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ABSTRACT. In his last letter to Hardy, Ramanujan defined 17 functions F (q), where |q| < 1.

He called them mock θ-functions, observing that as q radially approaches any root of unity ζ,

there is a θ-function Tζ(q) with F (q)− Tζ(q) = O(1).

1. Introduction

We begin with the partition generating function P (q) = (q)−1
∞ , where as usual

(q)0 = 1 , (q)n =
n∏

m=1

(1− qm) and (q)∞ =
∞∏

m=1

(1− qm) , |q| < 1 .

More generally, we put

(a ; qk)0 = 1 , (a ; qk)n =
n−1∏
m=0

(1− aqmk) and (a ; qk)∞ =
∞∏

m=0

(1− aqmk) ,

so that (q)n = (q ; q)n and (q)∞ = (q ; q)∞. We have

(a ; qk)n =
(a ; qk)∞

(aqnk; qk)∞

for n ≥ 0, and for other real n, we take this as the definition of (a ; qk)n. P (q) satisfies the
Euler and Durfee identities

P (q) =
∞∑

n=0

qn

(q)n
=

∞∑
n=0

qn2

(q)2n
. (1.1)

These express P (q) in what S. Ramanujan, in his last letter to G.H. Hardy [R1, pp. 354–
355; R2, pp. 127–131; W1, pp. 56–61], called transformed Eulerian form. Other examples
are provided by the Rogers-Ramanujan identities

G(q) =
∞∏

m=1

1
(1− q5m−4)(1− q5m−1)

=
∞∑

n=0

qn2

(q)n
,

H(q) =
∞∏

m=1

1
(1− q5m−3)(1− q5m−2)

=
∞∑

n=0

qn(n+1)

(q)n
.


(1.2)
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In his letter, Ramanujan remarked that as q tends radially to exponential singularities
at roots of unity, the functions P (q) and G(q) have asymptotic approximations involving
“closed exponential factors”. To express these approximations, he introduced a complex
variable α with Re(α) > 0 and put q = e−α. Then, for example, if α is real and α → 0+,
we have

P (q) =
√

α

2π
exp

(
π2

6α
− α

24

)
+ o(1) ,

G(q) =

√
2

5−
√

5
exp

(
π2

15α
− α

60

)
+ o(1) ,


(1.3)

with similar results near exponential singularities at other roots of unity. Ramanujan noted
that for other q-series in Eulerian form, approximations analogous to (1.3) may or may
not hold. He stated that if

F (q) =
∞∑

n=0

q
1
2 n(n+1)

(q)2n
,

and q = e−α with α→ 0+, then for each positive integer m we have

F (q) =
√

α

2π
√

5
exp

(
π2

5α
+

α

8
√

5
+ c2α

2 + · · ·+ cmα
m +O(αm+1)

)
(1.4)

with infinitely many cj 6= 0. Ramanujan said that in this case “the exponential factor
does not close”, but an actual proof has not yet been found. An example of a q-series in
Eulerian form having an approximation with an unclosed exponential factor is given by

∞∑
n=0

q
1
2 n(n−1)+rn

(q)n
=

∞∏
ν=0

(1− qν+r) ,

where 0 < r < 1, r 6= 1
2 . (To obtain a function holomorphic for |q| < 1, take r = a

b rational
and replace q by qb.) A proof is given in [M2].

At this point we need to clarify what Ramanujan meant by a θ-function. For this
purpose, we recall the definition of the Jacobi triple product

j(x, q) = (x ; q)∞(x−1q ; q)∞(q ; q)∞ , (1.5)

and the identity

j(x, q) =
∞∑

n=−∞
(−1)nq

1
2 n(n−1)xn .

Following Hickerson [H1], we define a θ-product to be an expression of the form

Cqexf1
1 · · ·xfr

r L
g1
1 · · ·Lgs

s ,
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where C is a complex number, e, fi, gi are integers, and each Li has the form

j(Dqhxk1
1 · · ·xkr

r ,±qm)

for some complex number D (usually D = ±1) and integers h, ki and m ≥ 1. A θ-function
is a finite sum of θ-products. Thus (q)∞ = j(q, q3) is a θ-function, even though it lacks
the factor q

1
24 needed to make it a modular form.

Every θ-function with an exponential singularity at a root of unity ζ has an asymptotic
approximation near ζ like (1.3), where there may be several terms, each with cj = 0 for
all j ≥ 2, and o(1) may be O(1). As an example of an approximation with more than
one term, Ramanujan gave (q)−120

∞ . A simpler example is provided by (q)−48
∞ . By the

functional equation of the Dedekind η-function (see for example [Ap, p. 48]), we have

q
1
24 (q)∞ =

√
2π
α
q

1
6
1 (q4

1
; q4

1
)∞ ,

where q = e−α and q1 = e−
π2
α . Hence as α→ 0+,

(q)−48
∞ = q2[q

1
24 (q)∞]−48

= q2

[√
2π
α
q

1
6
1 (q4

1
; q4

1
)∞

]−48

=
α24

(2π)24
q2q−8

1
[1− q4

1
+O(q8

1
)]−48

=
α24

(2π)24
q2q−8

1
[1 + 48q4

1
+O(q8

1
)]

=
α24

(2π)24
q2q−8

1
+

48α24

(2π)24
q2q−4

1
+ o(1)

=
α24

(2π)24
exp

(
8π2

α
− 2α

)
+

48α24

(2π)24
exp

(
4π2

α
− 2α

)
+ o(1) .

A mock θ-function is a function M(q), holomorphic for |q| < 1, such that

(i) M(q) has infinitely many exponential singularities at roots of unity.

(ii) Under radial approach to every such singularity, M(q) has an approximation
consisting of a finite number of terms with closed exponential factors, and an
error term O(1).

(iii) There is no θ-function T (q) which differs from M(q) by a “trivial function”, i.e.
a function bounded under radial approach to every root of unity.
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If L(q) satisfies (i), (ii), (iii) and has an expansion

L(q) =
∞∑

n=0

anq
n
d ,

convergent for |q| < 1, where d is a positive integer, then M(q) = L(qd) is a mock θ-
function. By abuse of language, we will sometimes refer to such an L(q) as a mock θ-
function. In this paper, we do not require M(q) to be an Eulerian q-series.

In his letter, Ramanujan next introduced the function

f(q) =
∞∑

n=0

qn2

(−q ; q)2n
, (1.6)

and the θ-function

T (q) =
(q)3∞

(q2; q2)2∞
.

He stated that if ζ is a primitive νth root of unity, and q → ζ radially, then

f(q) =


O(1), ν odd ,

−T (q) +O(1), ν ≡ 2 (mod 4) ,

T (q) +O(1), ν ≡ 0 (mod 4) .

Thus M(q) = f(q) satisfies the following property:

(iv) At each root of unity ζ, there is a θ-function Tζ(q) such that M(q) = Tζ(q)+O(1)
as q → ζ radially.

This implies (ii). We call (iv) the strong approximation property. Andrews and Hickerson
[AH] actually take (i), (iii) and (iv) as the definition of a mock θ-function. Such functions
will be called strong mock θ-functions.

Ramanujan said “it is inconceivable that a single θ-function could be found to cut
out the singularities of f(q).” Thus he indicated that f(q) satisfies property (iii), and is
therefore a strong mock θ-function. His assertion remains unproved. Henceforth when we
speak of mock θ-functions, it is with the understanding that they have not yet been shown
to possess property (iii).

¿From now on we will use the abbreviations θf and mf for θ-functions and mock
θ-functions respectively. The notation mfν stands for an mf of order ν.

