
ADDITION AND COUNTING: THE ARITHMETIC OF PARTITIONS

Scott Ahlgren and Ken Ono

At first glance the stuff of partitions seems like child’s play:

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Therefore, there are 5 partitions of the number 4. But (as happens in Number Theory)
the seemingly simple business of counting the ways to break a number into parts leads
quickly to some difficult and beautiful problems. Partitions play important roles in
such diverse areas of mathematics as Combinatorics, Lie Theory, Representation Theory,
Mathematical Physics, and the theory of Special Functions, but we shall concentrate here
on their role in Number Theory (for which [A] is the standard reference).

In the beginning, there was Euler...

A partition of the natural number n is any non-increasing sequence of natural numbers
whose sum is n (by convention, we agree that p(0) = 1). The number of partitions of n is
denoted by p(n). Eighty years ago, Percy Alexander MacMahon, a major in the British
Royal Artillery and a master calculator, computed the values of p(n) for all n up to 200.
He found that

p(200) = 3, 972, 999, 029, 388,

and he did not count the partitions one-by-one:

200 = 199 + 1 = 198 + 2 = 198 + 1 + 1 = 197 + 3 = . . . . . . . . . . . . . . . .

Instead, MacMahon employed classical formal power series identities due to Euler.
To develop Euler’s recurrence we begin with the elementary fact that if |x| < 1, then

1
1− x

= 1 + x + x2 + x3 + x4 + . . . .
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Using this, Euler noticed that when we expand the infinite product

∞∏
n=1

1
1− xn

= (1 + x + x2 + x3 + . . . )(1 + x2 + x4 + . . . )(1 + x3 + x6 + . . . ) . . . ,

the coefficient of xn is equal to p(n) (think of the first factor as counting the number of
1s in a partition, the second as counting the number of 2s, and so on). In other words,
we have the generating function

∞∑
n=0

p(n)xn =
∞∏

n=1

1
1− xn

= 1 + x + 2x2 + 3x3 + 5x4 + . . . .

Moreover, Euler observed that the reciprocal of this infinite product satisfies a beautiful
identity (also known as Euler’s Pentagonal Number Theorem):

∞∏
n=1

(1− xn) =
∞∑

k=−∞

(−1)kx(3k2+k)/2 = 1− x− x2 + x5 + x7 − x12 − . . . .

These two identities show that( ∞∑
n=0

p(n)xn

)
·
(
1− x− x2 + x5 + x7 − x12 − . . .

)
= 1,

which in turn implies, for positive integers n, that

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + . . . .

This recurrence enabled MacMahon to perform his massive calculation.

Hardy-Ramanujan-Rademacher Asympototic Formula for p(n)

It is natural to ask about the size of p(n). The answer to this question is given by a
remarkable asymptotic formula, discovered by G. H. Hardy and Ramanujan in 1917 and
perfected by Hans Rademacher two decades later. This formula is so accurate that it can
actually be used to compute individual values of p(n); Hardy called it “one of the rare
formulae which are both asymptotic and exact.” It stands out further in importance since
it marks the birth of the circle method, which has grown into one of the most powerful
tools in analytic number theory.

Here we introduce Rademacher’s result. He defined explicit functions Tq(n) such that
for all n we have

p(n) =
∞∑

q=1

Tq(n).
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The functions Tq(n) are too complicated to write down here, but we mention that T1(n)
alone yields the asymptotic formula

p(n) ∼ 1
4n
√

3
eπ
√

2n/3.

(In their original work, Hardy and Ramanujan used slightly different functions in place
of the Tq(n). As a result, their analogue of the series

∑∞
q=1 Tq(n) was divergent, although

still useful.) Moreover, Rademacher computed precisely the error incurred by truncating
this series after Q terms. In particular, there exist explicit constants A and B such that∣∣∣∣∣∣p(n)−

A
√

n∑
q=1

Tq(n)

∣∣∣∣∣∣ < B

n1/4
.

