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Let’s start with some more questions about numbers. . .

I If k ≥ 6 is an even number, can you write k as the sum of two
prime numbers?
Maybe. Goldbach’s Conjecture

I If k ≥ 1, can you express k as the sum of four squares?
Yes! Lagrange (1770)

I Can you find an integer solution to
X 2 + Y 2 = 1234567890123?
No.

I If p is prime, can you find integer solutions to X 2 + Y 2 = p?
No if p ≡ 3 (mod 4). Yes otherwise.

I If can you find nontrivial integer solutions to X 3 + Y 3 = Z 3?
No! Fermat’s Last Theorem (Wiles)



Congruent number problem

For which integers n does there exist a right triangle with rational
sides and area n?

i.e. Need three rational numbers X ,Y ,Z with

X 2 + Y 2 = Z 2,
1

2
XY = n.

These n are called congruent numbers



Equivalent Problem

Find x ∈ Q so that x , x + n, x − n are all squares of rational
numbers.

Bijection:

X ,Y ,Z 7→ x =

(
Z

2

)2

x 7→ X =
√

x + n−
√

x − n, Y =
√

x + n+
√

x − n, Z = 2
√

x .



Suppose we had such a triangle. . .

X ,Y ,Z ∈ Q, X 2 + Y 2 = Z 2,
1

2
XY = n.

Check:

(X + Y )2 = X 2 + 2XY + Y 2 = (X 2 + Y 2) + 4

(
1

2
XY

)
= Z 2 + 4n.

(X −Y )2 = X 2− 2XY + Y 2 = (X 2 + Y 2)− 4

(
1

2
XY

)
= Z 2− 4n.

Multiply these together:

(X 2 − Y 2)2 = Z 4 + 16n2,

or (
X 2 − Y 2

4

)2

=

(
Z

2

)4

+ n2.



Suppose we had such a triangle. . .

X ,Y ,Z ∈ Q, X 2 + Y 2 = Z 2,
1

2
XY = n.(

X 2 − Y 2

4

)2

=

(
Z

2

)4

+ n2.

Multiply by
(

Z
2

)2
:((

X 2 − Y 2

4

)(
Z

2

))2

=

(
Z

2

)6

+ n2

(
Z

2

)2

.

Let x =
(

Z
2

)2
, y =

(
X 2−Y 2

4

) (
Z
2

)
.

We have
y2 = x3 − n2x .

Hence, given (X ,Y ,Z ) we get a point on this curve (x , y).



y 2 = x3 − n2x

If we have a point on the curve, do we have a triangle?
Yes, if:

1. x is the square of a rational number

2. If x = p
q with (p, q) = 1 then 2 | q.

3. If x = p
q with (p, q) = 1 then (q, n) = 1.



We have reduced the problem to studying points on the curve

y2 = x3 − n2x .

Definition (Elliptic Curve over Q)

Any curve of the form

y2 = f (x) = x3 + ax + b, a, b ∈ Q

where f (x) has three distinct (complex) roots.

More generally:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Can make rational change of variables to get this in the other form.



Group Law

Addition of Points

I Identity: Point at ∞.

I Inverse of (x , y) is (x ,−y).

I Three points that lie on the same line sum to identity.



Group Law

For y2 = x3 − n2x :

If P1 + P2 = P3, Pi = (xi , yi ), then

x3 =

−x1 − x2 +
(

y2−y1
x2−x1

)2
, P1 6= P2

−2x1 +
(

3x2
1−n2

2y1

)2
P1 = P2

y3 =

−y1

(
y2−y1
x2−x1

)
(x1 − x3), P1 6= P2

−y1

(
3x2

1−n2

2y1

)
(x1 − x3), P1 6= P2

When will a point have finite order?



Recall, (Normalized) Eisenstein series

For even k ≥ 4,

Ek(z) := 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where the rational (Bernoulli) numbers Bk are

∞∑
n=0

Bn ·
tn

n!
=

t

et − 1
= 1− 1

2
t +

1

12
t2 + · · · ,

and
σk−1(n) =

∑
1≤d |n

dk−1.

Example:

I E4(z) := 1 + 240
∑∞

n=1 σ3(n)qn

I E6(z) := 1− 504
∑∞

n=1 σ5(n)qn



Eisenstein series

Ek(z) :=
1

2ζ(k)
Gk(z)

where

ζ(k) =
∑
n∈N

1

nk
.

and

Gk(z) :=
∑

(m,n)∈Z2

(m,n)6=(0,0)

1

(mz + n)k

This sum is absolutely convergent for k > 2.

Can think of this as a sum over a lattice.



Lattices

For fixed z ∈ C− R,

L := {m + nz : m, n ∈ Z}

is the lattice generated by 1, z .

More generally:

L := {mω1 + nω2 : m, n ∈ Z},

where ω1, ω2 ∈ C and ω1/ω2 6∈ R.



Sums over lattices

Extend the definition Gk(z) to sums over lattices

L := {mω1 + nω2 : m, n ∈ Z} :

Gk(L) := G (ω1, ω2) :=
∑

(m,n)∈Z2

(m,n)6=(0,0)

1

(mω1 + nω2)k

For any E : y2 = x3 + ax + b, it is possible to find a lattice L so
that

y2 = x3 − 60G4(L)x − 140G6(L)

describes the same elliptic curve.



