```
[> restart;
    > gc();
    currentdir();
                                    "C:\cygwin\home\fgarvan\maple\mypackages0ids\examples2"
    > currentdir
    ("C:\\cygwin\\home\\fgarvan\\maple\\mypackages\0ids\\examples
    2");
                    "C:\cygwin\home\fgarvan\maple\mypackages0ids\examples2"
    > currentdir();
                "H:\maple\mypackages0ids\examples2"
RAMTYPE3:= [[3, 7, 1, 21, 1, -1], [2, 13, 1, 26, 1, -1], [1, 39, 1, 13, 3, -1], [1, 34, 1, 17, 2,
        -1], [2, 33, 1, 66, 1, -1], [3, 22, 1, 11, 6, -1]]
    > nops (RAMTYPE1) +nops (RAMTYPE2) +nops (RAMTYPE3);
                                    19
[> G:=j->1/GetaL(qr (5),5,j):H:=j->1/GetaL(qnr (5),5,j):
    > GM:=j->1/MGetaL(qr (5) ,5,j): HM:=j->1/MGetal(qnr(5),5,j):
\> GE:=j->-GetaLEXP(qr (5),5,j):HE:=j->-GetaLEXP (qnr (5) ,5,j) :
>> GE (1) , HE (1);
                                    - }\frac{1}{60},\frac{11}{60
=> isolve(GE (a)+HE (b)=0);
                                    {a=11_Z1,b=_Z1}
> findtype1 (6);
    *** There were NO errors. Each term was modular function on
        Gammal(30). Also -mintotord=8. To prove the identity
        we need to check up to O(q^(10)).
        To be on the safe side we check up to O(q^(68)).
    *** The identity below is PROVED!
    [6, 1, -1]
                        _G(6) _H(1) -__G(1)_H(6)=}\frac{\eta(6\tau)\eta(\tau)}{\eta(3\tau)\eta(2\tau)
                                [[6, 1, -1]]
    > myramtype1:=findtype1(36); #actually checked to 500
    *** There were NO errors. Each term was modular function on
        Gammal(30). Also -mintotord=8. To prove the identity
we need to check up to \(O\left(q^{\wedge}(10)\right)\).
To be on the safe side we check up to O(q^(68)).
*** The identity below is PROVED!
\([6,1,-1]\)
\[
\__{-} G(6) \__{-} H(1)-_{-} G(1) \__{-} H(6)=\frac{\eta(6 \tau) \eta(\tau)}{\eta(3 \tau) \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(55). Also -mintotord=40. To prove the identity we need to check up to \(O\left(q^{\wedge}(42)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(150)\right)\).
*** The identity below is PROVED!
[11, 1, -1]
\[
\__{-} G(11) \_H(1)-_{-} G(1) \_H(11)=1
\]
*** There were NO errors. Each term was modular function on Gammal(70). Also -mintotord=48. To prove the identity we need to check up to \(O\left(q^{\wedge}(50)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(188)\right)\).
*** The identity below is PROVED!
\([7,2,-1]\)
\[
\__{-} G(7) \__{-} H(2)-_{-} G(2) \__{-} H(7)=\frac{\eta(14 \tau) \eta(\tau)}{\eta(7 \tau) \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(80). Also -mintotord=64. To prove the identity we need to check up to O(q^(66)).
To be on the safe side we check up to \(O\left(q^{\wedge}(224)\right)\).
*** The identity below is PROVED!
\([16,1,-1]\)
\[
\left.\left.-_{-} G(16)\right)_{-} H(1)-_{-} G(1)\right)_{-} H(16)=\frac{\eta(4 \tau)^{2}}{\eta(8 \tau) \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gamma1 (120). Also -mintotord=128. To prove the identity we need to check up to O(q^(130)).
To be on the safe side we check up to \(O\left(q^{\wedge}(368)\right)\).
*** The identity below is PROVED!
\([8,3,-1]\)
\[
\left.-_{-} G(8)\right)_{-} H(3)-_{-} G(3){ }_{-} H(8)=\frac{\eta(24 \tau) \eta(6 \tau) \eta(4 \tau) \eta(\tau)}{\eta(12 \tau) \eta(8 \tau) \eta(3 \tau) \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(180). Also -mintotord=288. To prove the identity we need to check up to \(O\left(q^{\wedge}(290)\right)\).
To be on the safe side we check up to O(q^(648)).
*** The identity below is PROVED!
\([9,4,-1]\)
\[
\left.\__{-} G(9) \__{-} H(4)-_{-} G(4)\right)_{-} H(9)=\frac{\eta(36 \tau) \eta(6 \tau)^{2} \eta(\tau)}{\eta(18 \tau) \eta(12 \tau) \eta(3 \tau) \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(180). Also -mintotord=288. To prove the identity we need to check up to \(O\left(q^{\wedge}(290)\right)\).
To be on the safe side we check up to O(q^(648)).
*** The identity below is PROVED!
\([36,1,-1]\)
\[
\left.\left.-_{-} G(36)\right)_{-} H(1)-_{-} G(1)\right)_{-} H(36)=\frac{\eta(9 \tau) \eta(6 \tau)^{2} \eta(4 \tau)}{\eta(18 \tau) \eta(12 \tau) \eta(3 \tau) \eta(2 \tau)}
\]
myramtypel \(:=[[6,1,-1],[11,1,-1],[7,2,-1],[16,1,-1],[8,3,-1],[9,4,-1],[36,1\),
> myramtype1set:=convert (myramtype1, set) ;
myramtypelset \(:=\{[6,1,-1],[7,2,-1],[8,3,-1],[9,4,-1],[11,1,-1],[16,1,-1],[36\)
1, -1]\}
> nops (myramtype1);
nops (RAMTYPE1);
7
[> nops (RAMT
\(\left[\begin{array}{l}>\text { evalb (con }\end{array}\right.\)
\(\begin{array}{r}>\text { myramtype } \\ \text { *** } \\ \text { There } \\ \text { Gammal } \\ \text { we need } \\ \text { To be on } \\ \text { *** The ide } \\ {[1,4, ~-1]}\end{array}\)
\[
\__{-} G(1) \__{-} G(4)-_{-} H(1) \__{-} H(4)=\frac{\eta(10 \tau)^{5}}{\eta(20 \tau)^{2} \eta(5 \tau)^{2} \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(20). Also -mintotord=4. To prove the identity we need to check up to \(O\left(q^{\wedge}(6)\right)\).
To be on the safe side we check up to O(q^(44)).
*** The identity below is PROVED!
\([1,4,1]\)
\[
\__{-} G(1) \__{-} G(4)+_{-} H(1)_{-} H(4)=\frac{\eta(2 \tau)^{4}}{\eta(4 \tau)^{2} \eta(\tau)^{2}}
\]
*** There were NO errors. Each term was modular function on Gammal(30). Also -mintotord=8. To prove the identity we need to check up to \(O\left(q^{\wedge}(10)\right)\).
To be on the safe side we check up to O(q^(68)).
*** The identity below is PROVED!
\([2,3,1]\)
\[
\__{-} G(2) \__{-} G(3)+_{-} H(2){ }_{-} H(3)=\frac{\eta(3 \tau) \eta(2 \tau)}{\eta(6 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(45). Also -mintotord=24. To prove the identity we need to check up to \(O\left(q^{\wedge}(26)\right)\). To be on the safe side we check up to O(q^(114)).
*** The identity below is PROVED!
\([1, ~ 9, ~ 1]\)
\[
{ }_{-} G(1) \__{-} G(9)+{ }_{-} H(1) \__{-} H(9)=\frac{\eta(3 \tau)^{2}}{\eta(9 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(70). Also -mintotord=48. To prove the identity we need to check up to O(q^(50)).
To be on the safe side we check up to \(O\left(q^{\wedge}(188)\right)\).
*** The identity below is PROVED!
\([1,14,1]\)
\[
\__{-} G(1) \__{-} G(14)+_{-} H(1) \__{-} H(14)=\frac{\eta(7 \tau) \eta(2 \tau)}{\eta(14 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(120). Also -mintotord=128. To prove the identity we need to check up to \(O\left(q^{\wedge}(130)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(368)\right)\).