Since p(n) is an integer, this determines the exact value of p(n) for large n. The rate
at which Rademacher’s series converges is remarkable; for example, the first eight terms
give the approximation

p(200) ≈ 3, 972, 999, 029, 388.004

(compare with the exact value computed by MacMahon).
To implement the circle method requires a detailed study of the analytic behavior of

the generating function for p(n). Recall that we have

F (x) :=
∞∑

n=0

p(n)xn =
1

(1− x)(1− x2)(1− x3) . . .
.

This is an analytic function on the domain |x| < 1. A natural starting point is Cauchy’s
Theorem, which gives

p(n) =
1

2πi

∫
C

F (x)
xn+1

dx,

where C is any simple closed counter-clockwise contour around the origin. One would
hope to adjust the contour in relation to the singularities of F (x) in order to obtain
as much information as possible about the integral. But consider for a moment these
singularities; they occur at every root of unity, forming an impenetrable barrier on the
unit circle. In our favor, however, it can be shown that the size of F (x) near a primitive
q-th root of unity diminishes rapidly as q increases; moreover the behavior of F (x) near
each root of unity can be described with precision. Indeed, with an appropriate choice
of C, the contribution to the integral from all of the primitive q-th roots of unity can
be calculated quite precisely. The main contribution is the function Tq(n); a detailed
analysis of the errors involved yields the complete formula.

The circle method has been of extraordinary importance over the last eighty years. It
has played a fundamental role in additive number theory (in Waring type problems, for
instance), analysis, and even the computation of black hole entropies.
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Ramanujan’s Congruences

After a moment’s reflection on the combinatorial definition of the partition function,
we have no particular reason to believe that it possesses any interesting arithmetic prop-
erties (the analytic formula of the last section certainly does nothing to change this
opinion). There is nothing, for example, which would lead us to think that p(n) should
exhibit a preference to be even rather than odd. A natural suspicion, therefore, might be
that the values of p(n) are distributed evenly modulo 2. A quick computation of the first
10,000 values confirms this suspicion; of these 10,000 values exactly 4,996 are even and
5,004 are odd. This pattern continues with 2 replaced by 3; of the first 10,000 values,
3,313, 3,325, and 3,362 (in each case almost exactly one-third) are congruent respectively
to 0, 1, and 2 modulo 3. When we replace 3 by 5, however, something quite different
happens; we discover that 3,611 (many more than the expected one-fifth) of the first
10,000 values of p(n) are divisible by 5. What is the explanation for this aberration?

The answer must have been clear to Ramanujan when he saw MacMahon’s table of
values of p(n). The table listed these values, starting with n = 0, in five columns. So
Ramanujan would have seen something like the following.

1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575

1958 2436 3010 3718 4565

What is striking, of course, is that every entry in the last column is a multiple of 5. This
phenomenon, which persists, explains the apparent aberration above, and was the first
of Ramanujan’s ground-breaking discoveries on the arithmetic of p(n). Here is his own
account.

“I have proved a number of arithmetic properties of p(n)...in particular that

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7).

...I have since found another method which enables me to prove all of these
properties and a variety of others, of which the most striking is

p(11n + 6) ≡ 0 (mod 11).

There are corresponding properties in which the moduli are powers of 5, 7, or
11... It appears that there are no equally simple properties for any moduli
involving primes other than these three.”
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Ramanujan proved these congruences in a series of papers (the proofs of the congru-
ences modulo 5 and 7 are quite ingenious but are not terribly difficult, while the proof
of the congruence modulo 11 is much harder). In these same papers he sketched proofs
of extensions of these congruences; for example,

p(25n + 24) ≡ 0 (mod 25),

p(49n + 47) ≡ 0 (mod 49).

Ramanujan noticed the beginnings of other patterns in these first 200 values:

p(116) ≡ 0 (mod 121), p(99) ≡ 0 (mod 125).

From such scant evidence, he made the following conjecture:

If δ = 5a7b11c and 24λ ≡ 1 (mod δ), then p(δn + λ) ≡ 0 (mod δ).

When δ = 125, for example, we have λ = 99. So Ramanujan’s conjecture is that

p(125n + 99) ≡ 0 (mod 125).

We note that the general conjecture follows easily from the cases when the moduli are
powers of 5, 7, or 11.

