THE FIBONACCI NUMBERS, SCHUR'S POLYNOMIALS AND THE ROGERS-RAMANUJAN IDENTITIES

Lecture by Alexander Berkovich (University of Florida)

ABSTRACT: The Fibonacci numbers are a sequence of numbers named after Leonardo of Pisa, known as Fibonacci. The first Fibonacci numbers are $0,1,1,2,3,5,8,13,21$, $34,55,89, \ldots$ The n-th Fibonacci number $f i b(n)$ can be interpreted as the number of ways summing 1's and 2's to $n-1$, with the convention that $f i b(0)=0$.

I begin by reviewing some well-known formulas for Fibonacci numbers such as Binet's formula and Cassini's identity. Next, I will discuss a bit more esoteric results:

$$
\sum_{r=0}^{L}(-1)^{L+r} \frac{2 L}{L+r}\binom{L+r}{2 r} f i b(2 r+1)= \begin{cases}0, & \text { if } L \equiv \pm 1 \bmod 5 \\ -1, & \text { if } L \equiv \pm 2 \bmod 5 \\ 2, & \text { if } L \equiv 0 \bmod 5\end{cases}
$$

and
$\sum_{a=0}^{L-1} \sum_{t=0}^{\frac{L-1-a}{2}}(-1)^{t+a} f i b(a+2 t)\binom{a+t}{a}\binom{L-t-a-1}{t}= \begin{cases}(-1)^{L+1}, & \text { if } L \equiv 2 \bmod 5, \\ (-1)^{L}, & \text { if } L \equiv-2 \bmod 5, \\ 0, & \text { otherwise. }\end{cases}$
Remarkably, there are two straightforward q-analogues of the Fibonacci numbers known as Schur's polynomials. These polynomials lead to a natural q-generalizations of the above formulas. Moreover, they can be used to prove the celebrated Rogers-Ramanujan identities:

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{q^{n^{2}}}{(q)_{n}}=\frac{1}{\prod_{j \geq 0}\left(1-q^{5 j+1}\right)\left(1-q^{5 j+4}\right)}, \\
& \sum_{n \geq 0} \frac{q^{n^{2}+n}}{(q)_{n}}=\frac{1}{\prod_{j \geq 0}\left(1-q^{5 j+2}\right)\left(1-q^{5 j+3}\right)},
\end{aligned}
$$

Here,

$$
(q)_{n}=: \prod_{j=1}^{n}\left(1-q^{j}\right) .
$$