Ramanujan listed 17 mf’s, to which he assigned orders 3, 5 and 7. (The order appears
to be analogous to the level of a modular form.) Watson [W1] found three more mf3’s,
and in constructing transformation laws for them, Gordon and McIntosh [GM2] found two
more. Still other mf’s, to which orders 2, 6, 8 and 10 have been attributed, are discussed
in [M1], [AH], [M4], [GM1] and [C1]–[C4].
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2. The Watson-Selberg era

The above title was first used by Andrews [A2] in discussing the ground-breaking
work on mf’s done in the 1930’s. This work dealt with the 17 functions of orders 3, 5 and
7 defined in Ramanujan’s letter. They are the following:

order 3:

f(q) =
∞∑

n=0

qn2

(−q ; q)2n
, φ(q) =

∞∑
n=0

qn2

(−q2; q2)n
,

ψ(q) =
∞∑

n=1

qn2

(q ; q2)n
, χ(q) =

∞∑
n=0

qn2
(−q ; q)n

(−q3; q3)n
,

 (2.1)

order 5:

f0(q) =
∞∑

n=0

qn2

(−q ; q)n
, f1(q) =

∞∑
n=0

qn(n+1)

(−q ; q)n
,

F0(q) =
∞∑

n=0

q2n2

(q ; q2)n
, F1(q) =

∞∑
n=0

q2n(n+1)

(q ; q2)n+1
,

φ0(q) =
∞∑

n=0

qn2
(−q ; q2)n , φ1(q) =

∞∑
n=0

q(n+1)2(−q ; q2)n ,

ψ0(q) =
∞∑

n=0

q
1
2 (n+1)(n+2)(−q ; q)n , ψ1(q) =

∞∑
n=0

q
1
2 n(n+1)(−q ; q)n ,

χ0(q) =
∞∑

n=0

qn

(qn+1; q)n
, χ1(q) =

∞∑
n=0

qn

(qn+1; q)n+1
,



(2.2)

order 7:

F0(q) =
∞∑

n=0

qn2

(qn+1; q)n
, F1(q) =

∞∑
n=0

q(n+1)2

(qn+1; q)n+1
, F2(q) =

∞∑
n=0

qn(n+1)

(qn+1; q)n+1
. (2.3)

G.N. Watson wrote two papers [W1], [W2] dealing with (2.1), (2.2) repectively, while
A. Selberg [S1], [S2] dealt with (2.3). In [W1], Watson showed that Ramanujan’s functions
(2.1), together with the 3 further ones

ω(q) =
∞∑

n=0

q2n(n+1)

(q ; q2)2n+1

, υ(q) =
∞∑

n=0

qn(n+1)

(−q ; q2)n+1
, ρ(q) =

∞∑
n=0

q2n(n+1)(q ; q2)n+1

(q3; q6)n+1
, (2.4)

have the strong property (iv). This was accomplished by obtaining modular transformation
laws for all but χ(q) and ρ(q). The last two laws, found in [GM2], involve two more mf3’s

ξ(q) = 1 + 2
∞∑

n=1

q6n(n−1)

(q ; q6)n(q5; q6)n
, σ(q) =

∞∑
n=1

q3n(n−1)

(−q ; q3)n(−q2; q3)n
. (2.5)
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A more detailed account of transformation theory is given in §4 below.
Watson also proved a number of linear relations connecting the functions (2.1), such

as
4χ(q)− f(q) = 3θ24(0, q

3)(q)−1
∞ , (2.6)

where

θ4(z, q) =
∞∑

n=−∞
(−1)nqn2

e2inz.

In [W2], Watson went on to consider the ten fifth order functions (2.2). He was
unable to obtain transformation laws for these, so prodeeded differently. He first proved a
number of linear relations stated by Ramanjujan, such as

2ψ0(−q2)− f0(q) = θ4(0, q)G(q).

He also found and proved similar relations not stated by Ramanujan. Each relation has
three terms, one of which is a θf, while the other two are of the form qrµ(±qs), with
functions µ(q) appearing in (2.2). Next Watson determined, directly from their definitions,
which of the functions (2.2) are bounded under radial approach to certain roots of unity.
Using the linear relations he then obtained strong approximations for all the functions
(2.2) with singularities at these and other roots of unity.

In [S], Selberg proved that Ramanujan’s functions (2.3) are strong mf’s. The trans-
formation theory was not yet available, and in contrast to orders 3 and 5, there are no
linear relations between the Fi. Thus a new approach was required. To deal with F0, for
example, Selberg obtained an identity of the form

F0(q) = A(q) + B(q)φ(q) + C(q), (2.7)

where A(q) and B(q) are θf’s, and φ(q) is the third order function listed in (2.1). He then
proved that C(q) is bounded under radial approach to every root of unity ζ. Since φ(q)
can be strongly approximated at ζ, equation (2.7) provides the required approximation to
F0(q) there. Similar identities for F1(q) and F2(q) show that they are also strong mf’s.

3. The Andrews-Hickerson era

The next major advances were made starting in the 1950’s. As noted above, Watson’s
paper [W1] showed that the mf3’s (2.1), (2.4) could be strongly approximated by θf’s at
every root of unity. This raised the possibility of applying the circle method to obtain
convergent or asymptotic series expansions for the Taylor coefficients of these mf’s. Such
an expansion for the partition function p(n), whose generating function

∞∑
n=0

p(n)qn = (q)−1
∞
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is a θf, had been found earlier by Hardy and Ramanujan [R1]. Subsequently H. Rademacher
[Ra] had improved their result by obtaining a convergent series expansion of p(n). Work
on mf3’s was begun by L. Dragonette [D], who selected the function

f(q) =
∞∑

n=0

a(n)qn

of (2.1) for detailed study. Watson’s paper [W1] gave only the transformation laws for f(q)
under the generators τ 7→ τ + 1 and τ 7→ −1/τ of the modular group Γ (where q = eπiτ ),
and Dragonette first needed to determine laws under all the transformations τ 7→ aτ+b

cτ+d of
Γ. After doing so, she used Cauchy’s formula

a(n) =
1

2πi

∫
C

f(q)
qn+1

dq ,

taking for C the circle |q| = e−
π
n . The next step was to divide C into Farey arcs of

order N = bn 1
2 c. With the aid of the transformation laws, in each arc f(q) was replaced

by another mf3 plus an “error term” (a Mordell integral), which was then estimated.
Evaluation of the resulting integrals over the arcs with centers e−

π
n +i πh

k (k fixed) lead to
an exponential sum λ(k) = λ(k, n) involving some unevaluated roots of unity εh,k. The
final result was the series

a(n) =
bn

1
2 c∑

k=1

λ(k) exp
(
π(n− 1

24 )
1
2 /k

√
6
)

k
1
2 (n− 1

24 )
1
2

+O(n
1
2 log n) . (3.1)

In [A], Andrews made a substantial improvement in evaluating both the “error terms”
and the εh,k. This enabled him to express λ(k) in terms of the exponential sum Ak(n)
appearing in the Hardy-Ramanujan series for p(n) [R1, pp. 284–285]. The improved result
is that for every ε > 0, the term O(n

1
2 log n) in (3.1) can be replaced by O(nε), and that

λ(k) =


1
2
(−1)

1
2 (k+1)A2k(n), k odd ,

1
2
(−1)

1
2 kA2k

(
n− 1

2
k
)
, k even.

Andrews conjectured that if expx is replaced by 2 sinhx in (3.1), and the resulting series
is extended to infinity, it converges to a(n). We will return to this in part II.