It is remarkable that Ramanujan was able to formulate a general conjecture based on
such little evidence, and therefore unsurprising that the conjecture was not quite correct
(in the 1930s Chowla and Gupta discovered the counterexample p(243) 6≡ 0 (mod 73)).
Much to Ramanujan’s credit, however, a slightly modified version of his conjecture is
indeed true; in particular we now know the following:

If δ = 5a7b11c and 24λ ≡ 1 (mod δ), then p(δn + λ) ≡ 0 (mod 5a7b
b
2 c+111c).

The task of assigning credit for the proofs of these conjectures when the modulus is
a power of 5 or 7 poses an interesting historical challenge. Typically, the proofs have
been attributed to G. N. Watson. Recently, however, the nature of Ramanujan’s own
contributions [R] has been greatly clarified. Indeed, a complete outline of the proof
modulo powers of 5, and a much rougher sketch for powers of 7 (so rough that it did
not yet reveal his error in the statement of the conjecture) is given by Ramanujan in
a long manuscript which he wrote in the three years preceding his death. In typical
fashion, Ramanujan provides in neither case complete details for all of his assertions.
This manuscript was apparently in Watson’s possession from 1928 until his death in
1965. Indeed, a copy of the manuscript in Watson’s handwriting (the whereabouts of the
original is unknown) resides in the library of Oxford’s Mathematical Institute. In any
event, it seems clear that Ramanujan deserves more credit than he has historically been
granted for these cases. By contrast, the case of powers of 11 is much more difficult; the
first published proof of Ramanujan’s conjectures in this case was given by A.O.L. Atkin
in 1967.
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Dyson’s Rank and Crank

The celebrated physicist Freeman Dyson, when he was a college student in 1944,
initiated an important subject in partition theory by discovering a delightfully simple
phenomenon which appeared to explain why

p(5n + 4) ≡ 0 (mod 5) and p(7n + 5) ≡ 0 (mod 7).

Dyson defined the rank of a partition to be the largest summand minus the number of
summands. Here, for example, are the partitions of 4 and their ranks:

Partition Rank
4 4− 1 ≡ 3 (mod 5),

3 + 1 3− 2 ≡ 1 (mod 5),
2 + 2 2− 2 ≡ 0 (mod 5),

2 + 1 + 1 2− 3 ≡ 4 (mod 5),
1 + 1 + 1 + 1 1− 4 ≡ 2 (mod 5).

Notice that the ranks of these partitions represent each residue class modulo 5 exactly
once. After computing many more examples, Dyson observed that, without exception,
numbers of the form 5n + 4 (respectively 7n + 5) have the property that their ranks
modulo 5 (respectively modulo 7) are equally distributed. More precisely, if 0 ≤ m < M
are integers and R(N,m, M) denotes the number of partitions of N with rank congruent
to m (mod M), then Dyson conjectured that

R(5n + 4,m, 5) =
1
5
· p(5n + 4) for 0 ≤ m ≤ 4,

R(7n + 5,m, 7) =
1
7
· p(7n + 5) for 0 ≤ m ≤ 6.

The truth of these conjectures would provide a simple and elegant combinatorial expla-
nation for Ramanujan’s congruences. Dyson’s speculation was confirmed ten years later
by Atkin and H. P. F. Swinnerton-Dyer in a wonderful paper which combines classical
combinatorial arguments with techniques from the theory of modular functions.

Unfortunately, Dyson’s rank does not seem to enjoy such simple properties for primes
other than 5 and 7. However, he conjectured the existence of another natural statistic,
the crank, which explains the congruence

p(11n + 6) ≡ 0 (mod 11).

In the late 1980s, George E. Andrews and Frank Garvan found such a crank [A-G, G].
Further work of Garvan, Dongsu Kim and Dennis Stanton [G-K-S] has produced for the
congruences with modulus 5, 7, 11 and 25 combinatorial interpretations which are rooted
in the modular representation theory of the symmetric group.
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Atkin’s Examples

We return to Ramanujan’s intuition that there are no simple arithmetic properties
for p(n) when the modulus involves primes greater than 11. Ramanujan seems to have
been correct in this claim; no new congruence as simple as the originals has ever been
found (although it has not been proved that none exists). The 1960s, however, witnessed
tantilizing discoveries of further examples (notably by Atkin, Newman, and O’Brien).
Atkin, for example, found elegant infinite families of congruences modulo 5, 7, and 13
which are quite different from those previously known. A simple example of these is the
congruence

p(113 · 13n + 237) ≡ 0 (mod 13).

