FUNCTION :  qseries[tripleprod] - q-series expansion of Jacobi's triple product
    
CALLING SEQUENCE :  tripleprod(z,q,T)
    
PARAMETERS :   z,q - names
               T   - positive integer
   
SYNOPSIS :   
   
                                                                 T
 tripleprod(z,q,T) returns the q-series expansion to order O(q ) of 
 Jacobi's tripleproduct 
                                                       
                  infinity
                  --------'                  /      i \
                 '  |  |            (i - 1)  |     q  |       i
                    |  |    (1 - z q       ) |1 - ----| (1 - q )
                    |  |                     \      z /
                    |  |
                   i = 1
   
 where  z and q are real or complex variables (or constants) and        
 where  z is nonzero and |q|<1. 
 Here T is postive integer. The expansion is found using Jacobi's
 triple product identity. 
   
EXAMPLES :   
   
> tripleprod(z,q,10);   
   
    21    15    10     6      3   
   q     q     q      q      q                    2      3  3    4  6    5  10   
   --- - --- + --- - ---- + ---- - q/z + 1 - z + z  q - z  q  + z  q  - z  q   
     6     5     4     3      2   
    z     z     z     z      z   
   
           6  15   
        + z  q   
   
> tripleprod(q,q^3,10);   
   
       57    40    26    15    7    2            5    12    22    35    51   
      q   - q   + q   - q   + q  - q  + 1 - q + q  - q   + q   - q   + q   
   
SEE  ALSO :