ETA FUNCTIONS
- cuspmake - computes a set of inequivalent cusps for GAMMA[0](N)
- cuspord - Computes the invariant order at a cusp of (GAMMA_0(N))
of the given etaproduct
- cuspORD - Computes the order at a cusp z
with respect to the group G= GAMMA_0(N)
- cuspORDS - Computes the order at each cusp
- cuspORDSnotoo - Computes the order at each cusp<> oo
(GAMMA_0(N))
- ETAchanges - changes to the ETA package
- etaCOF -
- etaCONSTANT - constant in eta-quotient term
- etamult - computes the etamultiplier of eta(M tau)
for a given M in SL[2](Z).
- etanormalid - renormalize a sum of etaprods
- etaprodcuspord - Computes the order of an eta-product at each cusp
of GAMMA[0](N).
- etaprodtoqseries2 - q-series expansion of etaproduct
(omits the q^(qinf) term)
- etaprodtoqseries - Computes q-series expansion of an eta-product
- etaprodtoqseriesMODP - q-series expansion of etaproduct mod p
- etaprodWe - Computes that action of W_e on a given etaproduct
where W_e is an Atkin-Lehner involution of GAMMA_0(N).
- ETApversion - package version
- etaWe - Computes the image of an eta function eta(t tau)
under the action of Atkin-Lehner involution W[ee]
- fanwidth - fanwidth of cusp
- Ffind - check whether on pole is at oo
- Fricke - Fricke involution
- gamma0FORMCHECK - checks whether modular form on GAMMA_0(N)
- gammacheck - Checks whether an eta-product is invariant under
GAMMA[0](N) (via Newman's Theorem)
- gammacheckM - checks whether modular form on GAMMA_0(N)
- gp2etaprod - converts a generalized permutation into an eta-product
- GPmake - finds the GP (generalized permutation corresponding
to an eta-product.
- jacbotstar -
- jactopstar -
- mintotGAMMA0ORDS - lower bound for sum ORD g
- POWERPq - q-expansion of power of q-series
- POWERPqMODP - q-expansion of power of q-series mod p
- POWERq - q-expansion of power of q-series
- POWERqMODP - q-expansion of power of q-series mod p
- printcuspords - print orders of each cusp
- printcuspORDS - print ORDERS of each cusp
- printETAIDORDStable - print ORDS table produced by
provemodfuncGAMMA0id.
- provemodfuncGAMMA0id - prove an eta-product identity
- provemodfuncGAMMA0UpETAid - prove U[p] eta-product identity
- UpLB - lower bound for ord(Up(EP),r)
- vetainf - order at infinity of eta-quotient
- vp - p-adic order of integer
The url of this page is http://qseries.org/fgarvan/qmaple/ETA/functions/index.html.
Created by
F.G. Garvan
(fgarvan@ufl.edu) on
Thursday, July 11, 2013.
Last update made Sat Jun 22 14:29:40 EDT 2019.
fgarvan@ufl.edu
|