In 1976 Andrews discovered, in the mathematics library of Trinity College, Cambridge,
a notebook written by Ramanujan towards the end of his life. This important work has
come to be known as the Lost Notebook [R2]. In it, Ramanujan defined further mf’s, and
stated linear relations between them. We will discuss this in §5 below, dealing with mf’s
of even order.
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The Lost Notebook also lists ten identities satisfied by the mf5’s (2.2). These have
come to be known as the Mock Theta Conjectures. They can be uniformly stated with
the aid of the function

g3(x, q) =
∞∑

n=0

qn(n+1)

(x ; q)n+1(x−1q ; q)n+1
. (3.2)

The conjectures are:

f0(q) = −2q2g3(q2, q10) + θ4(0, q5)G(q) ,

F0(q)− 1 = qg3(q, q5)− qψ(q5)H(q2) ,

φ0(−q) = −qg3(q, q5) +
(q5; q5)∞G(q2)H(q)

H(q2)
,

ψ0(q) = q2g3(q2, q10) + q(q ; q10)∞(q9; q10)∞(q10; q10)∞H(q) ,

χ0(q)− 2 = 3qg3(q, q5)−
(q5; q5)∞G(q)2

H(q)
,



(3.3)

f1(q) = −2q3g3(q4, q10) + θ4(0, q5)H(q) ,

F1(q) = qg3(q2, q5) + ψ(q5)G(q2) ,

φ1(−q) = q2g3(q2, q5)−
q(q5; q5)∞G(q)H(q2)

G(q2)
,

ψ1(q) = q3g3(q4, q10) + (q3; q10)∞(q7; q10)∞(q10; q10)∞G(q) ,

χ1(q) = 3qg3(q2, q5) +
(q5; q5)∞H(q)2

G(q)
,



(3.4)

where

θ4(0, q) =
∞∑

n=−∞
(−1)nqn2

=
(q)∞

(−q ; q)∞
=

(q)2∞
(q2; q2)∞

,

ψ(q) =
∞∑

n=0

q
1
2 n(n+1) =

(q2; q2)∞
(q ; q2)∞

=
(q2; q2)2∞

(q)∞
,
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and G(q) and H(q) are the functions defined in (1.2). These identities were proved by
Hickerson [H1]. In this survey we will nonetheless refer to them, and other similar identities
which have since been proved, as mock theta “conjectures”.

The first step in proving (3.3) and (3.4) was taken by Andrews and F. Garvan [AG],
who showed that the identities (3.3) are all equivalent, as are the identities (3.4). This
reduced the problem to proving the identities for f0(q) and f1(q).

[Insert, constant terms etc.]

Analogous to the mock theta “conjectures” are the following identities for mf7’s stated
and proved by Hickerson [H2]:

F0(q)− 2 = 2qg3(q, q7)−
j(q3, q7)2

(q)∞
,

F1(q) = 2q2g3(q2, q7) +
qj(q, q7)2

(q)∞
,

F2(q) = 2q2g3(q3, q7) +
j(q2, q7)2

(q)∞
.

For each of the mf3’s κ(q) in (2.1), (2.4), (2.5), either κ(q) or κ(−q) has the form
Aqcg3(qa, qb) + T (q), where a, b and c are nonnegative integers and T (q) is a θf [GM3].
Indeed:

f(−q) = −4qg3(q, q4) +
(q2; q2)7∞

(q)3∞(q4; q4)3∞
,

φ(q) = −2qg3(q, q4) +
(q2; q2)7∞

(q)3∞(q4; q4)3∞
,

ψ(q) = qg3(q, q4) ,

χ(−q) = −qg3(q, q4) +
(q4; q4)3∞(q6; q6)3∞

(q2; q2)2∞(q3; q3)∞(q12; q12)2∞
,

ω(q) = g3(q, q2) ,

υ(q) = −qg3(q2, q4) +
(q4; q4)3∞
(q2; q2)2∞

,
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ρ(q) = −g3(q, q
2)

2
+

3(q6; q6)4∞
2(q2; q2)∞(q3; q3)2∞

,

ξ(q) = 1 + 2qg3(q, q6)

= q2g3(q3, q6) +
(q2; q2)4∞

(q)2∞(q6; q6)∞
,

σ(−q) = q2g3(q3, q12) +
(q2; q2)3∞(q12; q12)3∞

(q)∞(q4; q4)2∞(q6; q6)2∞
.

These identities can be viewed as third order mock theta “conjectures”.

4. Transformation theory

In discussing the approximation of mf’s near roots of unity, we have adhered to the
notation q = e−α, employed by Ramanujan and his early successors. This function maps
the right half-plane Re(α) > 0 onto the punctured disc 0 < |q| < 1. In the classical theory
of θf’s, as expounded for example in [TM] and [WW], it is customary to write instead
q = eπiτ , where Im(τ) > 0. Thus α = −πiτ . The variable τ is then subjected to the
transformations

τ 7→ Aτ =
aτ + b

cτ + d
,

where a, b, c, d are integers with ad − bc = 1. These transformations form the modular
group Γ; it is generated by

Tτ = τ + 1, Sτ = −1/τ = τ1 .

These generators map q = eπiτ to −q and to q1 = eπiτ1 = e−πi/τ , respectively. Equiva-
lently, we have q1 = e−β , where αβ = π2.

When a function W (q) is being considered as a function of τ , it is customary to denote
it by W (τ). The transformation laws for an mf M(τ) express M(Aτ) (where A ∈ Γ) in
terms of another mf M∗(τ) and a Mordell integral, to be defined below. Since Watson’s
fundamental paper [W1], it has become standard to write two laws for each M(q), one
expressing M(q) in terms of M∗(cqr

1
) (where c = ±1 and r is a rational number) and a

Mordell integral, and the other doing the same forM(−q). For example, the transformation
laws for the mf3 f(q) are given by

q−
1
24 f(q) =

√
8π
α
q

4
3
1 ω(q2

1
) +

√
24α
π

∫ ∞

0

e−
3
2 αx2 sinhαx

sinh3
2αx

dx ,

q−
1
24 f(−q) = −

√
π

α
q
− 1

24
1 f(−q1) +

√
24α
π

∫ ∞

0

e−
3
2 αx2 cosh 5

2αx+ cosh1
2αx

cosh 3αx
dx ,
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where ω(q) is another mf3. (The usual notation for modular forms F (τ) has F (Aτ) on the
left and F ∗(τ) on the right.)

The transformation laws for g3(qa, qb) (where a and b are integers with b > 0 and a 6≡ 0
(mod b)) are stated in [GM2]. In particular, we proved that for nonintegral rational
numbers r,

q
3
2 r(1−r)− 1

24 g3(qr, q) =
√

π

2α
csc(πr)q−

1
6

1 h3(e2πir, q4
1
)

−
√

3α
2π

∫ ∞

0

e−
3
2 αx2 cosh(3r − 1)αx+ cosh(3r − 2)αx

cosh 3
2αx

dx , (4.1)

where

h3(y, q) =
∞∑

n=0

qn2

(yq ; q)n(y−1q ; q)n
. (4.2)

A transformation law with g3(qa, qb) on the left is obtained by putting r = a/b and
replacing q by qb (hence q1 becomes q1/b

1 and α becomes bα). This law shows that g3(qa, qb)
and h3(e2πia/b, q) are mf’s. The transformation law for g3((−q)a, (−q)b), also stated in
[GM2], depends on the parity of a and b.

