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Assume throughout that |q| < 1.

Rising g-factorial notation
(a;n = (1—a)(1—ag)(1—ag®) - (1 —ag"™ 1)

(a; @)oo = (1 —a)(1 — ag)(1 — ag?) - -



The Rogers-Ramanujan Identities.
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The Rogers-Selberg Identities.
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A partition = of an integer n is a nonincreasing
finite sequence of positive integers

= {m1, T2, M3, ..., Ts}

such that > 7 m; = n.

Each nonzero term in {mq, 7o, 73, ..., s} is called
a part of the partition .

The seven partitions of 5 are thus

15} 14,1} 13,2} 13,1,1}

{2,2,1} {2,1,1,1} {1,1,1,1,1}.



The multiplicity of the integer 5 in the partition
m, denoted m;(w), is the number of times j
appears in .

N <1m1(ﬁ)2m2(7f)3m3(7f) )

The seven partition of 5 are thus
(5) (1 4) (2 3) (1°3)

(1 22) (132) (1°).
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Example First Rogers-Ramanujan, n = 9:

194,{8,1},{7,2},{6,3},{5,3,1}

{9},{6,1,1,1},{4,4,1},{4,1,1,1,1},

{1,1,1,1,1,1,1,1,1}



Gordon’s Theorem.

Let Gi;(n) denote the number of partitions
of n into parts such that 1 appears as a part
at most 1 — 1 times and the total number of
appearances of any two consecutive integers is
at most k£ — 1.

Let C} ;(n) denote the number of partitions of
n into parts # 0,4+¢ (mod 2k + 1).

Then Gy ;(n) = Ci;(n) for 1 =i < k and all
integers n.
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Theorem 1 (Andrews).

Let A(n) denote the number of partitions of
n such that if 25 is the largest repeated even
part, then all positive even integers less than
29 also appear at least twice, no odd part less

than 25 appears, and no part greater than 23
IS repeated.

Then A(n) = C32(n) for all n.

11



Let G denote the set of partitions enumerated
by G32(n) in Gordon's theorem, i.e. partitions
7 such that

mi(m) =1
and
m;(m) +mjy1(m) =2
for all j = 1.

Let A denote the set of partitions enumerated
by A(n) in Theorem 1, i.e. partitions « such
that

m;(m) < 1 if j is odd,
mj(r) = 0 if j is odd and j < R(w), and
m;(m) 2 2 if j is even and j < R(w),

where R(w) is the largest repeated part in .

12



A partition w € G is one in which

e NO number appears more than twice as a
part,

e if r appears twice, then neither r — 1 nor
r<+ 1 appear, and

e 1 appears at most once.
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A partition m € A may be thought of as a union
of two partitions :

e a partition into 2's, 4's, 6's, ..., 275's with
all parts repeated, and

e a partition into distinct parts greater than
27.
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Analogous interpretations of the other two Rogers-
Selberg identities can be given and they in turn
can be mapped similarly to the: =1 and : =3
instances of the partitions enumerated by the

k = 3 case of Gordon’'s theorem.
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