)(1− q10)(1− q15) · · ·
(1− q2)(1− q3)(1− q7) · · ·

,(4.7)

D(q) =
1− q − q4 + q7 + · · ·

(1− q2)2(1− q3)2(1− q7)2 · · ·
,(4.8)

φ(q) = −1 +
{

1
1− q

+
q5

(1− q)(1− q4)(1− q6)
(4.9)

+
q20

(1− q)(1− q4)(1− q6)(1− q9)(1− q11)
+ · · ·

}
,

ψ(q) = −1 +
{

1
1− q2

+
q5

(1− q2)(1− q3)(1− q7)
(4.10)

+
q20

(1− q2)(1− q3)(1− q7)(1− q8)(1− q12)
+ · · ·

}
,

q

1− q
+

q3

(1− q2)(1− q3)
+

q5

(1− q3)(1− q4)(1− q5)
+ · · · = 3φ(q) + 1−A(q),

(4.11)
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q

1− q
+

q2

(1− q2)(1− q3)
+

q3

(1− q3)(1− q4)(1− q5)
+ · · · = 3ψ(q) + qD(q),

(4.12)

q2

1− q
+

q8

(1− q)(1− q3)
+

q18

(1− q)(1− q3)(1− q5)
+ · · ·

(4.13)

= φ(q)− q 1 + q5 + q15 + · · ·
(1− q4)(1− q6)(1− q14) · · ·

,

q

1− q
+

q5

(1− q)(1− q3)
+

q13

(1− q)(1− q3)(1− q5)
+ · · ·

(4.14)

= ψ(q) + q
1 + q5 + q15 + · · ·

(1− q2)(1− q8)(1− q12) · · ·
.

In (4.1)–(4.4) we may assume without loss of generality that n = 1. If we let
ζ = exp( 2πi

5 ) then we may write the definitions of F (q) and f(q) as

F (q) =
(q)∞

(ζq)∞(ζ−1q)∞
,(4.15)

f(q) = 1 +
∞∑
n=1

qn
2

(1− ζq)(1− ζ−1q) · · · (1− ζqn)(1− ζ−1qn)
(4.16)

=
∞∑
n=0

qn
2

(ζq)n(ζ−1q)n
,

where

(a)0 = 1, (a)n = (1− a)(1− aq) · · · (1− aqn−1) for n ≥ 1

(a)∞ = lim
n→∞

(a)n =
∞∏
n=1

(1− aqn−1).and

After replacing q by q5 we see that (4.3) and (4.4) are identities for F (q) and f(q)
that split each function (as a power series in q) according to the residue of the expo-
nent modulo 5. This splitting is in terms of the functions A(q), . . . , D(q), φ(q), ψ(q)
which are defined in (4.5)–(4.10). In Theorem 3 we show that (4.3) implies (3.10)
which is the combinatorial interpretation of the partition congruence mod 5 in
terms of the crank. In Theorem 4 we show not only does (4.4) imply (2.1), which
is Dyson’s combinatorial interpretation of the partition congruence mod 5 in terms
of the rank, but that (4.4) is actually equivalent to Theorem 1 (due to Atkin and
Swinnerton-Dyer). (4.11)–(4.14) are mock theta function identities. In Theorem 5
we show that (4.11) and (4.12) are equivalent to Andrews and Garvan’s [4] mock
theta conjectures.

We note that the numerators in the definitions of A(q) and D(q) are theta series
in q and hence may be written as infinite products using Jacobi’s triple product
identity:

(4.17)
∞∏
n=1

(1− zqn)(1− z−1qn−1)(1− qn) =
∞∑

n=−∞
(−1)nznq

1
2n(n+1),
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where z 6= 0 and |q| < 1. In fact we have

A(q) =
∞∏
n=1

(1− q5n−3)(1− q5n−2)(1− q5n)
(1− q5n−4)2(1− q5n−1)2

,(4.18)

B(q) =
∞∏
n=1

(1− q5n)
(1− q5n−4)(1− q5n−1)

,(4.19)

C(q) =
∞∏
n=1

(1− q5n)
(1− q5n−3)(1− q5n−2)

,(4.20)

D(q) =
∞∏
n=1

(1− q5n−4)(1− q5n−1)(1− q5n)
(1− q5n−3)2(1− q5n−2)2

.(4.21)

Theorem 3. (4.3) =⇒ (3.10).

Proof. We first write F (q) in terms of NV (k, 5, n). Substituting z = ζ into both
sides of (3.8) we have

F (q) =
(q)∞

(ζq)∞(ζ−1q)∞
=

∞∑
m=−∞

∞∑
n=0

NV (m,n)ζmqn

=
4∑
k=0

ζk
∞∑
n=0

( ∑
m≡k
mod 5

NV (m,n)
)
qn

=
4∑
k=0

ζk
∞∑
n=0

NV (k, 5, n)qn (by (3.5)).