*** The identity below is PROVED!
\([1,24,1]\)
\[
\begin{equation*}
\__{-} G(1) \__{-} G(24)+_{-} H(1) \__{-} H(24)=\frac{\eta(12 \tau) \eta(8 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(24 \tau) \eta(6 \tau) \eta(4 \tau) \eta(\tau)} \tag{14}
\end{equation*}
\]
myramtype \(2:=[[1,4,-1],[1,4,1],[2,3,1],[1,9,1],[1,14,1],[1,24,1]]\)
\(>\) evalb(convert(myramtype2,set) = convert(RAMTYPE2,set)); true
*** There were NO errors. Each term was modular function on Gammal(105). Also -mintotord=192. To prove the identity we need to check up to O(q^(194)).
To be on the safe side we check up to \(O\left(q^{\wedge}(402)\right)\).
*** The identity below is PROVED!
\([3,7,1,21,1,-1]\)
\[
\frac{G(3) \__{-} G(7)+_{-} H(3) \_H(7)}{G(21) \__{-} H(1)-_{-} H(21) \_G(1)}=1
\]
*** There were NO errors. Each term was modular function on Gamma1 (120). Also -mintotord=224. To prove the identity we need to check up to \(O\left(q^{\wedge}(226)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(464)\right)\).
*** The identity below is PROVED!
\([1,24,1,12,2,-1]\)
*** There were NO errors. Each term was modular function on Gammal(130). Also -mintotord=240. To prove the identity we need to check up to \(O\left(q^{\wedge}(242)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(500)\right)\).
*** The identity below is PROVED!
\([2,13,1,26,1,-1]\)
\[
\frac{-G(2) \__{-} G(13)+_{-} H(2) \__{-} H(13)}{G(26))_{-} H(1)-_{-} H(26) \_G(1)}=1
\]
*** There were NO errors. Each term was modular function on Gammal(170). Also -mintotord=448. To prove the identity we need to check up to \(O\left(q^{\wedge}(450)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(788)\right)\).
*** The identity below is PROVED!
\([1,34,1,17,2,-1]\)
\[
\frac{\left.G(1) \__{-} G(34)+_{-} H(1)\right)_{-} H(34)}{G(17) \__{-} H(2)-_{-} H(17) \__{-} G(2)}=\frac{\eta(17 \tau) \eta(2 \tau)}{\eta(34 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(195). Also -mintotord=768. To prove the identity we need to check up to \(O\left(q^{\wedge}(770)\right)\).
To be on the safe side we check up to O(q^(1158)).
*** The identity below is PROVED!
\([1,39,1,13,3,-1]\)
\[
\frac{G(1))_{-G(39)}+_{-} H(13) \_H(39)}{H(3)-_{-} H(13) \_G(3)}=\frac{\eta(13 \tau) \eta(3 \tau)}{\eta(39 \tau) \eta(\tau)}
\]
"n=", 50
abs (mintotord) \(=-1008\), which is too large
Try increasing the global var qthreshold.
\([1,54,1,27,2,-1]\)
\[
-_{\left.-G(1) \_G(54)\right)_{-} H(1) \_H(54)}^{G(27) \_H(2)-_{-} H(27) \_G(2)}=\frac{\eta(27 \tau) \eta(18 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(54 \tau) \eta(9 \tau) \eta(6 \tau) \eta(\tau)}
\]
abs (mintotord) \(=-1152\), which is too large
Try increasing the global var qthreshold.
[7, 8, 1, 56, 1, -1]
\[
\frac{G(7) \__{-} G(8)+_{-} H(7) \_H(8)}{G(56) \_H(1)-_{-} H(56) \_G(1)}=\frac{\eta(28 \tau) \eta(2 \tau)}{\eta(14 \tau) \eta(4 \tau)}
\]
abs (mintotord) \(=-1600\), which is too large
Try increasing the global var qthreshold.
\([3,22,1,11,6,-1]\)
\[
\frac{G(3) \_G(22)+_{-} H(3) \_H(22)}{G(11) \_H(6)-_{-} H(11) \_G(6)}=\frac{\eta(33 \tau) \eta(2 \tau)}{\eta(66 \tau) \eta(\tau)}
\]
abs (mintotord) \(=-1600\), which is too large
Try increasing the global var qthreshold.
\([2,33,1,66,1,-1]\)
\[
\frac{G(2)-G(33)+_{-} H(2) \sum_{-} H(33)}{G(66) \_H(1)-_{-} H(66) \_G(1)}=\frac{\eta(22 \tau) \eta(3 \tau)}{\eta(11 \tau) \eta(6 \tau)}
\]
abs (mintotord) \(=-2688\), which is too large
Try increasing the global var qthreshold.
\([4,21,1,12,7,-1]\)
\[
\frac{\left.G(4) \__{-} G(21)+_{-} H(4)\right)_{-} H(21)}{G(12))_{-} H(7)-_{-} H(12)_{-} G(7)}=\frac{\eta(42 \tau) \eta(28 \tau) \eta(12 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(84 \tau) \eta(21 \tau) \eta(14 \tau) \eta(6 \tau) \eta(4 \tau) \eta(\tau)}
\]
abs (mintotord) \(=-2688\), which is too large
Try increasing the global var qthreshold.
\([1,84,1,28,3,-1]\)
\(\frac{G(1) \__{-} G(84)+_{-} H(1) \_H(84)}{G(28) \_H(3)-_{-} H(28) \_G(3)}=\frac{\eta(42 \tau) \eta(28 \tau) \eta(12 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(84 \tau) \eta(21 \tau) \eta(14 \tau) \eta(6 \tau) \eta(4 \tau) \eta(\tau)}\)
abs (mintotord) \(=-3072\), which is too large
Try increasing the global var qthreshold.
\([3,32,1,96,1,-1]\)

\[
\begin{align*}
& \text { " } \mathrm{n}=\mathrm{"}, 10 \\
& \text { "n=", } 15 \\
& \text { "n=", } 20 \\
& {[[6,1,-1]]}  \tag{24}\\
& \__{-} G M(1) \__{-} G M(4)+_{-} H M(1){ }_{-} H M(4)=\frac{\eta(4 \tau)^{2}}{\eta(8 \tau) \eta(2 \tau)} \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gamma1 (120). Also -mintotord=128. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(130)\right) \text {. } \\
& \text { To be on the safe side we check up to } O\left(q^{\wedge}(368)\right) \text {. } \\
& \text { *** The identity below is PROVED! } \\
& \text { [3, 2, 1] } \\
& \left.\__{-} G M(2)\right)_{-} G M(3)+_{-} H M(2) Z_{-} H M(3)=\frac{\eta(12 \tau)^{3} \eta(8 \tau) \eta(3 \tau) \eta(2 \tau)^{3}}{\eta(24 \tau) \eta(6 \tau)^{3} \eta(4 \tau)^{3} \eta(\tau)} \\
& \text { "n=", } 10 \\
& \text { "n=", } 20 \\
& \text { "n=", } 30 \\
& \text { "n=", } 40 \\
& \text { " } \mathrm{n}=\text { ", } 50 \\
& \text { " } \mathrm{n}=\text { ", } 60 \\
& \text { "n=", } 70 \\
& \text { "n=", } 80 \\
& \text { "n=", } 90 \\
& \text { "n=", } 100 \\
& \text { " } \mathrm{n}=\mathrm{"}, 110 \\
& \text { "n=", } 120 \\
& \text { " } \mathrm{n}=\mathrm{"}, 130 \\
& {[[4,1,1],[3,2,1]]} \\
& \text { [> \#<-- HERE ---> } \\
& >\text { findtype6(24); \#checked up } 120 \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(20). Also -mintotord=4. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(6)\right) \text {. } \\
& \text { To be on the safe side we check up to O(q^(44)). } \\
& \text { *** The identity below is PROVED! } \\
& {[1,1,-1]} \\
& { }_{-} G(1) \__{-} H M(1)-_{-} G M(1){ }_{-} H(1)=\frac{2 \eta(20 \tau)^{2}}{\eta(10 \tau) \eta(2 \tau)} \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(20). Also -mintotord=4. To prove the identity }
\end{align*}
\]
(25)
\[
\begin{align*}
& \text { we need to check up to } O\left(q^{\wedge}(6)\right) \text {. } \\
& \text { To be on the safe side we check up to } O\left(q^{\wedge}(44)\right) \text {. } \\
& \text { *** The identity below is PROVED! } \\
& \text { [1, 1, 1] } \\
& { }_{-} G(1) \__{-} H M(1)+_{-} G M(1){ }_{-} H(1)=\frac{2 \eta(4 \tau)^{2}}{\eta(2 \tau)^{2}} \\
& \text { "n=", } 10 \\
& \text { "n=", } 20 \\
& {[[1,1,-1],[1,1,1]]} \tag{26}
\end{align*}
\]
```

