A crash course...
 Day 3: Elliptic Curves

Sharon Anne Garthwaite

Bucknell University

March 2008

Let's start with some more questions about numbers. . .

- If $k \geq 6$ is an even number, can you write k as the sum of two prime numbers?
Maybe. Goldbach's Conjecture
- If $k \geq 1$, can you express k as the sum of four squares? Yes! Lagrange (1770)
- Can you find an integer solution to $X^{2}+Y^{2}=1234567890123 ?$
No.
- If p is prime, can you find integer solutions to $X^{2}+Y^{2}=p$? No if $p \equiv 3(\bmod 4)$. Yes otherwise.
- If can you find nontrivial integer solutions to $X^{3}+Y^{3}=Z^{3}$? No! Fermat's Last Theorem (Wiles)

Congruent number problem

For which integers n does there exist a right triangle with rational sides and area n ?
i.e. Need three rational numbers X, Y, Z with

$$
X^{2}+Y^{2}=Z^{2}, \quad \frac{1}{2} X Y=n
$$

These n are called congruent numbers

Equivalent Problem

Find $x \in \mathbb{Q}$ so that $x, x+n, x-n$ are all squares of rational numbers.

Bijection:

$$
X, Y, Z \mapsto x=\left(\frac{Z}{2}\right)^{2}
$$

$x \mapsto X=\sqrt{x+n}-\sqrt{x-n}, \quad Y=\sqrt{x+n}+\sqrt{x-n}, \quad Z=2 \sqrt{x}$.

Suppose we had such a triangle. . .

$$
X, Y, Z \in \mathbb{Q}, \quad X^{2}+Y^{2}=Z^{2}, \quad \frac{1}{2} X Y=n .
$$

Check:

$$
\begin{aligned}
& (X+Y)^{2}=X^{2}+2 X Y+Y^{2}=\left(X^{2}+Y^{2}\right)+4\left(\frac{1}{2} X Y\right)=Z^{2}+4 n . \\
& (X-Y)^{2}=X^{2}-2 X Y+Y^{2}=\left(X^{2}+Y^{2}\right)-4\left(\frac{1}{2} X Y\right)=Z^{2}-4 n .
\end{aligned}
$$

Multiply these together:

$$
\left(X^{2}-Y^{2}\right)^{2}=Z^{4}+16 n^{2},
$$

or

$$
\left(\frac{X^{2}-Y^{2}}{4}\right)^{2}=\left(\frac{Z}{2}\right)^{4}+n^{2} .
$$

Suppose we had such a triangle...

$$
\begin{gathered}
X, Y, Z \in \mathbb{Q}, \quad X^{2}+Y^{2}=Z^{2}, \quad \frac{1}{2} X Y=n \\
\left(\frac{X^{2}-Y^{2}}{4}\right)^{2}=\left(\frac{Z}{2}\right)^{4}+n^{2}
\end{gathered}
$$

Multiply by $\left(\frac{z}{2}\right)^{2}$:

$$
\left(\left(\frac{X^{2}-Y^{2}}{4}\right)\left(\frac{Z}{2}\right)\right)^{2}=\left(\frac{Z}{2}\right)^{6}+n^{2}\left(\frac{Z}{2}\right)^{2}
$$

Let $x=\left(\frac{Z}{2}\right)^{2}, y=\left(\frac{x^{2}-Y^{2}}{4}\right)\left(\frac{Z}{2}\right)$.
We have

$$
y^{2}=x^{3}-n^{2} x
$$

Hence, given (X, Y, Z) we get a point on this curve (x, y).

$y^{2}=x^{3}-n^{2} x$

If we have a point on the curve, do we have a triangle?
Yes, if:

1. x is the square of a rational number
2. If $x=\frac{p}{q}$ with $(p, q)=1$ then $2 \mid q$.
3. If $x=\frac{p}{q}$ with $(p, q)=1$ then $(q, n)=1$.

We have reduced the problem to studying points on the curve

$$
y^{2}=x^{3}-n^{2} x
$$

Definition (Elliptic Curve over \mathbb{Q})

Any curve of the form

$$
y^{2}=f(x)=x^{3}+a x+b, \quad a, b \in \mathbb{Q}
$$

where $f(x)$ has three distinct (complex) roots.
More generally:

$$
E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} .
$$

Can make rational change of variables to get this in the other form.

Group Law

Addition of Points

- Identity: Point at ∞.
- Inverse of (x, y) is $(x,-y)$.
- Three points that lie on the same line sum to identity.

