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ABSTRACT: The Fibonacci numbers are a sequence of numbers named after Leonardo
of Pisa, known as Fibonacci. The first Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, . . .. The n-th Fibonacci number fib(n) can be interpreted as the number
of ways summing 1’s and 2’s to n− 1, with the convention that fib(0) = 0.

I begin by reviewing some well-known formulas for Fibonacci numbers such as Binet’s
formula and Cassini’s identity. Next, I will discuss a bit more esoteric results:
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(−1)L+1, if L ≡ 2 mod 5,

(−1)L, if L ≡ −2 mod 5,

0, otherwise.

Remarkably, there are two straightforward q-analogues of the Fibonacci numbers known
as Schur’s polynomials. These polynomials lead to a natural q-generalizations of the
above formulas. Moreover, they can be used to prove the celebrated Rogers–Ramanujan
identities: ∑
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Here,
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(1− qj).
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