Atkin also gave more examples, though not so systematic, with modulus 17, 19, 23, 29,
and 31.

Atkin obtains these results via a detailed study of modular functions. Since these lie
at the heart of the proofs of the congruences we have seen so far, we will give a brief
description here. Let SL2(Z) be the set of 2× 2 integer matrices with determinant one.
Then, if N is an integer, define the congruence subgroup Γ0(N) by

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

An element γ =
(

a b

c d

)
acts on the upper half-plane H of complex numbers via the linear

fractional transformation γz = az+b
cz+d . By definition, a modular function on Γ0(N) is a

function f on H which satisfies f(γz) = f(z) for all γ ∈ Γ0(N) and which in addition is
meromorphic on H and “at the cusps”. When N is small, the field of these functions has
relatively low degree over C; therefore given several functions in such a field, one can find
non-trivial relations among them. If the right functions are involved, then such a relation
may give information about values of p(n). For Atkin’s examples when ` = 5, 7, or 13
the relevant function fields have degree one; this is responsible for the infinite families of
congruences. As ` increases, however, things rapidly become more complicated. Atkin’s
work is interesting for another reason; it marks an early use of sophisticated computers
in mathematics. As he says, “it is often more difficult to discover results in this subject
than to prove them, and an informed search on the machine may enable one to find out
precisely what happens.”

A problem of Erdős

Even after all of the beautiful discoveries described above, the general arithmetic
properties of p(n) must seem rather mysterious. Indeed, we have said nothing for any
prime modulus ` greater than 31, let alone for a general prime modulus. In this context
we mention a conjecture of Erdős from the 1980s.

If ` is a prime, then there exists an n such that p(n) ≡ 0 (mod `).
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If we reflect on this conjecture for a moment, we are struck by its weakness: it asserts
only that every prime divides at least one value of the partition function. On the other
hand (until very recently) the known results were even weaker; the best was a theorem
of Schinzel and Wirsing, who proved the existence of a constant c such that, for large X,
the number of primes ` < X for which Erdős’ conjecture is true is ≥ c log log X.

Recent Developments

In the past several years our understanding of the arithmetic of p(n) has increased
dramatically. All of the advances have arisen from a single source: the fact that values of
the partition function are intimately related to the arithmetic of modular forms. Modular
forms have historically played a large role in Number Theory; their importance, of course,
has been underscored by their central position in the proof of Fermat’s Last Theorem.
The crux of Wiles’ proof is to show that elliptic curves are “modular”; in other words,
their arithmetic is dictated in part by certain modular forms to which they are related.
What has been learned recently is that the partition function does not escape the web
of modularity; its arithmetic, too, is intimately connected to the behavior of a certain
family of modular forms. This connection has allowed the application of deep methods
of Deligne, Serre, and Shimura to the study of p(n). These theories (some of the most
powerful of the last half-century) have important ramifications for p(n); in particular,
properly applied, they imply that p(n) satisfies linear congruences for every prime ` ≥ 5.
We shall discuss in more detail how modular forms enter the picture in the next section;
let us first indicate what they enable us to prove.

The second author (inspired by some formulae of Ramanujan) was the first to notice
these connections; as a result [O] he proved the following:

For any prime ` ≥ 5, there exist infinitely many congruences of the form

p(An + B) ≡ 0 (mod `).

(We note that if the arithmetic progression An+B gives rise to such a congruence, then
so do any of its infinitely many subprogressions; we do not count these as new when
we speak of “infinitely many congruences.”) Shortly thereafter the first author [Ahl]
extended this result by showing that the prime ` may in fact be replaced by an arbitrary
prime power `k; from this it can be shown that ` may in fact be replaced by any modulus
M which is coprime to 6. An immediate consequence of these results is the following:

If ` ≥ 5 is prime, then a positive proportion of natural numbers n have

p(n) ≡ 0 (mod `).

