FUNCTION : qseries[findhomcombo] - tries to express a q-series as a homogeneous polynomial of degree n of a given list of q-series. CALLING SEQUENCE : findhomcombo(L,q,n,topshift,etaoption) PARAMETERS : L - list of q-series q - variable n - positive integer topshift - integer greater than -20 etaoption - yes, no GLOBAL VARIABLE : X SYNOPSIS : findhomcombo(f,L,q,n,topshift,etatoption) returns a set of potential set of linear combinations from L for the given q-series f. The value of topshift is usually taken to be zero. Howeverm if it appears that spurious relations are being generated then a higher value of topshift should be taken. If etaoption=yes then each function in the combination is %converted% into an eta-product. NOTE: There is a global variable X that is reassigned each time the function is called. This variable is used to display the combinations. If the list L is linearly dependent more than one linear combination may be returned. EXAMPLES : > with(qseries): > f := sum((n^2-5*trunc((n^2+2)/5)) *q^n*((q^n)^4+26*(q^n)^3+66*(q^n)^2+26*q^n+1) /(1-q^n)^6,n=1..50): > B1 := etaq(q,1,50)^5/etaq(q,5,50): > B2 := q*etaq(q,5,50)^5/etaq(q,1,50): > findhomcombo(f,[B1,B2],q,3,0,yes); # of terms , 25 -----possible linear combinations of degree------, 3 15 3 9 9 3 eta(5 tau) {eta(5 tau) eta(tau) + 40 eta(5 tau) eta(tau) + 335 ------------} 3 eta(tau) 2 2 3 {X[1] X[2] + 40 X[1] X[2] + 335 X[2] } > g := sum((n^2-5*trunc((n^2+2)/5))*q^n/(1-q^n)^2,n=1..50): > findhomcombo(g,[B1,B2],q,1,0,no); # of terms , 23 -----possible linear combinations of degree------, 1 {X[2]} > DISCUSSION : From the session above it appears that 15 3 9 9 3 eta(5 tau) f = eta(5 tau) eta(tau) + 40 eta(5 tau) eta(tau) + 335 ------------ 3 eta(tau) and 5 eta(5 tau) g = -----------. eta(tau) SEE ALSO : findhom, findnonhom