FUNCTION : MGetaL - product of *-Geta-functions in JAC-form CALLING SEQUENCE : MGetaL(L,d,n) PARAMETERS : L - list of residues mod d d,n- positive integers SYNOPSIS : eta[d,g[1]](n*tau) . eta[d,g[2]](n*tau) ... eta[d,g[m]](n*tau) where L = [g[1],g[2],...,g[m]] with q->-q (except for each initial q-power) EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > qr(13); [1, 3, 4] > GetaL(qr(13),13,1); 1 / (1/4) --------------------- \q JAC(1, 13, infinity) JAC(3, 13, 3 JAC(0, 13, infinity) \ infinity) JAC(4, 13, infinity)/ > MGetaL(qr(13),13,1); / (1/4) \q JAC(1, 13, infinity) JAC(2, 52, infinity) JAC(0, 26, infinity) JAC(3, 13, infinity) JAC(6, 52, infinity) 2 \// JAC(4, 26, infinity) JAC(8, 26, infinity)/ \JAC(0, 13, infinity 2 ) JAC(0, 52, infinity) JAC(1, 26, infinity) 2 JAC(3, 26, infinity) JAC(4, 13, infinity) JAC(8, 52, infinity) \ / DISCUSSION : SEE ALSO : GetaL, MGeta