Group Law

For $y^{2}=x^{3}-n^{2} x$:
If $P_{1}+P_{2}=P_{3}, P_{i}=\left(x_{i}, y_{i}\right)$, then

$$
\begin{aligned}
& x_{3}= \begin{cases}-x_{1}-x_{2}+\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)^{2}, & P_{1} \neq P_{2} \\
-2 x_{1}+\left(\frac{3 x_{1}^{2}-n^{2}}{2 y_{1}}\right)^{2} & P_{1}=P_{2}\end{cases} \\
& y_{3}= \begin{cases}-y_{1}\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x_{1}-x_{3}\right), & P_{1} \neq P_{2} \\
-y_{1}\left(\frac{3 x_{1}^{2}-n^{2}}{2 y_{1}}\right)\left(x_{1}-x_{3}\right), & P_{1} \neq P_{2}\end{cases}
\end{aligned}
$$

When will a point have finite order?

Recall, (Normalized) Eisenstein series

For even $k \geq 4$,

$$
E_{k}(z):=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where the rational (Bernoulli) numbers B_{k} are

$$
\sum_{n=0}^{\infty} B_{n} \cdot \frac{t^{n}}{n!}=\frac{t}{e^{t}-1}=1-\frac{1}{2} t+\frac{1}{12} t^{2}+\cdots
$$

and

$$
\sigma_{k-1}(n)=\sum_{1 \leq d \mid n} d^{k-1}
$$

Example:

- $E_{4}(z):=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}$
- $E_{6}(z):=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}$

Eisenstein series

$$
E_{k}(z):=\frac{1}{2 \zeta(k)} G_{k}(z)
$$

where

$$
\zeta(k)=\sum_{n \in \mathbb{N}} \frac{1}{n^{k}}
$$

and

$$
G_{k}(z):=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}} \frac{1}{(m z+n)^{k}}
$$

This sum is absolutely convergent for $k>2$.
Can think of this as a sum over a lattice.

Lattices

For fixed $z \in \mathbb{C}-\mathbb{R}$,

$$
L:=\{m+n z: m, n \in \mathbb{Z}\}
$$

is the lattice generated by $1, z$.
More generally:

$$
L:=\left\{m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}
$$

where $\omega_{1}, \omega_{2} \in \mathbb{C}$ and $\omega_{1} / \omega_{2} \notin \mathbb{R}$.

Sums over lattices

Extend the definition $G_{k}(z)$ to sums over lattices

$$
\begin{gathered}
L:=\left\{m \omega_{1}+n \omega_{2}: m, n \in \mathbb{Z}\right\}: \\
G_{k}(L):=G\left(\omega_{1}, \omega_{2}\right):=\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\
(m, n) \neq(0,0)}} \frac{1}{\left(m \omega_{1}+n \omega_{2}\right)^{k}}
\end{gathered}
$$

For any $E: y^{2}=x^{3}+a x+b$, it is possible to find a lattice L so that

$$
y^{2}=x^{3}-60 G_{4}(L) x-140 G_{6}(L)
$$

describes the same elliptic curve.

Example

- $y^{2}=x^{3}-x$ is associated to lattice $L(1, i)$.
- $y^{2}=x^{3}-n^{2} x$ is a multiple of this lattice.

Elliptic Curves and Lattices

There is a one-to-one correspondence between points in the fundamental parallelogram of L and

$$
E: y^{2}=x^{3}-60 G_{4}(L) x-140 G_{6}(L)
$$

given by "Weierstrass" map:

$$
\begin{aligned}
& z \mapsto\left(2 \wp(z), \sqrt{2} \wp^{\prime}(z)\right) \quad z \neq 0 \\
& 0 \mapsto \infty
\end{aligned}
$$

where

$$
\wp(z):=\frac{1}{z^{2}}+\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \\(m, n) \neq(0,0)}}\left(\frac{1}{\left(z-\left(m \omega_{1}+n \omega_{2}\right)\right)^{2}}-\frac{1}{\left(m \omega_{1}+n \omega_{2}\right)^{2}}\right)
$$

- Doubly-periodic map
- Gives \mathbb{C} modulo the lattice and the curve compatible addition laws.

Consequence of this map

- It is easy to see points of finite order (torsion points) over \mathbb{C} :

$$
a \omega_{1} / n+b \omega_{2} / n .
$$

Common Notation: $E[n]$ denotes points of order n.

- Much harder to see the torsion points over \mathbb{Q}.
- What about non-torsion points?

Recall,

- We saw

$$
E(\mathbb{Q})=\left\{(x, y) \in \mathbb{Q}^{2}:(x, y) \text { on } E\right\}
$$

is an abelian group with an addition law.

- The group law is based on secant lines and tangent lines.
- The identity is the point at ∞.

Mordell's Theorem

In 1923 Mordell proved $E(\mathbb{Q})$ is finitely generated. This means the abelian group has the form

$$
E(\mathbb{Q})=E(\mathbb{Q})_{\text {tors }} \oplus \mathbb{Z}^{r}
$$

for some r.
We call r the rank of the elliptic curve.