If we assume (4.3) then we find that

(4.22)
4∑
k=0

NV (k, 5, 5n+ 4)ζk = Coeff of q5n+4 in F (q) = 0.

The lefthand side of (4.22) is a polynomial in ζ over Z. It follows that

NV (0, 5, 5n+ 4) = NV (1, 5, 5n+ 4) = · · · = NV (4, 5, 5n+ 4).
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From (3.9) we have

p(5n+ 4) =
4∑
k=0

NV (k, 5, 5n+ 4) = 5NV (0, 5, 5n+ 4)

and (3.10) follows. �

(4.3) is easy to prove once we observe that

F (q) =
(q)∞

(ζq)∞(ζ−1q)∞
=

(q)2
∞(ζ2q)∞(ζ−2q)∞

(q5; q5)∞
(4.23)

=
(q)∞{(ζ2)∞(ζ−2q)∞(q)∞}

(q5; q5)∞(1− ζ2)
.

Here (a; q)∞ =
∏∞
n=1(1 − aqn−1), |q| < 1. Now we can split (ζ2)∞(ζ−2q)∞(q)∞

utilizing Jacobi’s triple product identity (4.17), split (q)∞ using Euler’s result

(4.24) (q)∞ =
∞∑

n=−∞
(−1)nq

1
2n(3n−1) |q| < 1,

and (4.3) follows with not much work. (3.11) can be proved in a similar way. The
proof of (3.12) is analogous but depends on Winquist’s identity [28, §1]. We refer
the reader to [16], [17] for details.

We now turn to (4.4) and Atkin and Swinnerton-Dyer’s Theorem. We first ob-
serve that the infinite products that occur in Theorem 1 are exactly A(q), B(q),C(q)
and D(q). The remaining functions turn out to be φ(q) and ψ(q). Utilizing Wat-
son’s [24] q-analog of Whipple’s theorem or (2.23) it can be shown that

(4.25) −1 +
∞∑
n=0

qn
2

(z)n+1(z−1q)n
=

z

(q)∞

∞∑
n=−∞

(−1)n
q

3
2n(n+1)

1− zqn
,

where |q| < 1, |q| < |z| < |q|−1 and z 6= 1. See [17, Lemma(7.9)]. It follows that

φ(q) = −1 +
∞∑
n=0

q5n2

(q; q5)n+1(q4; q5)n
(4.26)

= q
∞∏
n=1

(1− q5n)−1
∞∑

m=−∞
(−1)m

q
15
2 m(m+1)

1− q5m+1

and

ψ(q)
q

=
1
q

{
−1 +

∞∑
n=0

q5n2

(q2; q5)n+1(q3; q5)n

}
(4.27)

= q
∞∏
n=1

(1− q5n)−1
∞∑

m=−∞
(−1)m

q
15
2 m(m+1)

1− q5m+2
.
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Theorem 4. Theorem 1 ⇐⇒ (4.4).

Proof. Utilizing the concept of the Durfee square (see Andrews [3]) it can be shown
that

(4.28)
∞∑

m=−∞

∞∑
n=0

N(m,n)zmqn =
∞∑
n=1

qn
2

(zq)n(z−1q)n
.

Here following Atkin and Swinnerton-Dyer we agree that N(0, 0) = 0. Analogous
to the proof of Theorem 3 we find that

f(q) = 1 +
∞∑
n=1

qn
2

(ζq)n(ζ−1q)n
.(4.29)

= 1 +
4∑
k=0

ζk
( ∞∑
n=0

N(k, 5, n)qn
)
.

After replacing q by q5 we can write (4.4) as

(4.30) f(q) =
{
A(q5) + (ζ + ζ−1 − 2)φ(q5)

}
+ qB(q5) + (ζ + ζ−1)q2C(q5)

− (ζ + ζ−1)q3

{
D(q5)− (ζ2 + ζ−2 − 2)

ψ(q5)
q5

}
.