The transformation laws for the mf3’s, mf5’s and mf7’s can be obtained from the
transformation laws for g3(qa, qb) and g3((−q)a, (−q)b) using the mock theta “conjectures”
of §3. The explicit laws are found in [W1] and [GM2].

We now outline a proof of (4.1). The first step is to show that

g3(qr, q) =
1

(q)∞

∞∑
n=−∞

(−1)nq
3
2 n(n+1)

1− qn+r
(4.3)

and

h3(e2πir, q) =
4 sin2πr

(q)∞

∞∑
n=−∞

(−1)nq
1
2 n(3n+1)

(1− e2πirqn)(1− e−2πirqn)
. (4.4)

The series here are called generalized Lambert series. As in [GM2, pp. 196–198], equa-
tions (4.3) and (4.4) are obtained from the Watson-Whipple transformation [GR, p. 242,
(III.17)]. The transformation law (4.1) is obtained from (4.3) using contour integration
and the saddle-point method. This technique can be applied more generally to the series

uk(x, q) =
∞∑

n=−∞

(−1)nq
1
2 kn(n+1)

1− xqn
, (4.5)

where x = qr and k is a positive integer. Application of the saddle-point method to the
integral

1
2πi

( ∫ +∞−εi

−∞−εi

+
∫ −∞+εi

+∞+εi

)
π

sinπz
e−

1
2 kαz(z+1)

1− e−α(z+r)
dz



– 12 –

leads to the transformation law

q
1
2 kr(1−r)uk(qr, q) =

4π
α

sin(πr) vk(e2πir, q4
1
)

−
√
kα

2π

k−1∑
m=1

q
(k−2m)2

8k j(qm, qk)
∫ ∞

0

e−
1
2 kαx2 cosh(kr −m)αx

cosh 1
2kαx

dx ,

(4.6)

where

vk(y, q) =
∞∑

n=−∞

(−1)knq
1
2 n(kn+1)

(1− yqn)(1− y−1qn)
(4.7)

and j(x, q) is defined in (1.5). From this law it follows that uk(qr, q)/j(qh, qk) is an mf for
integers h, k with 0 < h < k.

When k = 1, 2 or 3, the Watson-Whipple transformation can be used to express
uk(x, q) and vk(y, q) in Eulerian form:

u1(x, q) =
(q)3∞
j(x, q)

,

u2(x, q) =
(q)2∞

(q2; q2)∞
g2(x, q) = j(q, q2)g2(x, q) ,

u3(x, q) = (q)∞g3(x, q) = j(q, q3)g3(x, q) ,

v1(y, q) =
(q)2∞

(y ; q)∞(y−1; q)∞
,

v2(y, q2) =
(q2; q2)2∞h2(y, q)

(q)∞(1− y)(1− y−1)
,

v3(y, q) =
(q)∞h3(y, q)

(1− y)(1− y−1)
,



(4.8)

where

g2(x, q) =
∞∑

n=0

q
1
2 n(n+1)(−q ; q)n

(x ; q)n+1(x−1q ; q)n+1
, (4.9)

h2(y, q) =
∞∑

n=0

(−1)nqn2
(q ; q2)n

(yq2; q2)n(y−1q2; q2)n
. (4.10)

A more detailed study of the functions g2(x, q) and h2(y, q) is found in [M3].
When k = 1, there is no Mordell integral in (4.6), which says that

q
1
2 r(1−r)u1(qr, q) =

4π
α

sin(πr) v1(e2πir, q4
1
) .
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By (4.8), this becomes

q
1
2 r(1−r)(q)2∞

(qr ; q)∞(q1−r ; q)∞
=

4π
α

sin(πr)
(q4

1
; q4

1
)2∞

(e2πir; q4
1
)∞(e−2πir; q4

1
)∞

,

a transformation law for a θf.
When k = 2, (4.6) simplifies to

qr(1−r)u2(qr, q) =
4π
α

sin(πr) v2(e2πir, q4
1
)−

√
α

π

(q)2∞
(q2; q2)∞

∫ ∞

0

e−αx2 cosh(2r − 1)αx
coshαx

dx .

(4.11)
By the functional equation of the Dedekind η-function we get

q
1
24 (q)∞ =

√
2π
α
q

1
6
1 (q4

1
; q4

1
)∞ . (4.12)

Hence
(q)2∞

(q2; q2)∞
=

√
4π
α

q
1
4
1 (q4

1
; q4

1
)2∞

(q2
1
; q2

1
)∞

. (4.13)

Dividing (4.11) by (4.13), and using (4.8), we obtain

qr(1−r)g2(qr, q) =

√
4π
α

sin(πr)
q
− 1

4
1 h2(e2πir, q2

1
)

(1− e2πir)(1− e−2πir)
−

√
α

π

∫ ∞

0

e−αx2 cosh(2r − 1)αx
coshαx

dx .

Since (1− e2πir)(1− e−2πir) = 2− 2 cos 2πr = 4 sin2πr, the above formula simplifies to

qr(1−r)g2(qr, q) =
√

π

4α
csc(πr) q−

1
4

1 h2(e2πir, q2
1
)−

√
α

π

∫ ∞

0

e−αx2 cosh(2r − 1)αx
coshαx

dx .

(4.14)
When k = 3, (4.6) becomes

q
3
2 r(1−r)u3(qr, q) =

4π
α

sin(πr) v3(e2πir, q4
1
)

−
√

3α
2π

q
1
24 (q)∞

∫ ∞

0

e−
3
2 αx2 cosh(3r − 1)αx+ cosh(3r − 2)αx

cosh 3
2αx

dx ,

since j(q, q3) = j(q2, q3) = (q)∞. Dividing by (4.12), and using (4.8), we obtain

q
3
2 r(1−r)− 1

24 g3(qr, q) =

√
8π
α

sin(πr)
q
− 1

6
1 h3(e2πir, q4

1
)

(1− e2πir)(1− e−2πir)

−
√

3α
2π

∫ ∞

0

e−
3
2 αx2 cosh(3r − 1)αx+ cosh(3r − 2)αx

cosh 3
2αx

dx

=
√

π

2α
csc(πr) q−

1
6

1 h3(e2πir, q4
1
)

−
√

3α
2π

∫ ∞

0

e−
3
2 αx2 cosh(3r − 1)αx+ cosh(3r − 2)αx

cosh 3
2αx

dx ,
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which is (4.1).

5. The mock theta functions of even order

In §3 we observed that the mf’s of odd order are related to the function g3(x, q) of
(3.2). It turns out that the mf’s of even order are similarly related to the function

g2(x, q) =
∞∑

n=0

q
1
2 n(n+1)(−q ; q)n

(x ; q)n+1(x−1q ; q)n+1

of (4.9).
We begin with the mf2’s:

A(q) =
∞∑

n=0

q(n+1)2(−q ; q2)n

(q ; q2)2n+1

=
∞∑

n=0

qn+1(−q2; q2)n

(q ; q2)n+1
,

B(q) =
∞∑

n=0

qn(n+1)(−q2; q2)n

(q ; q2)2n+1

=
∞∑

n=0

qn(−q ; q2)n

(q ; q2)n+1
,

µ(q) =
∞∑

n=0

(−1)nqn2
(q ; q2)n

(−q2; q2)2n
.



(5.1)

The function µ(q) appears several times in the Lost Notebook [R2, (3.1), (3.4), (3.8), (3.9),
(3.11), (3.13) with a = 1]. It is related to A(q) by the identity [A1, (3.28)]:

µ(q) + 4A(−q) =
(q)5∞

(q2; q2)4∞
.