This provides a very convincing proof of the conjecture of Erdős mentioned above.
More recently, the two authors [Ahl-O] have shown that congruences for p(n) are

even more widespread than these theorems indicate. To explain this, let us return to
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Ramanujan’s original results:

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

As Ramanujan’s conjectures indicate, these results may be written in a unified way.
Namely, let λ` denote the inverse of 24 modulo ` (in other words, 24λ` ≡ 1 (mod `)).
Then they assume the following form:

If ` = 5, 7, or 11, then p(`n + λ`) ≡ 0 (mod `).

Now, for any prime ` ≥ 5 and any exponent k, the results above guarantee the existence
of infinitely many progressions An + B such that p(An + B) ≡ 0 (mod `k). An impor-
tant feature of the method used to prove the theorems above is that in every case, the
progression An + B which it produces is a sub-progression of `n + λ` (in other words,
` | A and B ≡ λ` (mod `).) As an example, one of the simplest congruences guaranteed
by this theorem is

p(594 · 13n + 111247) ≡ 0 (mod 13);

in this case we have 111247 ≡ 1/24 (mod 13).
What the authors have shown recently is that congruences are not confined to this

single progression modulo `. In fact, we now know that if ` ≥ 5 is prime and k is any
exponent, then infinitely many congruences p(An + B) ≡ 0 (mod `k) exist within each
of (` + 1)/2 progressions modulo `. In other words, for each prime, slightly more than
half of such progressions contain congruences. When ` = 11, for example, the relevant
progressions are

11n + 1, 11n + 2, 11n + 3, 11n + 5, 11n + 6, 11n + 8.

Of these, only Ramanujan’s own 11n + 6 had been distinguished by the previous theory.
The latest result provides a theoretical framework which explains every known partition
function congruence.

Modular Forms

We will try to indicate briefly how the theory of modular forms can be applied to the
study of p(n) in order to yield the results of the preceding section. At the heart of the
matter are the generating function

∞∑
n=0

p(n)xn =
∞∏

n=1

1
1− xn
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and Dedekind’s eta function

η(z) = x1/24
∞∏

n=1

(1− xn) (here x := e2πiz).

Combining the last two formulae gives

1/η(24z) =
∞∑

n=−1

p

(
n + 1
24

)
xn = x−1 + x23 + . . . .

Loosely speaking, a modular form of weight k on the subgroup Γ0(N) is a function f
on the upper half plane H which satisfies a transformation property of the form

f

(
az + b

cz + d

)
= (cz + d)kf(z) for all

(
a b

c d

)
∈ Γ0(N).

In addition, f is required to be meromorphic on H and at the cusps; if also f is holo-
morphic on H and vanishes at the cusps, then we call f a cusp form. We allow k to
be an integer or half an integer (extra care must be taken in the latter case); note that
the modular functions introduced above are just modular forms of weight zero. Every
modular form f(z) has a Fourier expansion in powers of x = e2πiz; if f is a cusp form
then this expansion takes the form

f(z) =
∞∑

n=1

af (n)xn.

When the weight k of a cusp form is integral, then the theory of Deligne and Serre
is available for the study of the Fourier coefficients af . In particular, there is a natural
family of operators (the so-called Hecke operators) which act on spaces of modular forms.
If f is a normalized eigenform for this family, then Serre conjectured, and Deligne proved,
the existence of a representation

ρf : Gal(Q/Q) → GL2(K)

(for some field K) such that for all but finitely many primes Q we have

Trace(ρf (FrobQ)) = af (Q).

Here FrobQ denotes any conjugacy class of Frobenius elements at the prime Q. This result
is extraordinarily powerful; it allows us to study the Fourier coefficients of modular forms
using the structure of Galois groups.

If the weight k of a cusp form is half-integral, then we do not have the results of
Deligne and Serre at our disposal. There is, however, a correspondence due to Shimura
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between cusp forms of half integral weight and certain forms of integral weight; the
Shimura correspondence is quite explicit and commutes in the best possible way with
the action of the Hecke operators on the respective spaces.