Example

I y2 = x3 − x is associated to lattice L(1, i).

I y2 = x3 − n2x is a multiple of this lattice.



Elliptic Curves and Lattices
There is a one-to-one correspondence between points in the
fundamental parallelogram of L and

E : y2 = x3 − 60G4(L)x − 140G6(L)

given by “Weierstrass” map:

z 7→ (2℘(z),
√

2℘′(z)) z 6= 0

0 7→ ∞

where

℘(z) :=
1

z2
+

∑
(m,n)∈Z2

(m,n)6=(0,0)

(
1

(z − (mω1 + nω2))2
− 1

(mω1 + nω2)2

)
.

I Doubly-periodic map
I Gives C modulo the lattice and the curve compatible addition

laws.



Consequence of this map

I It is easy to see points of finite order (torsion points) over C:

aω1/n + bω2/n.

Common Notation: E [n] denotes points of order n.

I Much harder to see the torsion points over Q.

I What about non-torsion points?



Recall,

I We saw
E (Q) = {(x , y) ∈ Q2 : (x , y) on E}

is an abelian group with an addition law.

I The group law is based on secant lines and tangent lines.

I The identity is the point at ∞.



Mordell’s Theorem

In 1923 Mordell proved E (Q) is finitely generated.
This means the abelian group has the form

E (Q) = E (Q)tors ⊕ Zr

for some r .

We call r the rank of the elliptic curve.



Rank

Rank is hard to determine!

Conjecture: There exist elliptic curves over Q of arbitrarily large
rank.



Torsion

In 1972 Mazur proved that E (Q)tors is one of 16 finite abelian
groups:

I Z/nZ for n ≤ 10 or n = 12,

I (Z/2Z)× (Z/2nZ) for n ≤ 4.



How to win a million dollars doing math. . .

The Birch Swinnerton-Dyer Conjecture (BSD)
(Contact the Clay Mathematics Institute for details.)



Reduction of E modulo p

Given E defined over Q, make a change of variables to give E
integer coefficients.
For each prime p we can reduce E modulo p.

Example. y2 = x3 − 11x2 + 24x = x(x − 3)(x − 8).

I Modulo 3 y2 ≡ x3 + x2 ≡ x2(x − 1) (mod 3)

I Modulo 5 y2 ≡ x3 + 4x2 + 4x ≡ x(x + 2)2 (mod 5)

I Modulo 7 y2 ≡ x2 − 4x2 + 3x ≡ x(x − 1)(x − 3) (mod 7)

We now only check points {(x , y) : 0 ≤ x , y ≤ p − 1} ∪ {∞} .

We say E has good reduction modulo p if E is still an elliptic curve
modulo p. i.e. We need E to have distinct roots modulo p.



Good reduction

We say E has good reduction modulo p if E is still an elliptic curve
modulo p.
i.e. We need E to have distinct roots modulo p.

Can check this with the discriminant of the elliptic curve.
For

E : y2 = x3 + ax + b

define
∆(E ) := −16(27b2 + 4a3)

p is a prime of good reduction if and only if p - ∆(E ).

I Not quite an invariant, but close (minimal discriminant).

I Contains the same reduction information as the conductor,
which is harder to define.



If p is a prime of good reduction, define

a(p) := p + 1− number of points on E (mod p)

Example: Compute a(p), p = 3, 5, 7 for E : y2 = x3 − x
Theorem (Hasse): |ap| ≤ 2

√
p for good p.

Define the L -function of E by:

L(E , s) :=
∏

p good

1

1− a(p)p−s + p1−2s

∏
p bad

1

1− a(p)p−s
.

I The a(p) for p bad are in {−1, 0, 1}.

Can write this as a“Dirichlet series”

L(E , s) =
∑
n≥1

aE (n)

ns
.



BSD

L(E , s) :=
∏

pgood

1

1− a(p)p−s + p1−2s

∏
pbad

1

1− a(p)p−s
.

(Simplified) BSD Conjecture: The Taylor expansion of L(E , s) at
s = 1 has form

L(E , s) = c(s − 1)r + high order terms

for some c 6= 0 where r = rank(E (Q)).

The c is conjectured in terms of invariants of the curve, including
one that is not known to be finite.



Connection to Congruent Numbers

For which integers n does there exist a right triangle with rational
sides and area n?
Reduced to finding points on

y2 = x3 − n2x .

If we have a point on the curve, do we have a triangle?
Yes, if:

1. x is the square of a rational number

2. If x = p
q with (p, q) = 1 then 2 | q.

3. If x = p
q with (p, q) = 1 then (q, n) = 1.

Torsion points are {(0, 0), (±n, 0),∞}
n is congruent if and only if r(E ) ≥ 1.
Example. n = 1. L(E , 1) ≈ 0.655514388573 · · · 6= 0



Problems

1. Prove that 5 is a congruent number by finding a triangle with
rational sides and area 5. Use this to find 3 non-trivial points
on y2 = x3 − 25x .

2. Let
∑

b(n)qn = η2(4z)η2(8z). Let E be the elliptic curve
y2 = x3 − x . Find a(p) for many primes p.

2.1 Do you notice a pattern?
2.2 Compare to b(p). Do you notice a pattern?

3. Prove BSD.


