FUNCTION : qseries[jacprod] - Jacobi-type infinite product CALLING SEQUENCE : jacprod(a,b,q,T) PARAMETERS : a,b positive integers q variable T - positive integer SYNOPSIS : T jacprod(a,b,q,T) returns the q-series expansion to order O(q ) of Jacobi-type infinite product a b b-a b (q , q ) (q , q ) oo oo where a and b are positive integers and q is a variable with |q|<1. The expansion is found using qseries[tripleprod]. EXAMPLES : ------------------------------------------------------------------------- > y:=series(1/jacprod(1,5,q,10),q,40); 2 3 4 5 6 7 8 9 10 11 y := 1 + q + q + q + 2 q + 2 q + 3 q + 3 q + 4 q + 5 q + 6 q + 7 q 12 13 14 15 16 17 18 19 + 9 q + 10 q + 12 q + 14 q + 17 q + 19 q + 23 q + 26 q 20 21 22 23 24 25 26 27 + 31 q + 35 q + 41 q + 46 q + 54 q + 61 q + 70 q + 79 q 28 29 30 31 32 33 34 + 91 q + 102 q + 117 q + 131 q + 149 q + 167 q + 189 q 35 36 37 38 39 40 + 211 q + 239 q + 266 q + 299 q + 333 q + O(q ) ---------------------------------------------------------------------------- > x:=0: ---------------------------------------------------------------------------- > for i from 1 to 10 do x:=x+q^(i*i)/aqprod(q,q,i):od: ---------------------------------------------------------------------------- > series(x-y,q,50); 40 - 1 + O(q ) ---------------------------------------------------------------------------- SEE ALSO :