We saw above that the expansion

1/η(24z) =
∞∑

n=−1

p

(
n + 1
24

)
xn = x−1 + x23 + . . .

contains every value of the partition function. Now 1/η(24z) is a modular form on
Γ0(576). However, it has two major deficiencies; the weight is −1/2, and it has a pole
at every cusp. So none of the theories above seem to apply. It turns out, however, that
starting with this expansion, one can construct half-integral weight cusp forms which still
preserve much information about the values of p(n) modulo powers of primes. From these
cusp forms, the theory of Deligne and Serre, filtered through Shimura’s correspondence,
yields the results of the last section.

L-functions and Arithmetic

Since modular forms play such an important role in partition congruences, it is natural
to suspect that there may be deeper connections between partitions and “modular”
objects. As it turns out, this is indeed the case.

To motivate the connection, consider the following classical Diophantine question (al-
ready of interest to ancient Greek and Arab scholars):

Which integers D are areas of right triangles with rational number sidelengths?

Such numbers D are known as congruent numbers. Simple arguments show that a number
D is congruent precisely when there are infinitely many rational points (x, y) on the
elliptic curve

ED : y2 = x3 −D2x.

How does one determine whether such a curve has infinitely many points? The Birch and
Swinnerton-Dyer Conjecture, one of the main outstanding conjectures in Number Theory
(and a million-dollar Clay Mathematics Insititute Problem), provides the solution.

Let L(ED, s) denote the Hasse-Weil L-function attached to ED; this is an analytic
function whose definition depends on the behavior of ED modulo primes p. For the
congruent number problem, the conjecture implies that

L(ED, 1) = 0 ⇐⇒ D is congruent.

In addition, the conjecture gives a precise formula dictating the analytic behavior of
L(ED, s) at s = 1. For instance, if L(ED, 1) 6= 0, then the conjecture asserts that

L(ED, 1) = ΩD ·#X(ED).
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Here ΩD is an explicit transcendental number and X(ED) is the Tate-Shafarevich group
of ED, (the Tate-Shafarevich group is a certain Galois cohomology group which measures
the extent to which the local-global principle fails for ED).

In the early 1980s, Jerrold Tunnell, using the works of Shimura and Waldspurger (see
[K] for a good account), constructed two modular forms of weight 3/2 whose coefficients
“interpolate” the square roots of the L(ED, 1). Together with the Birch and Swinnerton-
Dyer Conjecture, these modular forms provide a complete solution to the congruent
number problem.

Recently, Li Guo and the second author [G-O] have shown that if 13 ≤ ` ≤ 31 is prime,
then certain half-integral weight modular forms whose coefficients interpolate values of
p(n) modulo ` behave in a manner somewhat similar to Tunnell’s modular forms. In
particular, they show that there are modular motives MD,` (these may be viewed as
analogs of elliptic curves), whose L-functions L(MD,`, s) have the property that the
square roots of L(MD,`, (`− 3)/2) are related in a predictable way to the coefficients of
these modular forms. The truth of the Bloch-Kato Conjecture (a vast generalization of
the Birch and Swinnerton-Dyer Conjecture) then implies that

L(MD,`, (`− 3)/2) = ΩD,` ·#X(MD,`).

Assuming the Bloch-Kato Conjecture, it can be shown, for many n, that

p(n) ≡ 0 (mod `) =⇒ #X(MD,`) ≡ 0 (mod `),

where D depends on n. These two conditions are probably equivalent, and so it is
likely that the divisibility of p(n) often dictates the presence of elements of order ` in
these Tate-Shafarevich groups. So, perhaps surprisingly, it seems that congruences like
Ramanujan’s are connected to some highly abstract creations of modern Number Theory.

The Future?

The beginnings of the partition function are extraordinarily humble; after all, what
could be simpler than addition and counting? Despite its humble start, the history of the
partition function includes connections to many central areas of Number Theory from
the work of Euler to the birth of the circle method to the modern theory of modular
forms and L-functions. It will be quite interesting to see what further connections the
future will reveal.
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