> findtype7(24);
*** There were NO errors. Each term was modular function on
Gamma1(180). Also -mintotord=288. To prove the identity
we need to check up to O(q^(290)).
To be on the safe side we check up to O(q^(648)).
*** The identity below is PROVED!
[9, 1, -1]
_GM(1)_G(9) -__HM(1) _H(9)=}\frac{\eta(18\tau\mp@subsup{)}{}{2}\eta(12\tau)\eta(\tau)}{\eta(36\tau)\eta(9\tau)\eta(6\tau)\eta(2\tau)
"n=", 10
"n=", 20
[[9, 1, - 1]]
read moreprogs:
"END"
[> TT1:=300: TT2:=600:
[> xprint:=false:
> findtype8(60);
*** There were NO errors. Each term was modular function on
Gammal(15). Also -mintotord=4. To prove the identity
we need to check up to O(q^(6)).
To be on the safe side we check up to O(q^(34)).
*** The identity below is PROVED!
[3, -1]

```

```

"n=", 10
"n=", 20
"n=", 30
"n=", 40
"n=", 50
"n=", 60
WARNING: There were 2 ebasethreshold problems.
See the global array EBL.
[[3, -1]]
[_G(1)}\mp@subsup{)}{_}{2}H(2)\mp@subsup{_}{_}{}H(1)\mp@subsup{)}{-}{2}G(2),\mp@subsup{_}{-}{}G(1\mp@subsup{)}{}{2}_H(2)+\mp@subsup{_}{-}{}H(1)\mp@subsup{)}{-}{2}G(2)
EBL;
series(jac2series(G(1)^2*H(2)-H(1)^2*G(2),300)/q^ (4/3),q,300):
jacprodmake (%,q,250);

```
\(J A C(2,10, \infty) J A C(3,10, \infty) J A C(4,10, \infty)^{2} J A C(5,10, \infty)\)
\[
\begin{align*}
& \text { findtype9(); }  \tag{30}\\
& \text { *** There were No errors. Each term was modular function on } \\
& \text { Gammal(5). Also -mintotord=2. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(4)\right) \text {. } \\
& \text { To be on the safe side we check up to } O\left(q^{\wedge}(12)\right) \text {. } \\
& * * * \text { The identity below is PROVED! } \\
& {[11,1,1]} \\
& \qquad \quad G(1)^{11} \_H(1) Z_{-} H(1)^{11} \quad G(1)-1=\frac{11 \eta(5 \tau)^{6}}{\eta(\tau)^{6}}
\end{align*}
\]
[[11, 1, 1]]
> xprint:=false:read moreprogs:
> findtype10 (76*2) ;
"END"
"n=", 50
abs (mintotord) \(=-2160\), which is too large
Try increasing the global var qthreshold.
\([19,4,-1,76,1,1]\)
\[
\frac{G(19) \__{-} H(4)-_{-} H(19) \__{-} G(4)}{-_{-}(76){ }_{-} H M(1)+_{-} H(76) \__{-} M(1)}=\frac{\eta(76 \tau) \eta(2 \tau)}{\eta(38 \tau) \eta(4 \tau)}
\]
abs (mintotord) \(=-2400\), which is too large
Try increasing the global var qthreshold.
\([28,3,-1,12,7,1]\)
\[
\frac{G(28))_{-} H(3)-_{-} H(28) \__{-} G(3)}{G(12))_{-} H M(7)+_{-} H(12)_{-} G M(7)}=\frac{\eta(21 \tau) \eta(14 \tau)^{2} \eta(6 \tau) \eta(4 \tau) \eta(\tau)}{\eta(42 \tau) \eta(28 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)^{2}}
\]
abs (mintotord) \(=-2400\), which is too large
Try increasing the global var qthreshold.
[12, 7, -1, 28, 3, 1]
\[
\frac{G(12))_{-} H(7)-_{-} H(12) \__{-} G(7)}{G_{-} H M(3)+_{-} H(28){ }_{-} G M(3)}=\frac{\eta(84 \tau) \eta(21 \tau) \eta(14 \tau) \eta(6 \tau)^{2} \eta(\tau)}{\eta(42 \tau)^{2} \eta(12 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)}
\]
" \(\mathrm{n}=\mathrm{"}, 100\)
" \(\mathrm{n}=\mathrm{"}, 150\)
\[
[[19,4,-1,76,1,1],[28,3,-1,12,7,1],[12,7,-1,28,3,1]]
\]
(32)
read moreprogs:
\(>\) findtype11 (84*3);
"END"
"n=", 50
"n=", 100
"n=", 150
"n=", 200
"n=", 250
\[
\begin{align*}
& \begin{array}{l}
\mathrm{p}=8 \\
> \\
\mathrm{C}
\end{array} \mathrm{G}:=\mathrm{j}->1 / \operatorname{GetaL}([1], 8, j): \mathrm{H}:=j->1 / \operatorname{GetaL}([3], 8, j): \\
& \text { [ }>\text { GM:=j->1/MGetaL }([1], 8, j): ~ H M:=j->1 / M G e t a L([3], 8, j): \\
& \text { GE:=j->-GetaLEXP }([1], 8, j): \operatorname{HE}:=j->-G e t a L E X P([3], 8, j): \\
& >\text { GE (1) , HE (1) ; } \\
& -\frac{11}{48}, \frac{13}{48} \tag{34}
\end{align*}
\]

\section*{> myramtype1:=findtype1 (15) ;}
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=6. To prove the identity we need to check up to \(O\left(q^{\wedge}(8)\right)\).
To be on the safe side we check up to O(q^(54)).
*** The identity below is PROVED!
\([3,1,-1]\)
\[
\__{-} G(3) \__{-} H(1)-_{-} G(1) \__{-} H(3)=\frac{\eta(12 \tau)^{2} \eta(\tau)}{\eta(24 \tau) \eta(8 \tau) \eta(3 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=6. To prove the identity we need to check up to \(O\left(q^{\wedge}(8)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(54)\right)\).
*** The identity below is PROVED!
\([3,1,1]\)
\[
\left.\__{-} G(3) \__{-} H(1)+_{-} G(1)\right)_{-} H(3)=\frac{\eta(6 \tau)^{2} \eta(4 \tau)^{2} \eta(2 \tau)}{\eta(12 \tau) \eta(8 \tau)^{2} \eta(3 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(40). Also -mintotord=20. To prove the identity we need to check up to \(O\left(q^{\wedge}(22)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(100)\right)\).
*** The identity below is PROVED!
\([5,1,-1]\)
\[
\left.{ }_{-} G(5){ }_{-} H(1)-_{-} G(1)\right)_{-} H(5)=\frac{\eta(20 \tau) \eta(10 \tau) \eta(2 \tau)}{\eta(40 \tau) \eta(8 \tau) \eta(5 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(56). Also -mintotord=36. To prove the identity we need to check up to \(O\left(q^{\wedge}(38)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(148)\right)\).
*** The identity below is PROVED!
\([7,1,-1]\)
\[
\left.\__{-} G(7)\right)_{-} H(1)-_{-} G(1) \__{-} H(7)=\frac{\eta(28 \tau) \eta(4 \tau)}{\eta(56 \tau) \eta(8 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(72). Also -mintotord=60. To prove the identity we need to check up to \(O\left(q^{\wedge}(62)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(204)\right)\).
*** The identity below is PROVED!
\([9,1,-1]\)
\[
\left.-_{-} G(9) \__{-} H(1)-_{-} G(1)\right)_{-} H(9)=\frac{\eta(36 \tau) \eta(6 \tau)^{2} \eta(4 \tau)}{\eta(72 \tau) \eta(12 \tau) \eta(8 \tau) \eta(3 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(120). Also -mintotord=144. To prove the identity we need to check up to \(O\left(q^{\wedge}(146)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(384)\right)\).
*** The identity below is PROVED!
\([5,3,-1]\)
\({ }_{-} G(5){ }_{-} H(3)-_{-} G(3){ }_{-} H(5)=\frac{\eta(60 \tau) \eta(15 \tau) \eta(10 \tau) \eta(6 \tau) \eta(4 \tau) \eta(\tau)}{\eta(40 \tau) \eta(30 \tau) \eta(24 \tau) \eta(5 \tau) \eta(3 \tau) \eta(2 \tau)}\)
myramtypel \(:=[[3,1,-1],[3,1,1],[5,1,-1],[7,1,-1],[9,1,-1],[5,3,-1]]\)
(35)

*** There were NO errors. Each term was modular function on Gammal(8). Also -mintotord=1. To prove the identity we need to check up to \(O\left(q^{\wedge}(3)\right)\).
To be on the safe side we check up to O(q^(17)).
*** The identity below is PROVED!
[1, 1, 1]
\[
-_{-} G(1)^{2}+_{-} H(1)^{2}=\frac{\eta(2 \tau)^{6}}{\eta(8 \tau)^{2} \eta(4 \tau) \eta(\tau)^{3}}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=6. To prove the identity we need to check up to \(O\left(q^{\wedge}(8)\right)\).
To be on the safe side we check up to O(q^(54)).
*** The identity below is PROVED!
\([1,3,-1]\)
\[
\left.\__{-} G(1) \__{-} G(3)-_{-} H(1)\right)_{-} H(3)=\frac{\eta(12 \tau)^{2} \eta(6 \tau) \eta(2 \tau)^{2}}{\eta(24 \tau)^{2} \eta(4 \tau) \eta(3 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=6. To prove the identity we need to check up to \(O\left(q^{\wedge}(8)\right)\).
To be on the safe side we check up to O(q^(54)).
*** The identity below is PROVED!
\([1,3,1]\)
\[
\__{-} G(1) \__{-} G(3)+_{-} H(1)_{-} H(3)=\frac{\eta(4 \tau)^{2} \eta(3 \tau)}{\eta(24 \tau) \eta(8 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(40). Also -mintotord=20. To prove the identity we need to check up to \(O\left(q^{\wedge}(22)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(100)\right)\).
*** The identity below is PROVED!
\([1,5,1]\)
\[
\__{-} G(1) \__{-} G(5)+_{-} H(1) \__{-} H(5)=\frac{\eta(10 \tau) \eta(4 \tau) \eta(2 \tau)}{\eta(40 \tau) \eta(8 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(72). Also -mintotord=60. To prove the identity we need to check up to \(O\left(q^{\wedge}(62)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(204)\right)\).
