FUNCTION : qseries[findpoly] - tries to find a polynomial relation between two given q-series with degrees specified. CALLING SEQUENCE : findpoly(x,y,q,deg1,deg2,check) findpoly(x,y,q,deg1,deg2) PARAMETERS : x,y - q-series q - variable deg1,deg2 - positive integers check - positive integer GLOBAL VARIABLES : X, Y SYNOPSIS : findpoly(x,y,q,deg1,deg2,check) returns a possible polynomial in X,Y (with corresponding degrees deg1, deg2) which is satisfied by x,y. check If check is assigned then the relation is checked to O(q ). EXAMPLES : > with(qseries): > read findpoly: > x1 := radsimp(theta2(q,100)^2/theta2(q^3,40)^2): > x2 := theta3(q,100)^2/theta3(q^3,40)^2: > x := x1+x2: > c := q*etaq(q,3,100)^9/etaq(q,1,100)^3: > a := radsimp(theta3(q,100)*theta3(q^3,40)+theta2(q,100)*theta2(q^3,40)): > c := 3*q^(1/3)*etaq(q,3,100)^3/etaq(q,1,100): > y := radsimp(c^3/a^3): > m := x2: > findpoly(x,y,q,3,1,60); WARNING: X,Y are global. dims , 8, 18 The polynomial is 3 2 (X + 6) Y - 27 (X + 2) Checking to order, 60 59 O(q ) 3 2 (X + 6) Y - 27 (X + 2) > findpoly(m,y,q,6,1,50); WARNING: X,Y are global. dims , 14, 24 The polynomial is 2 3 4 - 1/27 (X + 6 X - 3) Y + (X - 1) (X + 1) Checking to order, 50 51 O(q ) 2 3 4 - 1/27 (X + 6 X - 3) Y + (X - 1) (X + 1) DISCUSSION : If we define 3 3 a = theta (q) theta (q ) + theta (q) theta (q ) 3 3 2 2 3 eta(3 tau) c := 3 ----------- eta(tau) 3 c y := ---- 3 a then it appears that 3 2 c (x + 2) ---- = 27 -------- 3 3 a (x + 6) 4 (m - 1) (m + 1) = 27 ----------------. 2 3 (m + 6 m - 3) where 2 2 theta2(q) theta3(q) x = ----------- + ----------- 3 2 3 2 theta2(q ) theta3(q ) 2 theta3(q) and m = -----------. 3 2 theta3(q ) SEE ALSO : findhom, findnonhom, findhomcombo, findnonhomcombo