Rank

Rank is hard to determine!
Conjecture: There exist elliptic curves over \mathbb{Q} of arbitrarily large rank.

Torsion

In 1972 Mazur proved that $E(\mathbb{Q})_{\text {tors }}$ is one of 16 finite abelian groups:

- $\mathbb{Z} / n \mathbb{Z}$ for $n \leq 10$ or $n=12$,
- $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 n \mathbb{Z})$ for $n \leq 4$.

How to win a million dollars doing math. . .

The Birch Swinnerton-Dyer Conjecture (BSD)
(Contact the Clay Mathematics Institute for details.)

Reduction of E modulo p

Given E defined over \mathbb{Q}, make a change of variables to give E integer coefficients.
For each prime p we can reduce E modulo p.
Example. $y^{2}=x^{3}-11 x^{2}+24 x=x(x-3)(x-8)$.

- Modulo $3 y^{2} \equiv x^{3}+x^{2} \equiv x^{2}(x-1)(\bmod 3)$
- Modulo $5 y^{2} \equiv x^{3}+4 x^{2}+4 x \equiv x(x+2)^{2}(\bmod 5)$
- Modulo $7 y^{2} \equiv x^{2}-4 x^{2}+3 x \equiv x(x-1)(x-3)(\bmod 7)$

We now only check points $\{(x, y): 0 \leq x, y \leq p-1\} \cup\{\infty\}$.
We say E has good reduction modulo p if E is still an elliptic curve modulo p. i.e. We need E to have distinct roots modulo p.

Good reduction

We say E has good reduction modulo p if E is still an elliptic curve modulo p.
i.e. We need E to have distinct roots modulo p.

Can check this with the discriminant of the elliptic curve.
For

$$
E: y^{2}=x^{3}+a x+b
$$

define

$$
\Delta(E):=-16\left(27 b^{2}+4 a^{3}\right)
$$

p is a prime of good reduction if and only if $p \nmid \Delta(E)$.

- Not quite an invariant, but close (minimal discriminant).
- Contains the same reduction information as the conductor, which is harder to define.

If p is a prime of good reduction, define

$$
a(p):=p+1-\text { number of points on } E \quad(\bmod p)
$$

Example: Compute $a(p), p=3,5,7$ for $E: y^{2}=x^{3}-x$
Theorem (Hasse): $\left|a_{p}\right| \leq 2 \sqrt{p}$ for good p.
Define the L -function of E by:

$$
L(E, s):=\prod_{p \text { good }} \frac{1}{1-a(p) p^{-s}+p^{1-2 s}} \prod_{p \text { bad }} \frac{1}{1-a(p) p^{-s}} .
$$

- The $a(p)$ for p bad are in $\{-1,0,1\}$.

Can write this as a "Dirichlet series"

$$
L(E, s)=\sum_{n \geq 1} \frac{a_{E}(n)}{n^{s}} .
$$

BSD

$$
L(E, s):=\prod_{p \text { good }} \frac{1}{1-a(p) p^{-s}+p^{1-2 s}} \prod_{p \text { bad }} \frac{1}{1-a(p) p^{-s}} .
$$

(Simplified) BSD Conjecture: The Taylor expansion of $L(E, s)$ at $s=1$ has form

$$
L(E, s)=c(s-1)^{r}+\text { high order terms }
$$

for some $c \neq 0$ where $r=\operatorname{rank}(E(\mathbb{Q}))$.
The c is conjectured in terms of invariants of the curve, including one that is not known to be finite.

Connection to Congruent Numbers

For which integers n does there exist a right triangle with rational sides and area n ?
Reduced to finding points on

$$
y^{2}=x^{3}-n^{2} x
$$

If we have a point on the curve, do we have a triangle?
Yes, if:

1. x is the square of a rational number
2. If $x=\frac{p}{q}$ with $(p, q)=1$ then $2 \mid q$.
3. If $x=\frac{p}{q}$ with $(p, q)=1$ then $(q, n)=1$.

Torsion points are $\{(0,0),(\pm n, 0), \infty\}$ n is congruent if and only if $r(E) \geq 1$.
Example. $n=1 . L(E, 1) \approx 0.655514388573 \cdots \neq 0$

Problems

1. Prove that 5 is a congruent number by finding a triangle with rational sides and area 5 . Use this to find 3 non-trivial points on $y^{2}=x^{3}-25 x$.
2. Let $\sum b(n) q^{n}=\eta^{2}(4 z) \eta^{2}(8 z)$. Let E be the elliptic curve $y^{2}=x^{3}-x$. Find $a(p)$ for many primes p.
2.1 Do you notice a pattern?
2.2 Compare to $b(p)$. Do you notice a pattern?
3. Prove BSD.
