FUNCTION : ETA[provemodfuncGAMMA0id] - prove an eta-product identity CALLING SEQUENCE : provemodfuncGAMMA0id(etaid,N) PARAMETERS : etaid = sum of modular functions on Gamma[0](N) Each term in the sum is a eta-quotient to base N. N = positive integer GLOBAL VARIABLES : qcheck,modfunccheck, totcheck, _ORDS,jptmp,jpqd,eptmp,gltmp, etaPRODL,GPL,COFS,conpres,CONTERMS,mintottmp,consL,MFLB, xprint SYNOPSIS : Returns min power of q needed to verify eta-quotient identity. Also option of proving identity by computing anough terms. EXAMPLES : Let P = eta(tau)^3*eta(3*tau)^3/eta(2*tau)^3/eta(6*tau)^3 Q = eta(tau)^6*eta(6*tau)^6/eta(2*tau)^6/eta(3*tau)^6 We prove the identity -Q + 1/Q = P + 8/P > with(qseries): > with(ETA); [Ffind, Fricke, GPmake, POWERPq, POWERPqMODP, POWERq, POWERqMODP, UpLB, cuspORD, cuspORDS, cuspORDSnotoo, cuspmake, cuspord, etaCOF, etaCONSTANT, etaWe, etamult, etanormalid, etaprodWe, etaprodtoqseries, etaprodtoqseries2, jacbotstar, jactopstar, mintotGAMMA0ORDS, printcuspORDS, printcuspords, provemodfuncGAMMA0id, vetainf, vp] > P:=eta(tau)^3*eta(3*tau)^3/eta(2*tau)^3/eta(6*tau)^3; 3 3 eta(tau) eta(3 tau) ----------------------- 3 3 eta(2 tau) eta(6 tau) > Q:=eta(tau)^6*eta(6*tau)^6/eta(2*tau)^6/eta(3*tau)^6; 6 6 eta(tau) eta(6 tau) ----------------------- 6 6 eta(2 tau) eta(3 tau) > EID0:=expand((-Q + 1/Q - P - 8/P)); 6 6 6 6 3 3 eta(tau) eta(6 tau) eta(2 tau) eta(3 tau) eta(tau) eta(3 tau) - ----------------------- + ----------------------- - ----------------------- 6 6 6 6 3 3 eta(2 tau) eta(3 tau) eta(tau) eta(6 tau) eta(2 tau) eta(6 tau) 3 3 8 eta(2 tau) eta(6 tau) - ------------------------- 3 3 eta(tau) eta(3 tau) > etanormalid(EID0); We divide the eta-prod identity by 1/eta(tau)^6/eta(6*tau)^6*eta(2*tau)^6*eta(3*tau)^6. 12 12 9 3 eta(tau) eta(6 tau) eta(tau) eta(6 tau) - ------------------------- + 1 - ----------------------- 12 12 3 9 eta(2 tau) eta(3 tau) eta(3 tau) eta(2 tau) 3 9 8 eta(tau) eta(6 tau) - ----------------------- 9 3 eta(3 tau) eta(2 tau) > EID1:=%; > xprint:=false: > provemodfuncGAMMA0id(EID2,6); "TERM ", 1, "of ", 4, " *****************" "TERM ", 2, "of ", 4, " *****************" "TERM ", 3, "of ", 4, " *****************" "TERM ", 4, "of ", 4, " *****************" "mintotord = ", -2 "TO PROVE the identity we need to show that v[oo](ID) > ", 2 *** There were NO errors. *** o Each term was modular function on Gamma0(6). *** o We also checked that the total order of each term was zero. "*** WARNING: some terms were constants. ***" "See array CONTERMS." To prove the identity we will need to verify if up to q^(2). Do you want to prove the identity? (yes/no) You entered yes. We verify the identity to O(q^(14)). RESULT: The identity holds to O(q^(14)). CONCLUSION: This proves the identity since we had only to show that v[oo](ID) > 2. > DISCUSSION : SEE ALSO :