FUNCTION : qseries[tripleprod] - q-series expansion of Jacobi's triple product CALLING SEQUENCE : tripleprod(z,q,T) PARAMETERS : z,q - names T - positive integer SYNOPSIS : T tripleprod(z,q,T) returns the q-series expansion to order O(q ) of Jacobi's tripleproduct infinity --------' / i \ ' | | (i - 1) | q | i | | (1 - z q ) |1 - ----| (1 - q ) | | \ z / | | i = 1 where z and q are real or complex variables (or constants) and where z is nonzero and |q|<1. Here T is postive integer. The expansion is found using Jacobi's triple product identity. EXAMPLES : > tripleprod(z,q,10); 21 15 10 6 3 q q q q q 2 3 3 4 6 5 10 --- - --- + --- - ---- + ---- - q/z + 1 - z + z q - z q + z q - z q 6 5 4 3 2 z z z z z 6 15 + z q > tripleprod(q,q^3,10); 57 40 26 15 7 2 5 12 22 35 51 q - q + q - q + q - q + 1 - q + q - q + q - q + q SEE ALSO :