FUNCTION : ETA[provemodfuncGAMMA0UpETAid] - prove U[p] eta-product identity CALLING SEQUENCE : provemodfuncGAMMA0UpETAid() provemodfuncGAMMA0UpETAid(EP,p,etacombo,N) PARAMETERS : EP - one eta-product p - prime etacombo - sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. N - Positive integer multiple of p GLOBAL VARIABLES : SYNOPSIS : This function PROVES the id U[p](EP) = etacombo global vars (can be used for error-checking): qcheck, modfunccheck, totcheck, _ORDS, jptmp, jpqd, eptmp, gltmp, EPRODL, GETAL, COFS, conpres, CONTERMS, mintottmp EXAMPLES : > with(qseries): > with(ETA): > gpA1:=[1,2,4,3,2,-5,50,5,25,-2,100,-3]: > epA1:=gp2etaprod(gpA1); 2 3 5 eta(tau) eta(4 tau) eta(50 tau) epA1 := -------------------------------------- 5 2 3 eta(2 tau) eta(25 tau) eta(100 tau) > A1q:=etaprodtoqseries(epA1,1000): > gpa1:=[1,2,10,4,2,-4,5,-2]: gpa1 := [1, 2, 10, 4, 2, -4, 5, -2] > epa1:=gp2etaprod(gpa1); 2 4 eta(tau) eta(10 tau) epa1 := ----------------------- 4 2 eta(2 tau) eta(5 tau) > aq1:=etaprodtoqseries(epa1,2000): > gprho:=[2,2,20,4,4,-4,10,-2]: > eprho:=gp2etaprod(gprho); 2 4 eta(2 tau) eta(20 tau) eprho := ------------------------ 4 2 eta(4 tau) eta(10 tau) > G1a:=etaprodtoqseries(eprho,1001): > G1:=convert(series(1-G1a,q,1020),polynom): > etamake(G1,q,100); 3 eta(10 tau) eta(2 tau) ----------------------- 3 eta(20 tau) eta(4 tau) > U01:=sift(A1q,q,5,0,2000): > etacombo:=findlincombo(U01,[seq( aq1^k,k=-2..5),seq( aq1^k*(G1),k=-2..5)],[seq( etamake((aq1)^k,q,100),k=-2..5),seq( etamake((aq1)^k*G1,q,100),k=-2..5)],q,0); nx = , 16 # of terms , 37 2 4 53 eta(tau) eta(10 tau) etacombo := - ------------------------- 4 2 eta(2 tau) eta(5 tau) 8 4 12 6 350 eta(10 tau) eta(tau) 1050 eta(10 tau) eta(tau) + -------------------------- - ---------------------------- 4 8 6 12 eta(5 tau) eta(2 tau) eta(5 tau) eta(2 tau) 16 8 20 10 1375 eta(10 tau) eta(tau) 625 eta(10 tau) eta(tau) + ---------------------------- - ---------------------------- 8 16 10 20 eta(5 tau) eta(2 tau) eta(5 tau) eta(2 tau) 3 13 eta(10 tau) eta(2 tau) + -------------------------- 3 eta(20 tau) eta(4 tau) 7 2 75 eta(10 tau) eta(tau) - ----------------------------------------------- 2 3 3 eta(20 tau) eta(5 tau) eta(4 tau) eta(2 tau) 11 4 175 eta(10 tau) eta(tau) + ----------------------------------------------- 4 3 7 eta(20 tau) eta(5 tau) eta(4 tau) eta(2 tau) 15 6 125 eta(10 tau) eta(tau) - ------------------------------------------------ 6 3 11 eta(20 tau) eta(5 tau) eta(4 tau) eta(2 tau) ; > provemodfuncGAMMA0UpETAid(epA1,5,etacombo,20); *** There were NO errors. *** o EP is an MF on Gamma[0](100) *** o Each term in the etacombo is a modular function on Gamma0(20). *** o We also checked that the total order of each term etacombo was zero. *** To prove the identity U[5](EP)=etacombo we need to show that v[oo](ID) > 9 This means checking up to q^(10). Do you want to prove the identity? (yes/no) You entered yes. We verify the identity to O(q^(49)). We find that LHS - RHS is / 49\ O\q / RESULT: The identity holds to O(q^(49)). CONCLUSION: This proves the identity since we had only to show that v[oo](ID) > 9. DISCUSSION : SEE ALSO :