Maple ramarobinsids Package (Version 0.2) - Installation Instructions
These instructions are for Windows (64 bit) and Maple 2017.
If you are using a different version of Maple just change "2017"
to whatever.
- STEP 1
Create a Homelib directory for your maple lib (dotm) files.
My directory is called mylib and is located here:
C:\cygwin64\home\Owner\maple\mylib
This is what I did to create it:
You should now have a new directory called mylib.
- STEP 2
Set up a maple.ini file.
This file should be created in the directory:
C:\Program Files\Maple 2017\Users
and it should contain two lines of code resembling something like:
Homelib:="C:\\cygwin64/home/Owner/maple/mylib":
libname := libname, Homelib:
The value of Homelib should correspond to your Homelib.
One way to do this is to use the following Maple worksheet.
Now you should have a file maple.ini
containing two lines of code.
- STEP 3
Download the file
This file contains MAPLE code for setting up and saving the
package. Save this file in a place where you keep your MAPLE
programs. I saved it in a special directory:
"C:\cygwin64\home\Owner\maple\mypackages\ramarobinsids\w-setup"
This program saves the ramarobinsids package in the mylib directory.
If you want to save it in a different place you will need to
edit the file.
- STEP 4
Install the ramarobinsids package.
Start MAPLE and do something like the following.
> libname;
"C:\Program Files\Maple 2017\lib", ".", "C:\cygwin64\home\Owner\maple\mylib"
> currentdir("C:\\cygwin64\\home\\Owner\\maple\\mypackages\\ramarobinsids\\w-setup");
"C:\cygwin64\home\Owner\maple\mypackages\ramarobinsids"
> currentdir();
"C:\cygwin64\home\Owner\maple\mypackages\ramarobinsids\w-setup"
> read "wprog-ramarobinsids-07-18-2018-HOMEPC.txt":
>
You will need to change "C:....w-setup" to the appropriate place.
This program saves
package as a file ramarobinsids.mla in the mylib dir.
ALTERNATIVELY execute the commands the MW worksheet below:
-
INSTALL THETAIDS
[MW |
[PDF]
- STEP 5
Exit MAPLE and restart it to test the package:
> with(qseries):
> with(thetaids):
> with(ramarobinsids);
[CHECKRAMIDF, Eeta, Geta, GetaB, GetaEXP, GetaL, GetaLB, GetaLEXP, MGeta,
MGetaL, findtype1, findtype10, findtype2, findtype3, findtype4, findtype5,
findtype6, findtype7, findtype8, findtype9, latexeta, latexetaquot, latexpm,
latexprinttype1, latexprinttype10, latexprinttype2, latexprinttype3,
latexprinttype4, latexprinttype5, latexprinttype6, latexprinttype7,
latexprinttype8, latexprinttype9, latexprinttypeL1, latexprinttypeL10,
latexprinttypeL2, latexprinttypeL3, latexprinttypeL4, latexprinttypeL5,
latexprinttypeL6, latexprinttypeL7, latexprinttypeL8, latexprinttypeL9,
printtype1, printtype10, printtype2, printtype3, printtype4, printtype5,
printtype6, printtype7, printtype8, printtype9, printtypelist, qnr, qr,
ramarobinsidschanges, ramarobinsidspversion]
> xprint:=false: proveit:=true:
> G:=j->1/GetaL(qr(5),5,j):H:=j->1/GetaL(qnr(5),5,j):
> GM:=j->1/MGetaL(qr(5),5,j): HM:=j->1/MGetaL(qnr(5),5,j):
> GE:=j->-GetaLEXP(qr(5),5,j):HE:=j->-GetaLEXP(qnr(5),5,j):
> G(1),H(1);
11
--
60
JAC(0, 5, infinity) q JAC(0, 5, infinity)
-------------------------, -----------------------
1/60 JAC(2, 5, infinity)
q JAC(1, 5, infinity)
> jac2eprod(G(1)),jac2eprod(H(1));
1 1
----------, ----------
GETA(5, 1) GETA(5, 2)
> myramatype1:=findtype1(12);
*** There were NO errors. Each term was modular function on
Gamma1(30). Also -mintotord=8. To prove the identity
we need to check up to O(q^(10)).
To be on the safe side we check up to O(q^(68)).
*** The identity below is PROVED!
[6, 1, -1]
eta(6 tau) eta(tau)
_G(6) _H(1) - _G(1) _H(6) = ---------------------
eta(3 tau) eta(2 tau)
"n=", 10
*** There were NO errors. Each term was modular function on
Gamma1(55). Also -mintotord=40. To prove the identity
we need to check up to O(q^(42)).
To be on the safe side we check up to O(q^(150)).
*** The identity below is PROVED!
[11, 1, -1]
_G(11) _H(1) - _G(1) _H(11) = 1
myramatype1 := [[6, 1, -1], [11, 1, -1]]
> PROVEDFL1;
[[6, 1, -1, 30, -8], [11, 1, -1, 55, -40]]
> latexprinttypeL1(PROVEDFL1,RR51,"TESTRR5TYPE1.txt");
> printtypelist(printtype1,PROVEDFL1, 3,1);
eta(6 tau) eta(tau)
G(6) H(1) - G(1) H(6) = ---------------------, Gamma[1](30), -B = 8, (3.1)
eta(3 tau) eta(2 tau)
G(11) H(1) - G(1) H(11) = 1, Gamma[1](55), -B = 40, (3.2)
Do you get this? See
The url of this page is http://qseries.org/fgarvan/qmaple/ramarobinsids/0.2/install.html.
Created by
F.G. Garvan
(fgarvan@ufl.edu) on
Friday, August 12, 2016.
Last update made Fri Aug 12 10:55:13 PDT 2016.
fgarvan@ufl.edu
|