*** The identity below is PROVED!
\([1, ~ 9,1]\)
\[
\left.{ }_{-} G(1) \__{-} G(9)+_{-} H(1)\right)_{-} H(9)=\frac{\eta(18 \tau) \eta(12 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(72 \tau) \eta(9 \tau) \eta(8 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(120). Also -mintotord=144. To prove the identity we need to check up to \(O\left(q^{\wedge}(146)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(384)\right)\).
*** The identity below is PROVED!
\([1,15,1]\)
\(\left.{ }_{-} G(1) \__{-} G(15)+_{-} H(1)\right)_{-} H(15)=\frac{\eta(30 \tau) \eta(20 \tau) \eta(12 \tau) \eta(5 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(120 \tau) \eta(15 \tau) \eta(10 \tau) \eta(8 \tau) \eta(6 \tau) \eta(\tau)}\)
" \(\mathrm{n}=\mathrm{"}, 50\)
myramtype \(2:=[[1,1,-1],[1,1,1],[1,3,-1],[1,3,1],[1,5,1],[1,9,1],[1,15,1]]\)
[ \(>\) findtype3 (60);
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=10. To prove the identity we need to check up to O(q^(12)).
To be on the safe side we check up to O(q^(58)).
*** The identity below is PROVED!
\([1,3,-1,3,1,-1]\)
\[
\frac{G(1) \__{-} G(3)-_{-} H(1) Z_{-} H(3)}{G(3) L_{-} H(1)-_{-} H(1)}=\frac{\eta(8 \tau) \eta(6 \tau) \eta(2 \tau)^{2}}{\eta(24 \tau) \eta(4 \tau) \eta(\tau)^{2}}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=8. To prove the identity we need to check up to \(O\left(q^{\wedge}(10)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(56)\right)\).
*** The identity below is PROVED!
\([1,3,-1,3,1,1]\)
\[
\frac{-G(1) \__{-} G(3)-_{-} H(1) \__{-} H(3)}{G(3) \__{-} H(1)+_{-} H(3) \__{-} G(1)}=\frac{\eta(12 \tau)^{3} \eta(8 \tau)^{2} \eta(2 \tau)}{\eta(24 \tau)^{2} \eta(6 \tau) \eta(4 \tau)^{3}}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=12. To prove the identity we need to check up to \(O\left(q^{\wedge}(14)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(60)\right)\).
*** The identity below is PROVED!
\([1,3,1,3,1,-1]\)
\[
\frac{\left.G(1))_{-} G(3)+_{-} H(1)\right)_{-} H(3)}{G(3))_{-} H(1)-_{-} H(3){ }_{-} G(1)}=\frac{\eta(4 \tau)^{2} \eta(3 \tau)^{2}}{\eta(12 \tau)^{2} \eta(\tau)^{2}}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=10. To prove the identity we need to check up to \(O\left(q^{\wedge}(12)\right)\).

To be on the safe side we check up to O(q^(58)).
*** The identity below is PROVED!
\([1,3,1,3,1,1]\)
\[
\frac{G(1) \__{-} G(3)+_{-} H(1) \__{-} H(3)}{G(3){ }_{-} H(1)+_{-} H(3) \__{-} G(1)}=\frac{\eta(12 \tau) \eta(8 \tau) \eta(3 \tau)^{2}}{\eta(24 \tau) \eta(6 \tau)^{2} \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(40). Also -mintotord=32. To prove the identity we need to check up to \(O\left(q^{\wedge}(34)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(112)\right)\).
*** The identity below is PROVED!
[1, 5, 1, 5, 1, -1]
\[
\frac{G(1) \__{-} G(5)+_{-} H(1) \__{-} H(5)}{G(5){ }_{-} H(1)-_{-} H(5) \__{-}(1)}=\frac{\eta(5 \tau) \eta(4 \tau)}{\eta(20 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(72). Also -mintotord=120. To prove the identity we need to check up to \(O\left(q^{\wedge}(122)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(264)\right)\).
*** The identity below is PROVED!
\([3,3,-1,9,1,-1]\)
\[
\frac{G(3)^{2}-_{-} H(3)^{2}}{\left.{ }_{-} G(9)\right)_{-} H(1)-_{-} H(9){ }_{-} G(1)}=\frac{\eta(72 \tau) \eta(12 \tau)^{7} \eta(8 \tau)}{\eta(36 \tau) \eta(24 \tau)^{4} \eta(6 \tau)^{3} \eta(4 \tau)}
\]
*** There were NO errors. Each term was modular function on Gamma1(72). Also -mintotord=108. To prove the identity we need to check up to \(O\left(q^{\wedge}(110)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(252)\right)\).
*** The identity below is PROVED!
\([3,3,1,9,1,-1]\)
\[
\frac{G(3)^{2}+_{-} H(3)^{2}}{\left.{ }_{-} G(9)\right)_{-} H(1)-_{-} H(9)_{-} G(1)}=\frac{\eta(72 \tau) \eta(8 \tau) \eta(6 \tau)^{4}}{\eta(36 \tau) \eta(24 \tau)^{2} \eta(4 \tau) \eta(3 \tau)^{2}}
\]
*** There were NO errors. Each term was modular function on Gammal(72). Also -mintotord=96. To prove the identity we need to check up to \(O\left(q^{\wedge}(98)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(240)\right)\).
*** The identity below is PROVED!
\([1,9,1,9,1,-1]\)
\[
\frac{G(1) \__{-G(9)}+_{-} H(1) \__{-} H(9)}{H(1)-_{-} H(9) \__{G}(1)}=\frac{\eta(18 \tau) \eta(12 \tau)^{2} \eta(3 \tau)^{2} \eta(2 \tau)}{\eta(36 \tau) \eta(9 \tau) \eta(6 \tau)^{2} \eta(4 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gamma1 (120). Also -mintotord=256. To prove the identity we need to check up to \(O\left(q^{\wedge}(258)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(496)\right)\).
*** The identity below is PROVED!
\([3,5,-1,15,1,1]\)
\[
\frac{G(3)-G(5)-H(3) \_H(5)}{-G(15) \_H(1)+\__{-} H(15) \_G(1)}=\frac{\eta(60 \tau) \eta(4 \tau)}{\eta(20 \tau) \eta(12 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(120). Also -mintotord=224. To prove the identity we need to check up to \(O\left(q^{\wedge}(226)\right)\).

To be on the safe side we check up to O(q^(464)).
*** The identity below is PROVED!
\([3,5,1,15,1,-1]\)
\[
\frac{G(3) \__{-} G(5)+_{-} H(3) \__{-} H(5)}{G(15){ }_{-} H(1)-_{-} H(15) \__{-} G(1)}=\frac{\eta(120 \tau) \eta(20 \tau) \eta(12 \tau) \eta(8 \tau)}{\eta(60 \tau) \eta(40 \tau) \eta(24 \tau) \eta(4 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(120). Also -mintotord=192. To prove the identity we need to check up to \(O\left(q^{\wedge}(194)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(432)\right)\).
*** The identity below is PROVED!
\([1,15,-1,5,3,1]\)
\(\frac{\left.-G(1) \__{-} G(15)\right]_{-} H(1) \__{-} H(15)}{G(5){ }_{-} H(3)+_{-} H(5) \__{-} G(3)}=\frac{\eta(60 \tau)^{2} \eta(40 \tau)^{2} \eta(24 \tau)^{2} \eta(10 \tau) \eta(6 \tau) \eta(4 \tau)^{2}}{\eta(120 \tau)^{2} \eta(30 \tau) \eta(20 \tau)^{2} \eta(12 \tau)^{2} \eta(8 \tau)^{2} \eta(2 \tau)}\)
*** There were NO errors. Each term was modular function on Gammal(120). Also -mintotord=288. To prove the identity we need to check up to \(O\left(q^{\wedge}(290)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(528)\right)\).
*** The identity below is PROVED!
\([1,15,1,5,3,-1]\)
\(\frac{G(1)-G(15)+_{-} H(1)-H(15)}{Q_{-}(5) \_H(3)-_{-} H(5){ }_{-} G(3)}\)
\[
=\frac{\eta(40 \tau) \eta(30 \tau)^{2} \eta(24 \tau) \eta(20 \tau) \eta(12 \tau) \eta(5 \tau)^{2} \eta(3 \tau)^{2} \eta(2 \tau)^{2}}{\eta(120 \tau) \eta(60 \tau) \eta(15 \tau)^{2} \eta(10 \tau)^{2} \eta(8 \tau) \eta(6 \tau)^{2} \eta(4 \tau) \eta(\tau)^{2}}
\]
*** There were NO errors. Each term was modular function on Gammal(168). Also -mintotord=528. To prove the identity we need to check up to \(O\left(q^{\wedge}(530)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(864)\right)\).
*** The identity below is PROVED!
\([3,7,1,21,1,-1]\)
\[
\frac{G(3)-G(7)+_{-} H(3) \underbrace{}_{-} H(7)}{G(21) \__{-} H(1)-_{-} H(21) \__{-} G(1)}=\frac{\eta(168 \tau) \eta(28 \tau) \eta(21 \tau) \eta(8 \tau)}{\eta(84 \tau) \eta(56 \tau) \eta(24 \tau) \eta(7 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(168). Also -mintotord=528. To prove the identity we need to check up to \(O\left(q^{\wedge}(530)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(864)\right)\).
*** The identity below is PROVED!
\([1,21,1,7,3,-1]\)
\[
\frac{\left.G(1) \__{-G(21)}\right)_{-} H(1) \__{-} H(21)}{{ }_{-} H(3) \__{-} H(7) \_G(3)}=\frac{\eta(56 \tau) \eta(24 \tau) \eta(4 \tau) \eta(3 \tau)}{\eta(168 \tau) \eta(12 \tau) \eta(8 \tau) \eta(\tau)}
\]
abs (mintotord) \(=-1632\), which is too large
Try increasing the global var qthreshold.
\([1,39,1,13,3,-1]\)

"n=", 50
abs (mintotord) \(=-3680\), which is too large
Try increasing the global var qthreshold.
\([1,55,1,11,5,-1]\)
```

