FUNCTION : findmaxind - find a maximal independent subset of q-series CALLING SEQUENCE : findmaxind() findmaxind(XFL,T) PARAMETERS : XFL - list of q-series (q-polynomials) T - nonnegative integer (used in findhom) SYNOPSIS : Find a maximal independent subset of q-series [P,NXFL] is returned where P is maximal independent subset of XFL, and and NXFL is a list of indices. EXAMPLES : > with(qseries): > findmaxind(); ------------------------------------------------------------- findmaxind(XFL,T) XFL is list of q-polynomials. T is an integer (ussually 0). Returns [P,NXFL], where P is maximal independent subset of XFL, and and NXFL is a list of indices. ------------------------------------------------------------- > gp2qs:=L->q^((add(L[2*n]*L[2*n-1],n=1..nops(L)/2)/24))*mul(etaq(q,L[2*n-1],1000)^L[2*n],n=1..nops(L)/2): > GP1:= [[2, -1, 10, 5], [2, 2, 10, 2], [1, 1, 2, -1, 5, 3, 10, 1], > [1, 1, 2, 2, 5, 3, 10, -2], [1, 2, 2, -2, 5, -2, 10, 6], > [1, 2, 2, 1, 5, -2, 10, 3], [1, 3, 2, -2, 5, 1, 10, 2], > [1, 3, 2, 1, 5, 1, 10, -1]]; GP1 := [[2, -1, 10, 5], [2, 2, 10, 2], [1, 1, 2, -1, 5, 3, 10, 1], [1, 1, 2, 2, 5, 3, 10, -2], [1, 2, 2, -2, 5, -2, 10, 6], [1, 2, 2, 1, 5, -2, 10, 3], [1, 3, 2, -2, 5, 1, 10, 2], [1, 3, 2, 1, 5, 1, 10, -1]] > GL1:=map(gp2qs,GP1): > EB1:=map(x->etamake(x,q,100),GL1); 5 eta(10 tau) 2 2 EB1 := [------------, eta(10 tau) eta(2 tau) , eta(2 tau) 3 3 2 eta(10 tau) eta(5 tau) eta(tau) eta(5 tau) eta(2 tau) eta(tau) --------------------------------, --------------------------------, eta(2 tau) 2 eta(10 tau) 6 2 3 2 eta(10 tau) eta(tau) eta(10 tau) eta(2 tau) eta(tau) -----------------------, ---------------------------------, 2 2 2 eta(5 tau) eta(2 tau) eta(5 tau) 2 3 3 eta(10 tau) eta(5 tau) eta(tau) eta(5 tau) eta(2 tau) eta(tau) ---------------------------------, -------------------------------] 2 eta(10 tau) eta(2 tau) > nops(EB1); 8 > Y:=findmaxind(GL1,0): > Y[2]; [1, 2, 3, 4, 6, 7, 8] > findhom(GL1,q,1,0); {-X[2] + X[3] + X[5]} DISCUSSION : EB1 is a list of 8 eta-products. EB1[1], EB1[2], EB1[3], EB1[4], EB1[6], EB1[7], EB1[8], form a linearly independent subset apparently. This is confirmed by findhom. SEE ALSO : findhom