FUNCTION :  ETA[provemodfuncGAMMA0UpETAid] -  prove U[p] eta-product identity

CALLING SEQUENCE :  provemodfuncGAMMA0UpETAid()
                    provemodfuncGAMMA0UpETAid(EP,p,etacombo,N)                   

PARAMETERS :    
      EP - one eta-product                                   
       p - prime                                             
etacombo - sum of modular functions on Gamma[0](N)           
           Each term in the sum is a eta-quotient to base N. 
       N - Positive integer multiple of p                    
                                                             
GLOBAL VARIABLES : 

SYNOPSIS :   
   This function PROVES the id U[p](EP) = etacombo           
   global vars (can be used for error-checking):             
   qcheck, modfunccheck, totcheck, _ORDS, jptmp, jpqd, eptmp,
   gltmp, EPRODL, GETAL, COFS, conpres, CONTERMS, mintottmp
   

EXAMPLES :   
> with(qseries):
> with(ETA):
> gpA1:=[1,2,4,3,2,-5,50,5,25,-2,100,-3]:
> epA1:=gp2etaprod(gpA1);
                           2           3            5  
                   eta(tau)  eta(4 tau)  eta(50 tau)   
         epA1 := --------------------------------------
                           5            2             3
                 eta(2 tau)  eta(25 tau)  eta(100 tau) 
> A1q:=etaprodtoqseries(epA1,1000):
> gpa1:=[1,2,10,4,2,-4,5,-2]:
              gpa1 := [1, 2, 10, 4, 2, -4, 5, -2]
> epa1:=gp2etaprod(gpa1);
                                2            4 
                        eta(tau)  eta(10 tau)  
                epa1 := -----------------------
                                  4           2
                        eta(2 tau)  eta(5 tau) 
> aq1:=etaprodtoqseries(epa1,2000):
> gprho:=[2,2,20,4,4,-4,10,-2]:
> eprho:=gp2etaprod(gprho);
                                  2            4
                        eta(2 tau)  eta(20 tau) 
               eprho := ------------------------
                                  4            2
                        eta(4 tau)  eta(10 tau) 
> G1a:=etaprodtoqseries(eprho,1001):
> G1:=convert(series(1-G1a,q,1020),polynom):
> etamake(G1,q,100);
                               3           
                    eta(10 tau)  eta(2 tau)
                    -----------------------
                                          3
                    eta(20 tau) eta(4 tau) 
> U01:=sift(A1q,q,5,0,2000):
> etacombo:=findlincombo(U01,[seq( aq1^k,k=-2..5),seq( aq1^k*(G1),k=-2..5)],[seq( etamake((aq1)^k,q,100),k=-2..5),seq( etamake((aq1)^k*G1,q,100),k=-2..5)],q,0);
                           nx = , 16
                        # of terms , 37
                         2            4
              53 eta(tau)  eta(10 tau) 
etacombo := - -------------------------
                         4           2 
               eta(2 tau)  eta(5 tau)  

                    8         4                   12         6
     350 eta(10 tau)  eta(tau)    1050 eta(10 tau)   eta(tau) 
   + -------------------------- - ----------------------------
                4           8                 6           12  
      eta(5 tau)  eta(2 tau)        eta(5 tau)  eta(2 tau)    

                     16         8                  20         10
     1375 eta(10 tau)   eta(tau)    625 eta(10 tau)   eta(tau)  
   + ---------------------------- - ----------------------------
                 8           16                10           20  
       eta(5 tau)  eta(2 tau)        eta(5 tau)   eta(2 tau)    

                   3           
     13 eta(10 tau)  eta(2 tau)
   + --------------------------
                            3  
      eta(20 tau) eta(4 tau)   

                              7         2           
                75 eta(10 tau)  eta(tau)            
   - -----------------------------------------------
                           2           3           3
     eta(20 tau) eta(5 tau)  eta(4 tau)  eta(2 tau) 

                              11         4          
               175 eta(10 tau)   eta(tau)           
   + -----------------------------------------------
                           4           3           7
     eta(20 tau) eta(5 tau)  eta(4 tau)  eta(2 tau) 

                              15         6           
               125 eta(10 tau)   eta(tau)            
   - ------------------------------------------------
                           6           3           11
     eta(20 tau) eta(5 tau)  eta(4 tau)  eta(2 tau)  
;
> provemodfuncGAMMA0UpETAid(epA1,5,etacombo,20);
*** There were NO errors. 
*** o EP is an MF on Gamma[0](100)
*** o Each term in the etacombo is a  modular function on
      Gamma0(20). 
*** o We also checked that the total order of
      each term etacombo was zero.
*** To prove the identity U[5](EP)=etacombo we need to show
    that v[oo](ID) > 9    This means checking up to q^(10).
Do you want to prove the identity? (yes/no)
You entered yes.
We verify the identity to O(q^(49)).
We find that LHS - RHS is 
                              / 49\
                             O\q  /
RESULT: The identity holds to O(q^(49)).
CONCLUSION: This proves the identity since we had only
            to show that v[oo](ID) > 9.

DISCUSSION :

SEE ALSO :