 _ G(1)__ G(55)+_H(1)_H(55)
 [[1,3,-1, 3, 1, -1], [1,3,-1, 3, 1, 1], [1, 3, 1, 3, 1, -1], [1, 3, 1, 3, 1, 1], [1, 5, 1, 5, 1, -1],
 [3,3,-1, 9, 1, -1], [3, 3, 1, 9, 1, -1],[1,9,1,9,1, -1], [3,5, -1, 15, 1, 1], [3, 5, 1, 15,
 1, -1],[1, 15, -1, 5, 3, 1],[1, 15, 1, 5, 3, -1],[3, 7, 1, 21, 1, -1], [1, 21, 1, 7, 3, - 1],[1,
 39, 1, 13, 3, -1], [1, 55, 1, 11, 5, -1]]
 F> etamake(series(jac2series((G (1)*G(55) +H(1)*H(55))/(G(11)*H(5) -H
(11) *G(5)) ,1000) *q^ (35/3) ,q,1000) , q, 800) ;
q}\frac{\mp@subsup{q}{}{35/3}\eta(110\tau)\eta(88\tau)\eta(40\tau)\eta(11\tau)\eta(5\tau)\eta(2\tau)}{\eta(440\tau)\eta(55\tau)\eta(22\tau)\eta(10\tau)\eta(8\tau)\eta(\tau)
> findtype4 (60);
"n=", 5
"n=", 10
"n=", 15
"n=", 20
"n=", 25
"n=", 30
"n=", 35
"n=", 40
"n=", 45
"n=", 50
"n=", 55
"n=", 60
l> findtype5(60);
"n=", 10
"n=", 20
"n=", 30
"n=", 40
"n=", 50
"n=", 60
[]
/> xprint:=false:read moreprogs:
"END"
>>TT1;
3 0 0
> findtype6(120);
"n=", 10
"n=", 20
"n=", 30
"n=", 40
"n=", 50
"n=", 60
"n=", 70
"n=", 80
"n=", 90
"n=", 100
"n=", 110
"n=", 120
WARNING: There were 20 ebasethreshold problems.
See the global array EBL.

```
    (40)
(41)

(43)
\(\stackrel{>}{ }>\) FIND4F(17,10,300);
"COND: ", \(-\frac{3}{5} a+\frac{3}{5}\)
```

