FUNCTION : qseries[zqfactor] - Convert (z,q)-series into (z,q)-product CALLING SEQUENCE : zqfactor(F,z,q) zqfactor(F,z,N) PARAMETERS : F - q-series with coeffients that are polynomials in z z - variable (name) N - positive integer (optional, default=1000) GLOBAL VARIABLES : SYNOPSIS : zqfactor(F,z,q) tries to convert F into a product of terms (1 - a[i,j] z^i q^j) where each a[i,j] is an integer. Here N is the max number of terms (default is 1000 but can be assigned). WARNING: This function does not work all the time. Sometimes it finds the correct (z,q)-product - see example below. But at times it will fail to find a reasonable product even though one may exist. EXAMPLES : > with(qseries): > L1:=tripleprod(-z^2*q^3,q^4,20): > L2:=tripleprod(-z^2*q,q^4,20): > g:=L1-L2/z: > zqfactor(g,z,q,10); / 2 \ 2 2 | q | 3 3 (1 - 1/z) (1 - z q) (1 - q) (1 - q/z) (1 - z q ) (1 - q ) |1 - ----| (1 - z q ) (1 - q ) \ z / / 3 \ / 4 \ / 5 \ | q | 4 4 | q | 5 5 | q | 6 |1 - ----| (1 - z q ) (1 - q ) |1 - ----| (1 - z q ) (1 - q ) |1 - ----| (1 - z q ) \ z / \ z / \ z / / 6 \ / 7 \ / 8 \ 6 | q | 7 7 | q | 8 8 | q | (1 - q ) |1 - ----| (1 - z q ) (1 - q ) |1 - ----| (1 - z q ) (1 - q ) |1 - ----| \ z / \ z / \ z / / 9 \ / 10\ 9 9 | q | 10 10 | q | (1 - z q ) (1 - q ) |1 - ----| (1 - z q ) (1 - q ) |1 - ---| \ z / \ z / DISCUSSION : SEE ALSO : qfactor