The mock theta “conjectures” of order 2 are [GM3]:

A(q2) = qg2(q, q4)− q(−q2; q2)∞(−q4; q4)2∞(q8; q8)∞ ,

B(q) = g2(q, q2) ,

µ(q4) = −2qg2(q, q2) +
(q2; q2)∞(q4; q4)3∞(q8; q8)∞

(q)2∞(q16; q16)2∞
.

 (5.2)

These are not needed to prove the modular transformation laws, which are [A1, (4.7),
(4.8)], [M1, p. ?]:

q−
1
8A(q) =

√
π

16α
q
− 1

8
1 µ(−q1)−

√
α

2π
K(α) ,

q−
1
8A(−q) =

√
π

2α
q

1
2
1 B(−q1)−

√
α

8π
J
(α

2

)
,

q−
1
8µ(q) =

√
8π
α
q

1
2
1 B(q1) +

√
2α
π
J
(α

2

)
,


(5.3)
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where q = e−α and q1 = e−β with αβ = π2. The Mordell integrals J , K and their
inversions are

J(α) =
∫ ∞

0

e−αx2

coshαx
dx , J(β) =

√
α3

π3
J(α) ,

K(α) =
∫ ∞

0

e−
1
2 αx2 cosh 1

2αx

coshαx
dx , K(β) =

√
α3

π3
K(α) .

We turn next to mf6’s, ten of which have been identified and studied thus far [AH],
[M4]. They are the following:

β(q) =
∞∑

n=0

q3n2+3n+1

(q ; q3)n+1(q2; q3)n+1
= qg3(q, q3) , (5.4)

γ(q) =
∞∑

n=0

qn2
(q)n

(q3; q3)n
= h3(q, q3) , (5.5)

φ(q) =
∞∑

n=0

(−1)nqn2
(q ; q2)n

(−q ; q)2n
, ψ(q) =

∞∑
n=0

(−1)nq(n+1)2(q ; q2)n

(−q ; q)2n+1
,

ρ(q) =
∞∑

n=0

qn(n+1)/2(−q ; q)n

(q ; q2)n+1
, σ(q) =

∞∑
n=0

q(n+1)(n+2)/2(−q ; q)n

(q ; q2)n+1
,

λ(q) =
∞∑

n=0

(−1)nqn(q ; q2)n

(−q ; q)n
, µ(q) =

∞∑
n=0

(−1)n(q ; q2)n

(−q ; q)n
,


(5.6)

ν(q) =
∞∑

n=0

qn+1(−q ; q)2n+1

(q ; q2)n+1
, ξ(q) =

∞∑
n=0

qn+1(−q ; q)2n

(q ; q2)n+1
. (5.7)

The series defining µ(q) converges in the Cesàro (C,1) sense. In fact the sequence of its
even partial sums converges, as does the sequence of its odd partial sums; µ(q) is the
average of their limits. The functions (5.5) and (5.6) are in the Lost Notebook, while (5.4)
and (5.7) arise in the modular transformation laws [M4]. In view of their expressions in
terms of g3(x, q) and h3(x, q), a case can be made for designating β(q) and γ(q) as mf3’s.

Ramanujan listed five linear relations connecting mf6’s:

q−1ψ(q2) + ρ(q) = (−q ; q2)2∞j(−q, q6) ,
φ(q2) + 2σ(q) = (−q ; q2)2∞j(−q3, q6) ,

2φ(q2)− 2µ(−q) = (−q ; q2)2∞j(−q3, q6) ,
2q−1ψ(q2) + λ(−q) = (−q ; q2)2∞j(−q, q6) ,

3φ(q)− 2γ(q) =
j(q, q2)2

j(−q, q3)
.


(5.8)
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Additional relations include [M4]

ν(q2)− σ(−q) =
q(q4; q4)2∞(q12; q12)2∞
(q2; q2)2∞(q6; q6)∞

,

2q−1ξ(q2) + ρ(−q) =
(q4; q4)3∞(q6; q6)2∞

(q2; q2)3∞(q12; q12)∞
,

φ(q3) + 2q−1ψ(q3) + 2β(q) =
(q2; q2)∞(q3; q3)5∞

(q)2∞(q6; q6)3∞
,


(5.9)

and the mock theta “conjectures”

φ(q4) =
(q2; q2)3∞(q3; q3)2∞(q12; q12)3∞

(q)2∞(q6; q6)3∞(q8; q8)∞(q24; q24)∞
− 2qg2(q, q6) ,

ψ(q4) =
q3(q2; q2)2∞(q4; q4)∞(q24; q24)2∞

(q)∞(q3; q3)∞(q8; q8)2∞
− q3g2(q3, q6) .


(5.10)

With the aid of (5.8)–(5.10), all the mf6’s (5.4)–(5.7) can be expressed in terms of g2(x, q)
and θf’s.

The modular transformation laws for β(q) and γ(q) are:

q−
1
8 β(q) =

√
2π
9α

q
− 1

18
1 γ(q

4
3
1 )−

√
81α
8π

[
J
(9α

2

)
+

1
9
J
(α

2

)]
,

q−
1
8 β(−q) = −

√
π

9α
q
− 1

72
1 γ(−q

1
3
1 ) +

√
81α
2π

[
K(9α)− 1

9
K(α)

]
,

q−
1
24 γ(q) =

√
6π
α
q
− 1

6
1 β(q

4
3
1 ) +

√
27α
2π

J1

(3α
2

)
,

q−
1
24 γ(−q) = −

√
3π
α
q
− 1

24
1 β(−q

1
3
1 ) +

√
27α
2π

K1(3α) ,

where

J1(α) =
1
2
J(α) +

1
6
J
(α

9

)
=

∫ ∞

0

e−αx2 cosh 2
3αx

coshαx
dx

and

K1(α) =
1
3
K

(α
9

)
−K(α) =

∫ ∞

0

e−
1
2 αx2 cosh 5

6αx− cosh1
6αx

coshαx
dx .
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The transformation laws for (5.6) and (5.7) are more complex than those for β(q) and γ(q).
They are:

q−
1
36φ(q

2
3 ) =

√
4π
α
q
− 1

4
1 [q1ρ(q

3
1) + σ(q31)] +

√
4α
π
J1(α) ,

q−
1
72φ(−q 1

3 ) =
√
π

α
q
− 9

8
1 [q1φ(−q31)− 2ψ(−q31)] +

√
2α
π
K1(α) ,

q−
1

/4ψ(q
2
3 ) = −

√
π

α
q
− 1

4
1 [q1ρ(q

3
1)− 2σ(q31)] +

√
α

π
J(α) ,

q−
1
8ψ(−q 1

3 ) = −
√
π

α
q
− 9

8
1 [q1φ(−q31) + ψ(−q31)] +

√
2α
π
K(α) ,

q
1
6 ρ(q

2
3 ) =

√
π

2α
q
− 9

8
1 [q1φ(q31)− ψ(q31)]−

√
2α
π
J(2α) ,

q
1
12 ρ(−q 1

3 ) =
√
π

α
q
− 1

4
1 [q1ρ(−q

3
1) + 2σ(−q31)] +

√
α

π
J(α) ,

q−
1
18σ(q

2
3 ) =

√
π

8α
q
− 9

8
1 [q1φ(q31) + 2ψ(q31)]−

√
2α
π
J1(2α) ,

q−
1
36σ(−q 1

3 ) =
√
π

α
q
− 1

4
1 [q1ρ(−q

3
1)− σ(−q31)]−

√
α

π
J1(α) ,

q
1
6λ(q

2
3 ) =

√
8π
α
q
− 9

8
1 [q1ν(q

3
1)− ξ(q31)] +

√
α

8π
J(2α) ,

q
1
12λ(−q 1

3 ) =
√
π

α
q
− 1

4
1 [q1λ(−q31) + 2µ(−q31)]−

√
4α
π
J(α) ,

q−
1
18µ(q

2
3 ) =

√
2π
α
q
− 9

8
1 [q1ν(q

3
1) + 2ξ(q31)] +

√
8α
π
J1(2α) ,

q−
1
36µ(−q 1

3 ) =
√
π

α
q
− 1

4
1 [q1λ(−q31)− µ(−q31)] +

√
4α
π
J1(α) ,

q−
1
36 ν(q

2
3 ) =

√
π

4α
q
− 1

4
1 [q1λ(q31) + µ(q31)]−

√
α

π
J1(α) ,

q−
1
72 ν(−q 1

3 ) =
√
π

α
q
− 9

8
1 [q1ν(−q

3
1)− 2ξ(−q31)]−

√
α

2π
K1(α) ,
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q−
1
4 ξ(q

2
3 ) = −

√
π

16α
q
− 1

4
1 [q1λ(q31)− 2µ(q31)]−

√
α

4π
J(α) ,

q−
1
8 ξ(−q 1

3 ) = −
√
π

α
q
− 9

8
1 [q1ν(−q

3
1) + ξ(−q31)]−

√
α

2π
K(α) .

Continuing on, we come next to mf8’s [GM1]:

S0(q) =
∞∑

n=0

qn2
(−q ; q2)n

(−q2; q2)n
, S1(q) =

∞∑
n=0

qn(n+2)(−q ; q2)n

(−q2; q2)n
,

T0(q) =
∞∑

n=0

q(n+1)(n+2)(−q2; q2)n

(−q ; q2)n+1
, T1(q) =

∞∑
n=0

qn(n+1)(−q2; q2)n

(−q ; q2)n+1
.


(5.11)

They satisfy the linear relations ([GM1], [GM2, p. 222])

S0(q) + 2T0(q) =
∞∑

n=−∞

qn2
(−q ; q2)n

(−q2; q2)n
=

1
2

[
(−q 1

2 ; q)3∞ + (q
1
2 ; q)3∞

]
θ4(0, q) ,

S1(q) + 2T1(q) =
∞∑

n=−∞

qn(n+2)(−q ; q2)n

(−q2; q2)n
=

1
2
q−

1
2

[
(−q 1

2 ; q)3∞ − (q
1
2 ; q)3∞

]
θ4(0, q) ,

and the mock theta “conjectures” [GM3]

S0(−q2) =
j(−q, q2)j(q6, q16)

j(q2; q8)
− 2qg2(q, q8) ,

S1(−q2) =
j(−q, q2)j(q2, q16)

j(q2, q8)
− 2qg2(q3, q8) .

The transformation laws for (5.11) involve the functions

U0(q) =
∞∑

n=0

qn2
(−q ; q2)n

(−q4; q4)n
= S0(q2) + qS1(q2) ,

U1(q) =
∞∑

n=0

q(n+1)2(−q ; q2)n

(−q2; q4)n+1
= T0(q2) + qT1(q2) ,

V0(q) = −1 + 2
∞∑

n=0

qn2
(−q ; q2)n

(q ; q2)n
,

V1(q) =
∞∑

n=0

q(n+1)2(−q ; q2)n

(q ; q2)n+1
.
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The complete set of laws reads as follows [GM1]:

q−
1
16S0(q) =

√
π

4α
V0(q1) +

√
2π
α
q
− 1

4
1 V1(q1) +

√
4α
π
K3(α) ,

q
7
16S1(q) =

√
π

4α
V0(q1)−

√
2π
α
q
− 1

4
1 V1(q1)−

√
4α
π
K2(α) ,

q−
1
16T0(q) =

√
π

16α
V0(−q1)−

√
π

2α
q
− 1

4
1 V1(−q1)−

√
α

π
K3(α) ,

q
7
16T1(q) =

√
π

16α
V0(−q1) +

√
π

2α
q
− 1

4
1 V1(−q1) +

√
α

π
K2(α) ,

q−
1
16S0(−q) =

√
π(2−

√
2)

α
q
− 1

16
1 T0(−q1) +

√
π(2 +

√
2)

α
q

7
16
1 T1(−q1) +

√
4α
π
J3(α) ,

q
7
16S1(−q) =

√
π(2 +

√
2)

α
q
− 1

16
1 T0(−q1)−

√
π(2−

√
2)

α
q

7
16
1 T1(−q1) +

√
4α
π
J2(α) ,

q−
1
16T0(−q) =

√
π(2−

√
2)

16α
q
− 1

16
1 S0(−q1) +

√
π(2 +

√
2)

16α
q

7
16
1 S1(−q1)−

√
α

π
J3(α) ,

q
7
16T1(−q) =

√
π(2 +

√
2)

16α
q
− 1

16
1 S0(−q1)−

√
π(2−

√
2)

16α
q

7
16
1 S1(−q1)−

√
α

π
J2(α) ,

q−
1
8U0(q) =

√
π

2α
V0(q

1
2
1 ) +

√
α

2π
J
(α

2

)
,

q−
1
8U1(q) =

√
π

8α
V0(−q

1
2
1 )−

√
α

8π
J
(α

2

)
,

V0(q) =
√
π

α
q
− 1

16
1 U0(q

1
2
1 )−

√
16α
π
J(4α) ,

q−
1
4V1(q) =

√
π

8α
q
− 1

16
1 U0(−q

1
2
1 )−

√
α

π
K(2α) ,

q−
1
8U0(−q) =

√
4π
α
q
− 1

8
1 V1(q

1
2
1 ) +

√
2α
π
K(α) ,

q−
1
8U1(−q) = −

√
π

α
q
− 1

8
1 V1(−q

1
2
1 )−

√
α

2π
K(α) ,
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V0(−q) =

√
4π
α
q
− 1

16
1 U1(q

1
2
1 ) +

√
16α
π
J(4α) ,

q−
1
4V1(−q) = −

√
π

2α
q
− 1

16
1 U1(−q

1
2
1 )−

√
α

π
K(2α) .

Here the Mordell integrals J2, J3, K2, K3 are

J2(α) =
∫ ∞

0

e−αx2 cosh 1
2αx

cosh 2αx
dx , J3(α) =

∫ ∞

0

e−αx2 cosh 3
2αx

cosh 2αx
dx ,

K2(α) =
∫ ∞

0

e−αx2 sinh 1
2αx

sinh 2αx
dx , K3(α) =

∫ ∞

0

e−αx2 sinh 3
2αx

sinh 2αx
dx .

In view of the last eight transformation laws, a case can be made for regarding U0(q),
U1(q), V0(q), V1(q) as mf2’s. Indeed, the relevant Mordell integrals are the same as those
in (5.3).

In [M1] it is shown that V1(q) is equal to the function

λ(q) =
∞∑

n=0

qn+1(−q)2n

(−q2; q4)n+1
,

found on page 8 of the Lost Notebook (see also [A1, (3.21)] and [AB, (12.5.3)]).
The functions Ui(q) and Vj(q) satisfy the linear relations ([GM1] and [M1]):

U0(q) + 2U1(q) = (q)∞(−q ; q2)4∞ ,

V0(q) + V0(−q) = 2(−q2; q4)4∞(q8; q8)∞ ,

V1(q)− V1(−q) = 2q(−q2; q2)∞(−q4; q4)2∞(q8; q8)∞ ,

 (5.12)

and are connected to the mf2’s (5.1) by

U0(q)− 2U1(q) = µ(q) ,

V0(q)− V0(−q) = 4qB(q2) ,

V1(q) + V1(−q) = 2A(q2) ,

 (5.13)

proved in [M1]. Combining (5.12) and (5.13), we obtain

2U0(q) = (q)∞(−q ; q2)4∞ + µ(q) ,

4U1(q) = (q)∞(−q ; q2)4∞ − µ(q) ,

V0(q) = (−q2; q4)4∞(q8; q8)∞ + 2qB(q2) ,

V1(q) = q(−q2; q2)∞(−q4; q4)2∞(q8; q8)∞ +A(q2) .

