FUNCTION :   findmaxind - find a maximal independent subset of q-series


CALLING SEQUENCE :  findmaxind()
                    findmaxind(XFL,T)


PARAMETERS : XFL - list of q-series (q-polynomials)
               T - nonnegative integer (used in findhom)

SYNOPSIS :
        Find a maximal independent subset of q-series
        [P,NXFL] is returned where P is maximal independent subset of XFL, and 
         and NXFL is a list of indices.

EXAMPLES :

> with(qseries):
> findmaxind();
-------------------------------------------------------------
findmaxind(XFL,T)                                             
   XFL is list of q-polynomials.           
   T is an integer (ussually 0).
   Returns [P,NXFL],   
   where P is maximal independent subset of XFL, and 
   and NXFL is a list of indices.
-------------------------------------------------------------
> gp2qs:=L->q^((add(L[2*n]*L[2*n-1],n=1..nops(L)/2)/24))*mul(etaq(q,L[2*n-1],1000)^L[2*n],n=1..nops(L)/2):
> GP1:= [[2, -1, 10, 5], [2, 2, 10, 2], [1, 1, 2, -1, 5, 3, 10, 1], 
>     [1, 1, 2, 2, 5, 3, 10, -2], [1, 2, 2, -2, 5, -2, 10, 6], 
>     [1, 2, 2, 1, 5, -2, 10, 3], [1, 3, 2, -2, 5, 1, 10, 2], 
>     [1, 3, 2, 1, 5, 1, 10, -1]];
GP1 := [[2, -1, 10, 5], [2, 2, 10, 2], [1, 1, 2, -1, 5, 3, 10, 1],
    [1, 1, 2, 2, 5, 3, 10, -2], [1, 2, 2, -2, 5, -2, 10, 6],
    [1, 2, 2, 1, 5, -2, 10, 3], [1, 3, 2, -2, 5, 1, 10, 2],
    [1, 3, 2, 1, 5, 1, 10, -1]]
> GL1:=map(gp2qs,GP1):
> EB1:=map(x->etamake(x,q,100),GL1);
                   5
        eta(10 tau)              2           2
EB1 := [------------, eta(10 tau)  eta(2 tau) ,
         eta(2 tau)
                          3                     3           2
    eta(10 tau) eta(5 tau)  eta(tau)  eta(5 tau)  eta(2 tau)  eta(tau)
    --------------------------------, --------------------------------,
               eta(2 tau)                                  2
                                                eta(10 tau)
               6         2              3                    2
    eta(10 tau)  eta(tau)    eta(10 tau)  eta(2 tau) eta(tau)
    -----------------------, ---------------------------------,
              2           2                       2
    eta(5 tau)  eta(2 tau)              eta(5 tau)
               2                    3                                3
    eta(10 tau)  eta(5 tau) eta(tau)   eta(5 tau) eta(2 tau) eta(tau)
    ---------------------------------, -------------------------------]
                         2                       eta(10 tau)
               eta(2 tau)
> nops(EB1);
                                       8
> Y:=findmaxind(GL1,0):
> Y[2];
                             [1, 2, 3, 4, 6, 7, 8]
> findhom(GL1,q,1,0);
                             {-X[2] + X[3] + X[5]}


DISCUSSION :
    EB1 is a list of 8 eta-products.
    EB1[1], EB1[2], EB1[3], EB1[4], EB1[6], EB1[7], EB1[8], 
    form a linearly independent subset apparently.
    This is confirmed by findhom.

SEE ALSO :

findhom