FUNCTION : qseries[findcong] - Find linear congruence CALLING SEQUENCE : findcong(QS,T) findcong(QS,T,LM) findcong(QS,T,LM,XSET) PARAMETERS : QS - q-series T,LM - positive integers XSET - set of positive integers GLOBAL VARIABLES : xprint SYNOPSIS : findcong(QS,T) searches for linear congruences. If QS = sum c[n]*q^n (where n<=T) then it returns triples [B,A,R] where c[A*n + B] == 0 mod R (at least up to n=LM) and R is not in XSET. The default LM=trunc(sqrt(T)). Also R is a prime power. The global var xprint is the usual. CHANGES : 1.3: o fixed major bug. The old verfsion was missing some congruences. EXAMPLES : > with(qseries): > P:=series(1/etaq(q,1,1001),q,1001): > findcong(P,1000); [4, 5, 5] [5, 7, 7] [6, 11, 11] [24, 25, 25] {[5, 7, 7], [4, 5, 5], [24, 25, 25], [6, 11, 11]} DISCUSSION: findcong found the Ramanujan partition congruences p(5n+4) == 0 mod 5 p(7n+5) == 0 mod 7 p(11n+6) == 0 mod 11 p(25n+24) == 0 mod 25 SEE ALSO : findlincombomodp