 (5.14)

Identities (5.14), together with (5.2), yield mock theta “conjectures” for Ui(q) and Vj(q).
For example, V1(q) = qg2(q, q4), proved in [GM1. pp. 322–324].
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Finally, we turn to mf10’s, four of which appear on page 9 of the Lost Notebook:

φ(q) =
∞∑

n=0

q
1
2 n(n+1)

(q ; q2)n+1
, ψ(q) =

∞∑
n=0

q
1
2 (n+1)(n+2)

(q ; q2)n+1
,

X(q) =
∞∑

n=0

(−1)nqn2

(−q)2n
, χ(q) =

∞∑
n=0

(−1)nq(n+1)2

(−q)2n+1
.

 (5.15)

Ramanujan listed eight linear relations connecting these functions:

φ(q)− q−1ψ(−q4) + q−2χ(q8) = · · · ,

ψ(q) + qφ(−q4) +X(q8) = · · · .

These relations are proved in [C1]–[C4].
The mock theta “conjectures” of order 10 are:

φ(q) =
(q10; q10)2∞j(−q2, q5)
(q5; q5)∞j(q2, q10)

+ 2qg2(q2, q5) ,

ψ(q) = −q(q
10; q10)2∞j(−q, q5)

(q5; q5)∞j(q4, q10)
+ 2qg2(q, q5) ,

X(−q2) =
(q4; q4)2∞

(
j(−q2, q20)2j(q12, q40) + 2q(q40; q40)3∞

)
(q2; q2)∞(q20; q20)∞(q40; q40)∞j(q8, q40)

− 2qg2(q, q20) + 2q5g2(q9, q20) ,

χ(−q2) =
q2(q4; q4)2∞

(
2q(q40; q40)3∞ − j(−q6, q20)2j(q4, q40)

)
(q2; q2)∞(q20; q20)∞(q40; q40)∞j(q16, q40)

− 2q3g2(q3, q20)− 2q5g2(q7, q20) .



(5.16)

The first two are proved in [C, pp. 533–534] and the last two in [GM3].
The transformation laws for (5.15) are:

q
1
5φ(q) =

√
π(5 +

√
5)

10α
q
− 1

20
1 X(q2

1
)−

√
π(5−

√
5)

10α
q
− 9

20
1 χ(q2

1
)−

√
20α
π
J4(α) ,

q
1
5φ(−q) =

√
π(5 +

√
5)

10α
q

1
5
1 φ(−q1) +

√
π(5−

√
5)

10α
q
− 1

5
1 ψ(−q1) +

√
20α
π
K4(α) ,
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q−
1
5ψ(q) =

√
π(5−

√
5)

10α
q
− 1

20
1 X(q2

1
) +

√
π(5 +

√
5)

10α
q
− 9

20
1 χ(q2

1
)−

√
20α
π
J5(α) ,

q−
1
5ψ(−q) =

√
π(5−

√
5)

10α
q

1
5
1 φ(−q1)−

√
π(5 +

√
5)

10α
q
− 1

5
1 ψ(−q1)−

√
20α
π
K6(α) ,

q−
1
40X(q) =

√
π(5 +

√
5)

5α
q

2
5
1 φ(q2

1
) +

√
π(5−

√
5)

5α
q
− 2

5
1 ψ(q2

1
) +

√
10α
π
K7

(α
2

)
,

q−
1
40X(−q) =

√
π(5−

√
5)

10α
q
− 1

40
1 X(−q1)−

√
π(5 +

√
5)

10α
q
− 9

40
1 χ(−q1) +

√
40α
π
J6(α) ,

q−
9
40χ(q) = −

√
π(5−

√
5)

5α
q

2
5
1 φ(q2

1
) +

√
π(5 +

√
5)

5α
q
− 2

5
1 ψ(q2

1
) +

√
10α
π
K5

(α
2

)
,

q−
9
40χ(−q) = −

√
π(5 +

√
5)

10α
q
− 1

40
1 X(−q1)−

√
π(5−

√
5)

10α
q
− 9

40
1 χ(−q1) +

√
40α
π
J7(α) ,

where as usual q = e−α and q1 = e−β with αβ = π2. The Mordell integrals Jn and Kn

(n = 4, 5, 6, 7) are:

J4(α) =
∫ ∞

0

e−5αx2 coshαx
cosh 5αx

dx , J5(α) =
∫ ∞

0

e−5αx2 cosh 3αx
cosh 5αx

dx ,

J6(α) =
∫ ∞

0

e−10αx2 cosh 9αx− coshαx
cosh 10αx

dx ,

J7(α) =
∫ ∞

0

e−10αx2 cosh 7αx+ cosh 3αx
cosh 10αx

dx ,

K4(α) =
∫ ∞

0

e−5αx2 sinhαx
sinh 5αx

dx , K5(α) =
∫ ∞

0

e−5αx2 sinh 2αx
sinh 5αx

dx ,

K6(α) =
∫ ∞

0

e−5αx2 sinh 3αx
sinh 5αx

dx , K7(α) =
∫ ∞

0

e−5αx2 sinh 4αx
sinh 5αx

dx .

6. General relations between mock theta functions

In this section we consider how relations between mf’s can be found. One method is
to compare the Mordell integrals in their transformation laws. If two functions transform
with the same Mordell integral, their difference may well be a θf. If this difference is a
θ-product, an explicit formula for it can be found by computer algebra. Sometimes the
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difference is not itself a θ-product, but the even and odd parts of its Taylor series are. This
phenomenon leads to the last two mock theta “conjectures” in (5.16).

Comparison of the Mordell integrals in (4.1) and (4.11) suggests that

g3(q4r, q4)− q1−2rg2(q6r+1, q6)− q2r−1g2(q6r−1, q6)

is a θf. Computer algebra leads to the specific conjecture that

g3(x4, q4) =
qg2(x6q, q6)

x2
+
x2g2(x6q−1, q6)

q

− x2(q2; q2)3∞(q12; q12)∞j(x2q, q2)j(x12q6, q12)
q(q4; q4)∞(q6; q6)2∞j(x4, q2)j(x6q−1, q2)

. (6.1)

It was noted in §3 that the mf’s of odd order are related to g3(x, q), and in §5 that the
mf’s of even order are related to g2(x, q). By (6.1) and its limiting cases (discussed in §7)
we can express all of the classical mf’s in terms of g2(x, q). For this reason we can regard
g2(x, q) as a universal mock θ-function.

Identity (6.1) has a broad generalization, which we now develop. Recall the generalized
Lambert series

uk(x, q) =
∞∑

n=−∞

(−1)nq
1
2 kn(n+1)

1− xqn
, vk(y, q) =

∞∑
n=−∞

(−1)knq
1
2 n(kn+1)

(1− yqn)(1− y−1qn)

of (4.5), (4.7). It can be shown algebraically that

uk(x, q) =
∞∑

n=−∞

(−1)nq
1
2 kn(n+1)

(1− xqn)(1− x−1qn+1)
;

hence
uk(x, q) = uk(x−1q, q) , vk(y, q) = vk(y−1, q).

