ETA FUNCTIONS
- cuspmake - computes a set of inequivalent cusps for GAMMA[0](N)
- etamult - computes the etamultiplier of eta(M tau)
for a given M in SL[2](Z).
- etaprodcuspord - Computes the order of an eta-product at each cusp
of GAMMA[0](N).
- etaprodtoqseries - Computes q-series expansion of an eta-product
- etaprodWe - Computes that action of W_e on a given etaproduct
where W_e is an Atkin-Lehner involution of GAMMA_0(N).
- etaWe - Computes the image of an eta function eta(t tau)
under the action of Atkin-Lehner involution W[ee]
of GAMMA[0](N)
- gammacheck - Checks whether an eta-product is invariant under
GAMMA[0](N) (via Newman's Theorem)
- gp2etaprod - converts a generalized permutation into an eta-product
- GPmake - finds the GP (generalized permutation corresponding
to an eta-product.
- jacbotstar -
- jactopstar -
- provemodfuncGAMMA0id -
Prove an eta-quotient identity (as a modular function on GAMMA[0](N)
The url of this page is http://qseries.org/fgarvan/qmaple/ETA/oldfunctions/index.html.
Created by
F.G. Garvan
(fgarvan@ufl.edu) on
Thursday, July 11, 2013.
Last update made Mon Jul 15 14:41:07 EDT 2013.
fgarvan@ufl.edu
|