> [seq([ithprime(j),modp(ithprime(j),5)],j=1..20)];
[[2, 2], [3, 3], [5, 0], [7, 2], [11, 1], [13, 3], [17, 2], [19, 4], [23, 3], [29, 4], [31, 1], [37,
2], [41, 1], [43, 3], [47, 2], [53, 3], [59, 4], [61, 1], [67, 2], [71, 1]]
> FIND5F(61,10,300);
> findtype9();
*** There were NO errors. Each term was modular function on
Gammal(8). Also -mintotord=1. To prove the identity
we need to check up to O(q^(3)).
To be on the safe side we check up to O(q^(17)).
*** The identity below is PROVED!
[13, 11, 0]
}G(1\mp@subsup{)}{}{13}\mp@subsup{}{-}{}H(1\mp@subsup{)}{}{11}\mp@subsup{_}{-}{}H(1\mp@subsup{)}{}{13}\mp@subsup{_}{-}{G(1\mp@subsup{)}{}{11}=\frac{\eta(4\tau\mp@subsup{)}{}{6}\eta(2\tau\mp@subsup{)}{}{10}}{\eta(8\tau\mp@subsup{)}{}{4}\eta(\tau\mp@subsup{)}{}{12}}
[[13, 11, 0]]
> findtype10(84*3);
"n=", 50
"n=", 100
"n=", 150
"n=", 200
"n=", 250
[]
Lp=8 Version 2
> GetaL([4],8,1);

$$
\begin{equation*}
\frac{J A C(4,8, \infty)}{q^{1 / 3} J A C(0,8, \infty)} \tag{54}
\end{equation*}
$$

> jac2prod(\%);

$$
\begin{equation*}
\cdots\left(q \sim^{4}, q \sim^{8}\right)_{\infty}^{2} \tag{56}
\end{equation*}
$$

ㄱ G:=j->1/GetaL ([1] $, 8, j) / \operatorname{sqrt}(\operatorname{GetaL}([4], 8, j)): H:=j->1 / G e t a L([3], 8$, j) /sqrt(Getal([4], $8, j))$:
[> GM:j->1/MGetaL([1,4], $8, j): ~ H M:=j->1 / M G e t a L([3,4], 8, j):$
$>\mathrm{GE}:=\mathrm{j}->-\mathrm{GetaLEXP}([1], 8, j)-1 / 2 * \operatorname{GetaLEXP}([4], 8, j) ;$
$G E:=j \rightarrow-\operatorname{GetaLEXP}([1], 8, j)-\frac{1}{2} \operatorname{GetaLEXP}([4], 8, j)$
$\overline{\lceil }>\operatorname{HE}:=j->-\operatorname{GetaLEXP}([3], 8, j)-1 / 2 * \operatorname{GetaLEXP}([4], 8, j) ;$
> findtype11(300);
"n=", 50
"n=", 100
"n=", 150
"n=", 200
"n=", 250
"n=", 300
]
> GetaB (4, 8,1);

$$
\begin{equation*}
\frac{J A C(4,8, \infty)}{J A C(0,8, \infty)} \tag{55}
\end{equation*}
$$

```
\[
\begin{equation*}
H E:=j \rightarrow-\operatorname{GetaLEXP}([3], 8, j)-\frac{1}{2} \operatorname{GetaLEXP}([4], 8, j) \tag{58}
\end{equation*}
\]

GE (a) , HE (b) ;
\[
\begin{equation*}
-\frac{1}{16} a, \frac{7}{16} b \tag{59}
\end{equation*}
\]
\[
\begin{align*}
& \left.>\text { series (jac2series }(G(1) * H(1), 300) / q^{\wedge}(3 / 8), q, 40\right) \text {; }  \tag{60}\\
& 1+q+q^{2}+2 q^{3}+4 q^{4}+5 q^{5}+6 q^{6}+9 q^{7}+13 q^{8}+17 q^{9}+21 q^{10}+28 q^{11}+39 q^{12}  \tag{61}\\
& +49 q^{13}+60 q^{14}+78 q^{15}+101 q^{16}+125 q^{17}+153 q^{18}+192 q^{19}+241 q^{20}+295 q^{21} \\
& +357 q^{22}+438 q^{23}+540 q^{24}+652 q^{25}+781 q^{26}+946 q^{27}+1145 q^{28}+1368 q^{29} \\
& +1627 q^{30}+1945 q^{31}+2324 q^{32}+2754 q^{33}+3249 q^{34}+3845 q^{35}+4550 q^{36} \\
& +5348 q^{37}+6265 q^{38}+7356 q^{39}+\mathrm{O}\left(q^{40}\right) \\
& \text { > etamake (\% , q, 38) ; } \\
& \frac{\eta(8 \tau)^{2} \eta(2 \tau)}{q^{3 / 8} \eta(4 \tau)^{2} \eta(\tau)} \tag{62}
\end{align*}
\]
[> findtype1 (12);
Error, (in JACP2jaclist) chk<>0
[> series (S2,q,10);
\(1-q \sim^{5 / 3}-q \sim^{8 / 3}+2 q \sim^{3}-q \sim^{11 / 3}+3 q \sim^{4}-q \sim^{14 / 3}+q \sim^{5}-2 q \sim^{17 / 3}+3 q \sim^{6}-2 q \sim^{20 / 3}\) \(+6 q \sim^{7}-2 q \sim^{23 / 3}+8 q \sim^{8}-3 q \sim^{26 / 3}+7 q \sim^{9}-4 q \sim^{29 / 3}+\mathrm{O}\left(q \sim^{10}\right)\)

\(\overline{>}>\mathrm{F} 1:=\mathrm{G}(1) * \mathrm{q}^{\wedge}(23 / 60) ;\)
\[
\begin{equation*}
F 1:=\frac{J A C(0,10, \infty)}{J A C(1,10, \infty)} \tag{65}
\end{equation*}
\]
" \(>\mathrm{F} 2:=\mathrm{GM}(1) * \mathrm{q}^{\wedge}(23 / 60)\);
\[
\begin{equation*}
F 2:=\frac{J A C(0,20, \infty) J A C(1,10, \infty)}{J A C(2,20, \infty) J A C(0,10, \infty)} \tag{66}
\end{equation*}
\]
\(\stackrel{>}{ }\) series (subs (q=-q,jac2series \((F 1,300)\) ) -jac2series ( \(F 2,300\) ) , \(q, 10\) );
\[
\begin{equation*}
\mathrm{O}\left(q^{10}\right) \tag{67}
\end{equation*}
\]
```