We now sketch how (4.4) implies Theorem 1. By picking out the coefficient of
q5n in both sides of (4.30) we find that

(4.31) 1 +
4∑
k=0

ζkN(k, 5, 5n) = an + (ζ + ζ−1 − 2)φn

where an, φn are the coefficients of qn in A(q), φ(q) respectively. It follows that

(4.32) 1 +N(0, 5, 5n)− an + 2φn = N(1, 5, 5n)− φn = N(2, 5, 5n)

since all coefficients are rational integers. From (4.18) and (4.26) we have (2.15)
and (2.16). The rest of Theorem 1 follows in the same way. �

Corollary.

r1,2(0) = φ(q),(4.33)

r2,0(3) =
ψ(q)
q

.(4.34)

We now turn to the mock theta conjectures (Andrews and Garvan [4, §1]). The
remainder of this section has been taken from [4]. There are ten (unproved) mock
theta function identities [4, (3.1)R–(3.10)R]. In fact (4.11)–(4.14) are respectively
(3.1)R, (3.6)R, (3.2)R and (3.7)R. In [4] the ten identities were reduced to two
combinatorial conjectures:
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First Mock Theta Conjecture.

(4.35) N(1, 5, 5n) = N(0, 5, 5n) + ρ0(n),

where ρ0(n) is the number of partitions of n with unique smallest part and all other
parts ≤ the double of the smallest part.

Second Mock theta conjecture.

(4.36) 2N(2, 5, 5n+ 3) = N(1, 5, 5n+ 3) +N(0, 5, 5n+ 3) + ρ1(n) + 1,

where ρ1(n) is the number of partitions of n with unique smallest part and all other
parts ≤ one plus the double of the smallest part.

We need the following result of Watson [26, (A0)]:

(4.37) χ0(q) =
∞∑
n=0

qn

(qn+1)n
= 1 +

∞∑
n=0

q2n+1

(qn+1)n+1
.

Theorem 5 ([4, Theorem 2]). (4.11) ⇐⇒(4.35) and (4.12) ⇐⇒ (4.36).

Proof. Let M1(q) = χ0(q)−2−3φ(q)+A(q). Then (4.11) is equivalent to M1(q) = 0
by (4.37). Now, by (2.17) and (4.33), we have

M1(q) = χ0(q)− 2− 3φ(q) +A(q)

= χ0(q)− 1 + r0,2(0) + 2r1,2(0)− 3r1,2(0)

= χ0(q)− 1− r1,0(0).

But by (4.37) we have

χ0(q)− 1 =
∞∑
n=0

ρ0(n)qn

if we assume ρ0(0) = 0. Hence (4.11) is equivalent to (4.35). Similarly we find
(4.12) is equivalent to (4.36) by considering (2.21) and (4.34). �

5. The search for a better crank. Our crank is in terms of a weighted count
of certain restricted triples of partitions. It would be nice if we could interpret
NV (m,n) solely in terms of ordinary partitions. This may be possible (see An-
nouncement in this section) since it turns out that all of the coefficients NV (m,n)
except for one are nonnegative. All that is needed to prove this is the q-binomial
theorem (Andrews [1, p.17]):

(5.1)
∞∑
n=0

(a)n
(q)n

tn =
(at)∞
(t)∞

,

where |q| < 1 and |t| < 1.
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Theorem 6. For m ≥ 0,

(5.2)
∞∑
n=0

NV (m,n)qn = (1− q)
∞∑
n=0

qn
2+nm+2n+m

(q)m+n(q)n
.

Proof.

(5.3)
∞∑

m=−∞

∞∑
n=0

NV (m,n)zmqn =
(q)∞

(zq)∞(z−1q)∞

=
(1− z)

(z−1q)∞

∞∑
n=0

(z−1q)nzn

(q)n
(by (5.1) with a = z−1q
and t = z)

= (1− z)
∞∑
m=0

zm

(q)m(z−1qm+1)∞

= (1− z)
∞∑
m=0

zm

(q)m

∞∑
n=0

(z−1qm+1)n

(q)n
(by (5.1) with a = 0 and
t = z−1qm+1)

= (1− z)
∞∑
n=0

∞∑
m=0

zm−nqnm+n

(q)m(q)n

= (1− z)
∞∑
n=0

∞∑
m=−n

zmqn(m+n+1)

(q)m+n(q)n

=
∞∑
n=0

∞∑
m=−n

zmqn(m+n+1)

(q)m+n(q)n
−
∞∑
n=0

∞∑
m=−n+1

zmqn(m+n)

(q)m+n−1(q)n
.

Picking out the coefficient of z0 in (5.3) we have

∞∑
n=0

NV (0,m)qn =
∞∑
n=0

qn(n+1)

(q)2
n

−
∞∑
n=1

qn
2

(q)n−1(q)n

=
∞∑
n=0

qn(n+1)

(q)2
n

−
∞∑
n=1

qn
2{qn + (1− qn)}

(q)n−1(q)n

= 1 +
∞∑
n=1

qn(n+1)(1− (1− qn))
(q)2

n

−
∞∑
n=1

qn
2

(q)2
n−1

= 1− q +
∞∑
n=1

qn(n+2)

(q)2
n

−
∞∑
n=2

qn
2

(q)2
n−1

= (1− q)
∞∑
n=0

qn(n+2)

(q)2
n

,

which is (5.2) when m = 0. The general case follows in a similar fashion. �
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Corollary.

