FUNCTION : printtypelist - print list of identities of a given type CALLING SEQUENCE : printtypelist(typefunc,BIGL,eqn,num) PARAMETERS : typefunc - function (one printtype1, printype2 etc) BIGL - list of lists eqn,num - positive integers SYNOPSIS : Print Type 1 identities produced by a findtype function. Each list in BIGL is an argument of printtype function (eqn.num) is initial equation number. EXAMPLES : > with(qseries): > with(thetaids): > with(ramarobinsids): > GL:=[1,7]: HL:=[5,11]:M:=24: > G:=j->1/GetaL(GL,M,j): > H:=j->1/GetaL(HL,M,j): > GM:=j->1/MGetaL(GL,M,j): > HM:=j->1/MGetaL(HL,M,j): > GE:=j->-GetaLEXP(GL,M,j): > HE:=j->-GetaLEXP(HL,M,j): > proveit:=true: noprint:=true: xprint:=false: > myramtype1:=findtype1(12); myramtype1 := [[2, 1, -1], [2, 1, 1], [3, 1, -1]] > findtype8(12); [[2, -1], [2, 1]] > PROVEDFL8; [[2, -1, 48, -24], [2, 1, 48, -24]] > printtypelist(printtype8,PROVEDFL8,4,78); 2 2 2 2 2 2 eta(48 tau) eta(12 tau) eta(4 tau) eta(3 tau) G(1) H(2) - H(1) G(2) = --------------------------------------------------, 4 eta(24 tau) eta(8 tau) eta(6 tau) eta(tau) Gamma[1](48), -B = 24, (4.78) 2 2 G(1) H(2) + H(1) G(2) = 2 eta(48 tau) eta(16 tau) eta(6 tau) eta(4 tau) eta(3 tau) ----------------------------------------------------------, Gamma[1](48), 3 eta(24 tau) eta(8 tau) eta(tau) -B = 24, (4.79) DISCUSSION : We defined certain G- and H- functions for a character mod 24. We used findtype8 to find and prove two identities. This produced the list PROVEDFL8. printtypelist(printtype8,PROVEDFL8,4,78) printed two identities by applying the printtype8 function to the two lists in PROVEDFL8. The equation numbers were (4.78) and (4.79) since the initial equation number was (4.78). SEE ALSO : findtype8, printtype8, latexprinttypeL8