[> myramtype1:=findtype1 (6); \#actually checked up to 150
*** There were NO errors. Each term was modular function on
Gammal(60). Also -mintotord=40. To prove the identity
we need to check up to $O\left(q^{\wedge}(42)\right)$.
To be on the safe side we check up to $O\left(q^{\wedge}(160)\right)$.
*** The identity below is PROVED!
$[6,1,-1]$
$\left.-_{-} G(6)\right)_{-} H(1)-_{-} G(1) __{-} H(6)=\frac{\eta(30 \tau)^{3} \eta(12 \tau) \eta(5 \tau) \eta(4 \tau)}{\eta(60 \tau)^{2} \eta(15 \tau) \eta(10 \tau)^{2} \eta(6 \tau)}$
myramtype1 $:=[[6,1,-1]]$
[> myramtype2:=findtype2 (9); \#actually checked up to 100
*** There were NO errors. Each term was modular function on
Gammal(60). Also -mintotord=40. To prove the identity
we need to check up to O(q^(42)).
To be on the safe side we check up to $O\left(q^{\wedge}(160)\right)$.
*** The identity below is PROVED!
$[2,3,-1]$

$$
\left.-_{-} G(2)\right)_{-} G(3)-_{-} H(2) __{-} H(3)=\frac{\eta(15 \tau) \eta(12 \tau) \eta(10 \tau)^{3} \eta(4 \tau)}{\eta(30 \tau)^{2} \eta(20 \tau)^{2} \eta(5 \tau) \eta(2 \tau)}
$$

*** There were NO errors. Each term was modular function on Gammal(90). Also -mintotord=96. To prove the identity we need to check up to $O\left(q^{\wedge}(98)\right)$.
To be on the safe side we check up to $O\left(q^{\wedge}(276)\right)$.
*** The identity below is PROVED!
[1, 9, -1]

$$
\begin{gather*}
\left.__{-} G(1) __{-} G(9)-_{-} H(1)\right)_{-} H(9)=\frac{\eta(45 \tau) \eta(30 \tau)^{2} \eta(18 \tau) \eta(5 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(90 \tau)^{2} \eta(15 \tau) \eta(10 \tau)^{2} \eta(9 \tau) \eta(\tau)} \\
\text { myramtype }:=[[2,3,-1],[1,9,-1]] \tag{69}
\end{gather*}
$$

```
```

> findtype3(120);

```
> findtype3(120);
"n=", 50
"n=", 50
"n=", 100
"n=", 100
[ ]
[ ]
> xprint:=true:read moreprogs:
> xprint:=true:read moreprogs:
    "END"
    "END"
> findtype4(120);
> findtype4(120);
"n=", 5
"n=", 5
"n=", 10
"n=", 10
"n=", 15
"n=", 15
"n=", 20
"n=", 20
"n=", 25
"n=", 25
"n=", 30
"n=", 30
"n=", 35
"n=", 35
"n=", 40
"n=", 40
"n=", 45
"n=", 45
"n=", 50
"n=", 50
"n=", 55
"n=", 55
"n=", 60
"n=", 60
"n=", 65
"n=", 65
"n=", 70
```

"n=", 70

```
```

"n=", 75
"n=", 80
"n=", 85
"n=", 90
"n=", 95
"n=", 100
"n=", 105
"n=", 110
"n=", 115
"n=", 120
findtype5 (120);
*** There were NO errors. Each term was modular function on
Gammal(80). Also -mintotord=64. To prove the identity
we need to check up to O(q^(66)).
To be on the safe side we check up to O(q^(224)).
*** The identity below is PROVED!
[4, 1, -1]

```

```

 "n=", 10
 "n=", 20
 "n=", 30
 "n=", 40
 "n=", 50
 "n=", 60
 "n=", 70
 "n=", 80
 "n=", 90
 "n=", 100
 "n=", 110
 "n=", 120
 [[4, 1, - 1]]
 xprint:=false:
 findtype6(80);
 *** There were NO errors. Each term was modular function on
 Gammal(20). Also -mintotord=4. To prove the identity
 we need to check up to O(q^(6)).
 To be on the safe side we check up to O(q^(44)).
 *** The identity below is PROVED!
[1, 1, -1]

$$
-G(1) __{-} H M(1)-_{-} G M(1) __{-} H(1)=\frac{2 \eta(20 \tau)^{2}}{\eta(10 \tau)^{2}}
$$

*** There were NO errors. Each term was modular function on Gammal(20). Also -mintotord=4. To prove the identity we need to check up to $O\left(q^{\wedge}(6)\right)$. To be on the safe side we check up to O(q^(44)).
*** The identity below is PROVED!
[1, 1, 1]