(5.4) NV (m,n) ≥ 0 for (m,n) 6= (0, 1).

Theorem 6 yields combinatorial results involving the rank that are similar to but
not as deep as the mock theta conjectures.

Theorem 7.

N(0, 5, 5n+ 1) = β1(n) +N(2, 5, 5n+ 1),(5.5)

N(1, 5, 5n+ 2) = β2(n) +N(2, 5, 5n+ 2),(5.6)

where for i = 1, 2 βi(n) denotes the number of partitions of n into i’s and parts
congruent to 0 or −i modulo 5 with the largest part ≡ 0 (mod 5) ≤ 5 times the
number of i’s ≤ the smallest part ≡ −i (mod 5).

Proof. From (5.3) we have

(5.7)
(q)∞

(z)∞(z−1q)∞
=
∞∑
m=0

zm

(q)m(z−1qm+1)∞
.

Now the generating function for β1(n) is

∞∑
n=0

β1(n)qn =
∞∑
n=0

qn

(q5; q5)n(q5n+4; q5)∞

=
(q5; q5)∞

(q; q5)∞(q4; q5)∞
(by (5.7) with q replaced by q5

and z by q)
= r0,2(1) (by (2.17))

and (5.5) follows. Similarly we find that

∞∑
n=0

β2(n)qn =
∞∑
n=0

q2n

(q5; q5)n(q5n+3; q5)∞

=
(q5; q5)∞

(q2; q5)∞(q3; q5)∞
= r1,2(2)

and (5.6) follows. �

Example (1) N(0, 5, 36) = 3597, N(2, 5, 36) = 3595, β1(7) = 2 with the rel-
evant partitions being 5 + 1 + 1 and 1 + 1 + 1 + 1 + 1 + 1 + 1.

(2) N(1, 5, 37) = 4328, N(2, 5, 37) = 4327, β2(7) = 1 with the rele-
vant partition being 5 + 2.
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Announcement. The day after this conference ended the true crank was discov-
ered by George Andrews and myself. This result will appear in a joint paper with
George. May I introduce the crank:

Definition. For a partition π let λ(π) denote the largest part of π, µ(π) denote
the number of ones in π and let ν(π) denote the number of parts of π larger than
µ(π). The crank c(π) is given by

c(π) =
{
λ(π), if µ(π) = 0,
ν(π)− µ(π), if µ(π) > 0.

Following Dyson we let M(m,n) denote the number of partitions of n with crank
m and let M(m, t, n) denote the number of partitions of n with crank congruent to
m modulo t. It turns out that

Theorem 8 (Andrews and Garvan [5]). For n > 1,

(5.8) M(m,n) = NV (m,n).

Theorem 8 together with Theorem 2 yield the following new combinatorial in-
terpretations of the congruences (0.1)–(0.3).

Corollary.

M(k, 5, 5n+ 4) =
p(5n+ 4)

5
0 ≤ k ≤ 4,(5.9)

M(k, 7, 7n+ 5) =
p(7n+ 5)

7
0 ≤ k ≤ 6,(5.10)

M(k, 11, 11n+ 6) =
p(11n+ 6)

11
0 ≤ k ≤ 10.(5.11)

The appearance of the functions A(q), B(q), C(q) and D(q) in both (4.3) and
(4.4) leads to some rather curious relations between the rank and the crank:

Theorem 9. For n > 0,

N(0, 5, 5n) + 2N(1, 5, 5n) +M(1, 5, 5n) = M(0, 5, 5n) + 3N(2, 5, 5n),(5.12)

N(0, 5, 5n+ 1) +M(2, 5, 5n+ 1) = M(1, 5, 5n+ 1) +N(2, 5, 5n+ 1),(5.13)

N(1, 5, 5n+ 2) +M(1, 5, 5n+ 2) = N(2, 5, 5n+ 2) +M(2, 5, 5n+ 2),(5.14)

2N(0, 5, 5n+ 3) +M(1, 5, 5n+ 3)(5.15)

= M(0, 5, 5n+ 3) +N(1, 5, 5n+ 3) +N(2, 5, 5n+ 3),

N(k, 5, 5n+ 4) = M(k′, 5, 5n+ 4) =
p(5n+ 4)

5
0 ≤ k, k′ ≤ 4.(5.16)

I offer a prize of $25 (Australian) for a combinatorial proof of any one of the
relations given above.
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