FUNCTION :  MGetaL - product of *-Geta-functions in JAC-form
                

CALLING SEQUENCE : MGetaL(L,d,n)
                    

PARAMETERS :    L -  list of residues mod d
               d,n-  positive integers

SYNOPSIS :   
     eta[d,g[1]](n*tau) .  eta[d,g[2]](n*tau) ...  eta[d,g[m]](n*tau)
     where L = [g[1],g[2],...,g[m]]
     with q->-q (except for each initial q-power)
   

EXAMPLES :   

> with(qseries):
> with(thetaids):
> with(ramarobinsids):

> qr(13);
                           [1, 3, 4]
> GetaL(qr(13),13,1);
           1           / (1/4)                                 
 --------------------- \q      JAC(1, 13, infinity) JAC(3, 13, 
                     3                                         
 JAC(0, 13, infinity)                                          

                                 \
   infinity) JAC(4, 13, infinity)/
> MGetaL(qr(13),13,1);
/ (1/4)                                                      
\q      JAC(1, 13, infinity) JAC(2, 52, infinity) JAC(0, 26, 

  infinity) JAC(3, 13, infinity) JAC(6, 52, infinity) 

                      2                     \//                   
  JAC(4, 26, infinity)  JAC(8, 26, infinity)/ \JAC(0, 13, infinity

                                             2 
  ) JAC(0, 52, infinity) JAC(1, 26, infinity)  

                      2                                          
  JAC(3, 26, infinity)  JAC(4, 13, infinity) JAC(8, 52, infinity)

  \
  /

DISCUSSION :

SEE ALSO :  

GetaL, MGeta