From the definition of uk(x, q) it is easily seen that

u2k(x, q) + u2k(−x, q) = 2uk(x2, q2) .

Somewhat more difficult to prove is the functional equation

uk(xq, q) = −xkuk(x, q)−
k−1∑
m=1

xmj(qm, qk) . (6.2)

For odd values of k, vk(x, q) is related to uk(x, q) by

(1− x)vk(x, q) = −x 1
2 (k+1)uk(x, q)−

1
2 (k−1)∑
m=1

x
1
2 (k+1)−mj(qm, qk) . (6.3)
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When k = 3, (6.3) says that

(1− x)v3(x, q) = −x2u3(x, q)− x(q)∞ ,

which is equivalent to
h3(x, q) = (1− x)(1 + xg3(x, q)) , (6.4)

by (4.8).
Another useful identity, valid for all positive integers k, is

∞∑
n=−∞

′ (−1)nq
1
2 kn(n+1)

1− qn
=

k−1∑
m=1

1− j(qm, qk)
2

, (6.5)

where the dash indicates that the term with n = 0 is to be omitted.
We can now state the general identities of which (6.1) is the special case k = 3. These

identities express uk(x, q) in terms of u2(x, q) (and hence in terms of the universal mf
g2(x, q)). They are as follows:

uk(x4, q4) = −x
2(q2; q2)3∞j(x

2k−4q, q2)j(x4kq2k, q4k)
qj(x4, q2)j(x2kq−1, q2)j(q2k, q4k)

+
k−1∑
m=1

qk−2mj(q4m, q4k)
x2k−4mj(q2k, q4k)

u2(x2kqk−2m, q2k) , k odd , (6.6)

uk(x4, q4) = −x
4(q2; q2)3∞j(x

2k−4, q2)j(x4kq2k, q4k)
q2j(x4, q2)j(x2kq−2, q2)j(q2k, q4k)

+
k−1∑
m=1

qk−2mj(q4m, q4k)
x2k−4mj(q2k, q4k)

u2(x2kqk−2m, q2k) , k even . (6.7)

These identities are proved by showing that both sides satisfy the same functional equation,
and that their difference has only removable singularities for q fixed and x 6= 0.

When k = 3, (6.6) becomes

u3(x4, q4) =
qj(q4, q12)
x2j(q6, q12)

u2(x6q, q6) +
x2j(q4, q12)
qj(q6, q12)

u2(x6q−1, q6)

− x2(q2; q2)3∞j(x
2q, q2)j(x12q6, q12)

qj(x4, q2)j(x6q−1, q2)j(q6, q12)
, (6.8)

since j(q8, q12) = j(q4, q12). It follows from (4.8) and (4.12) that

u2(x6q±1, q6) =
(q6; q6)2∞

(q12; q12)∞
g2(x6q±1, q6) = j(q6, q12)g2(x6q±1, q6)
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and
u3(x4, q4) = (q4; q4)∞g3(x4, q4) = j(q4, q12)g3(x4, q4).

Substituting these expressions for u2 and u3 into (6.8), we obtain (6.1).

7. Singular cases of the general relations

As already remarked, identities (6.6) and (6.7) hold whenever all the terms are defined.
These terms, regarded as functions of x with q fixed, are meromorphic for x 6= 0. At their
poles, which are all simple, (6.6), (6.7) become identities between Laurent series. By
equating the constant terms in the Laurent series of the two sides, we obtain a set of
identities which we call singular cases.

The left sides of (6.6) and (6.7) are defined when x 6= 0 and x4q4n 6= 1 for any n ∈ Z.
For such x, the right sides of (6.6) and (6.7) are undefined when x = µq

m0
k − 1

2+n, where
µ2k = 1, 1 ≤ m0 ≤ k − 1 and n ∈ Z. In this case the product on the right side of either
(6.6) or (6.7) and the m’th term of the sum have simple poles of equal residues. The
constant terms of their Laurent series can be determined. For the m’th term of the sum
this is done using (6.5), and for the product, by logarithmic differentiation. This results
in identities of the form

uk(x4, q4) = T (x, q) +
k−1∑
m=1

m 6=m0

qk−2mj(q4m, q4k)
x2k−4mj(q2k, q4k)

u2(x2kqk−2m, q2k) , (7.1)

where x = µq
m0
k − 1

2+n, and T (x, q) is a θf.
For example, when k = 3 and m0 = 2, identity (7.1) becomes

u3(q
2
3 , q4) =

(q4; q4)∞(q6; q6)∞(q12; q12)∞
(q2; q2)∞

+
(q4; q4)2∞(q6; q6)4∞

2q
2
3 (q2; q2)2∞(q12; q12)2∞

− (q4; q4)∞
2q

2
3

+
q

2
3 j(q4, q12)
j(q6, q12)

u2(q2, q6) ,

or equivalently,

g3(q, q6) =
(q9; q9)∞(q18; q18)∞

(q3; q3)∞
+

(q6; q6)∞(q9; q9)4∞
2q(q3; q3)2∞(q18; q18)2∞

− 1
2q

+ qg2(q3, q9) . (7.2)

Ramanujan’s letter includes the identity

4h3(e
πi
3 , q)− h3(−1, q) =

3θ24(0, q
3)

(q)∞
,

proved by Watson [W1]. After modular transformation, this becomes

1 + 2qg3(q, q6)− q2g3(q3, q6) =
(q2; q2)4∞

(q)2∞(q6; q6)∞
. (7.3)
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Using (6.1) with q replaced by q
3
2 and z = q

3
4 , (7.3) can be written as

g3(q, q6) = − q(q18; q18)4∞
2(q6; q6)∞(q9; q9)2∞

+
(q2; q2)4∞

2q(q)2∞(q6; q6)∞
− 1

2q
+ qg2(q3, q9) . (7.4)

Equality of the θfs in (7.2) and (7.4) is not hard to prove. This alternate derivation of
(7.2) does not extend to a proof of (7.1) for k > 3.

It was noted in §3 that the classical mf’s of odd order can be expressed in terms of
g3(x, q) and θf’s. In §5, it was found that the functions of even order can be expressed
in terms of g2(x, q) and θf’s. By (6.6), (6.7), (7.1), all the classical mf’s have such an
expression using only g2(x, q) and θf’s. For this reason we can regard g2(x, q) as a universal
mf.

Another family of singular cases is obtained from (6.6) and (6.7) when x = µq−n,
where µ4 = 1 and n ∈ Z. Using (6.5) and logarithmic differentiation to calculate the
constant terms of their Laurent series, we get identities of the form

k−1∑
m=1

qk−2mj(q4m, q4k)
x2k−4mj(q2k, q4k)

u2(x2kqk−2m, q2k) = T (x, q) , k odd,

k−1∑
m=1

m 6=k/2

qk−2mj(q4m, q4k)
x2k−4mj(q2k, q4k)

u2(x2kqk−2m, q2k) = T (x, q) , k even,

where T (x, q) is a θf. These identities can also be proved using (6.2). More precisely,
repeated application of (6.2) shows that

qk−2m

x2k−4m
u2(x2kqk−2m, q2k) +

qk−2(k−m)

x2k−4(k−m)
u2(x2kqk−2(k−m), q2k)

=
qk−2m

x2k−4m
u2(x2kqk−2m, q2k) +

x2k−4m

qk−2m
u2(x2kq2m−k, q2k)

is a θf whenever x = µq−n.
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