FUNCTION : ETA[provemodfuncGAMMA0UpETAidBATCH] - proving U[p] eta-combo identity CALLING SEQUENCE : provemodfuncGAMMA0UpETAidBATCH() provemodfuncGAMMA0UpETAidBATCH(EP,p,etacombo,N) PARAMETERS : EP - one eta-product p - prime etacombo - sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. N - Positive integer multiple of p - GLOBAL VARIABLES : qcheck,modfunccheck, totcheck, _ORDS,jptmp,jpqd,eptmp,gltmp etaPRODL,GPL,COFS,conpres,CONTERMS,mintottmp,consL,MFLB xprint,_CUSPS,UpORDL,_ORDS2,noprint SYNOPSIS : This a BATCH version of provemodfuncGAMMA0UpETAid This function PROVES the id U[p](EP) = etacombo EXAMPLES : > with(qseries): > with(ETA): > provemodfuncGAMMA0UpETAidBATCH(); ------------------------------------------------------------- provemodfuncGAMMA0UpETAidBATCH(EP,p,etacombo,N) This a BATCH version of provemodfuncGAMMA0UpETAid EP = one eta-product p = prime etacombo = sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. N = Positive integer multiple of p This function PROVES the id U[p](EP) = etacombo global vars (can be used for error-checking): qcheck, modfunccheck, totcheck, _ORDS, jptmp, jpqd, eptmp, gltmp, EPRODL, GETAL, COFS, conpres, CONTERMS, mintottmp ------------------------------------------------------------- > gpg:=[100, -3, 50, 5, 25, -2, 10, -8, 5, 4, 4, 3, 2, 3, 1, -2]: > epg:=gp2etaprod(gpg); 5 4 3 3 eta(50 tau) eta(5 tau) eta(4 tau) eta(2 tau) epg := ------------------------------------------------- 3 2 8 2 eta(100 tau) eta(25 tau) eta(10 tau) eta(tau) > gpf1:=[10, 8, 5, -4, 2, -8, 1, 4]: > epf1:=gp2etaprod(gpf1); 8 4 eta(10 tau) eta(tau) epf1 := ----------------------- 4 8 eta(5 tau) eta(2 tau) > gpf2:=[20, -3, 10, 5, 5, -2, 4, -1, 2, -1, 1, 2]: > epf2:=gp2etaprod(gpf2); 5 2 eta(10 tau) eta(tau) epf2 := ---------------------------------------------- 3 2 eta(20 tau) eta(5 tau) eta(4 tau) eta(2 tau) > etacombo:=5*epf1 + 2*epf2: > noprint:=false: > provemodfuncGAMMA0UpETAidBATCH(epg,5,etacombo,20); *** There were NO errors. *** o EP is an MF on Gamma[0](100) *** o Each term in the etacombo is a modular function on Gamma0(20). *** o We also checked that the total order of each term etacombo was zero. *** To prove the identity U[5](EP)=etacombo we need to show that v[oo](ID) > 3 This means checking up to q^(4). memory used=4.2MB, alloc=40.3MB, time=0.09 We find that LHS - RHS is 43 O(q ) 43 [1, -3, O(q )] > noprint:=true: > provemodfuncGAMMA0UpETAidBATCH(epg,5,etacombo,20); 43 [1, -3, O(q )] DISCUSSION : SEE ALSO :