$$
\left.{ }_{-} G(1) __{-} H M(1)+_{-} G M(1)\right)_{-} H(1)=\frac{2 \eta(4 \tau)^{2}}{\eta(10 \tau) \eta(2 \tau)}
$$

```
\[
\begin{align*}
& \text { "n=", } 10 \\
& \text { "n=", } 20 \\
& \text { "n=", } 30 \\
& \text { " } \mathrm{n}=\text { ", } 40 \\
& \text { " } \mathrm{n}=\text { ", } 50 \\
& \text { " } \mathrm{n}=\text { ", } 60 \\
& \text { "n=", } 70 \\
& \text { "n=", } 80 \\
& {[[1,1,-1],[1,1,1]]} \\
& \text { " }>\text { findtype7 (80); } \\
& \text { "n=", } 10 \\
& \text { "n=", } 20 \\
& \text { "n=", } 30 \\
& \text { "n=", } 40 \\
& \text { " } \mathrm{n}=\mathrm{"}, 50 \\
& \text { " } \mathrm{n}=\text { ", } 60 \\
& \text { " } \mathrm{n}=\mathrm{"}, 70 \\
& \text { "n=", } 80 \\
& \text { [ ] } \\
& \text { [> findtype8 (24); } \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(20). Also -mintotord=4. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(6)\right) \text {. } \\
& \text { To be on the safe side we check up to O(q^(44)). } \\
& \text { *** The identity below is PROVED! } \\
& {[2,-1]} \\
& { }_{-} G(1)^{2} H(2)-_{-} H(1)^{2}{ }_{-} G(2)=\frac{2 \eta(20 \tau)^{2} \eta(5 \tau) \eta(2 \tau)}{\eta(10 \tau)^{3} \eta(\tau)} \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(20). Also -mintotord=4. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(6)\right) \text {. } \\
& \text { To be on the safe side we check up to } O\left(q^{\wedge}(44)\right) \text {. } \\
& \text { *** The identity below is PROVED! } \\
& {[2,1]} \\
& { }_{-} G(1)^{2}{ }_{-} H(2)+_{-} H(1)^{2}{ }_{-} G(2)=\frac{2 \eta(5 \tau) \eta(4 \tau)^{2}}{\eta(10 \tau)^{2} \eta(\tau)} \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(30). Also -mintotord=16. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(18)\right) \text {. } \\
& \text { To be on the safe side we check up to O(q^(76)). } \\
& \text { *** The identity below is PROVED! } \\
& {[3,-1]} \\
& { }_{-} G(1)^{3}{ }_{-} H(3)-{ }_{-} H(1)^{3}{ }_{-} G(3)=\frac{3 \eta(30 \tau) \eta(15 \tau) \eta(6 \tau) \eta(5 \tau)^{2} \eta(2 \tau)^{3}}{\eta(10 \tau)^{5} \eta(3 \tau) \eta(\tau)^{2}} \\
& \begin{array}{ll}
\mathrm{n}=\mathrm{n} \\
\mathrm{n}=\mathrm{n}= & 10 \\
20
\end{array} \\
& \text { "n=", } 20  \tag{75}\\
& {[[2,-1],[2,1],[3,-1]]} \\
& \text { [> findtype9(); }
\end{align*}
\]
|> findtype10(100);
"n=", 50
" \(\mathrm{n}=\mathrm{"}, 100\)
                                [ ]
(77)
    [ ]
    \(>\) findtype11(100);
    "n=", 50
" \(\mathrm{n}=\mathrm{"}, 100\)
    4
G:=j->1/GetaL ([1], 12, j): H:=j->1/GetaL ([5], 12, j) :
    GM:=j->1/MGetaL ([1], 12,j): HM:=j->1/MGetaL ([5], 12,j):
    GE:=j->-GetaLEXP ([1],12,j) : HE:=j->-GetaLEXP ([5], 12,j) :
    GE (1) , HE (1);
\[
\begin{equation*}
-\frac{13}{24}, \frac{11}{24} \tag{80}
\end{equation*}
\]
=> myramtype1:=findtype1 (20) ;
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=4. To prove the identity we need to check up to \(O\left(q^{\wedge}(6)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(52)\right)\).
*** The identity below is PROVED!
\([2,1,-1]\)
\[
\left.\__{-} G(2) \__{-} H(1)-_{-} G(1)\right)_{-} H(2)=\frac{\eta(6 \tau) \eta(4 \tau) \eta(\tau)}{\eta(12 \tau)^{2} \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=4. To prove the identity we need to check up to \(O\left(q^{\wedge}(6)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(52)\right)\).
*** The identity below is PROVED!
[2, 1, 1]
\[
\__{-} G(2) \__{-} H(1)+_{-} G(1)_{-} H(2)=\frac{\eta(4 \tau) \eta(3 \tau)^{2}}{\eta(12 \tau)^{2} \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(36). Also -mintotord=12. To prove the identity we need to check up to \(O\left(q^{\wedge}(14)\right)\). To be on the safe side we check up to O(q^(84)). *** The identity below is PROVED!
\([3,1,-1]\)
\[
\left.\__{-} G(3) \__{-} H(1)-_{-} G(1)\right)_{-} H(3)=\frac{\eta(18 \tau) \eta(2 \tau)}{\eta(36 \tau) \eta(12 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(36). Also -mintotord=12. To prove the identity we need to check up to \(O\left(q^{\wedge}(14)\right)\). To be on the safe side we check up to O(q^(84)).
*** The identity below is PROVED!
\([3,1,1]\)
\[
\left.\left.-_{-} G(3)\right)_{-} H(1)+_{-} G(1)\right)_{-} H(3)=\frac{\eta(9 \tau)^{2} \eta(6 \tau)^{5} \eta(4 \tau)}{\eta(18 \tau)^{2} \eta(12 \tau)^{3} \eta(3 \tau)^{2} \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(48). Also -mintotord=24. To prove the identity we need to check up to \(O\left(q^{\wedge}(26)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(120)\right)\).
*** The identity below is PROVED!
[4, 1, -1]
\[
\left.\left.{ }_{-} G(4)\right)_{-} H(1)-_{-} G(1)\right)_{-} H(4)=\frac{\eta(16 \tau) \eta(3 \tau)}{\eta(48 \tau) \eta(12 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(60). Also -mintotord=40. To prove the identity we need to check up to \(O\left(q^{\wedge}(42)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(160)\right)\).
*** The identity below is PROVED!
\([5,1,-1]\)
\[
\left.-_{-} G(5) \__{-} H(1)-_{-} G(1)\right)_{-} H(5)=\frac{\eta(15 \tau) \eta(10 \tau) \eta(6 \tau) \eta(4 \tau)}{\eta(60 \tau) \eta(12 \tau)^{2} \eta(5 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(72). Also -mintotord=48. To prove the identity we need to check up to \(O\left(q^{\wedge}(50)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(192)\right)\).
*** The identity below is PROVED!
\([3,2,-1]\)
\[
\__{-} G(3) \__{-} H(2)-_{-} G(2) \__{-} H(3)=\frac{\eta(72 \tau) \eta(12 \tau) \eta(9 \tau) \eta(8 \tau) \eta(6 \tau) \eta(\tau)}{\eta(36 \tau)^{2} \eta(24 \tau)^{2} \eta(3 \tau) \eta(2 \tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(72). Also -mintotord=60. To prove the identity we need to check up to \(O\left(q^{\wedge}(62)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(204)\right)\).
*** The identity below is PROVED!
\([6,1,-1]\)
\[
\begin{equation*}
\left.{ }_{-} G(6) \__{-} H(1)-_{-} G(1)\right)_{-} H(6)=\frac{\eta(9 \tau) \eta(8 \tau)}{\eta(72 \tau) \eta(12 \tau)} \tag{81}
\end{equation*}
\]
myramtype1 \(:=[[2,1,-1],[2,1,1],[3,1,-1],[3,1,1],[4,1,-1],[5,1,-1],[3,2,-1]\),
[6, 1, - 1]]
>> myramtype2:=findtype2 (24);
*** There were NO errors. Each term was modular function on Gammal(12). Also -mintotord=2. To prove the identity we need to check up to \(O\left(q^{\wedge}(4)\right)\). To be on the safe side we check up to O(q^(26)).
*** The identity below is PROVED!
\([1,1,-1]\)
\[
-_{-} G(1)^{2}-_{-} H(1)^{2}=\frac{\eta(6 \tau)^{3} \eta(2 \tau)^{3}}{\eta(12 \tau)^{4} \eta(\tau)^{2}}
\]
*** There were NO errors. Each term was modular function on Gammal(12). Also -mintotord=2. To prove the identity
we need to check up to \(O\left(q^{\wedge}(4)\right)\).
To be on the safe side we check up to O(q^(26)).
*** The identity below is PROVED!
\([1,1,1]\)
\[
\__{-} G(1)^{2}+{ }_{-} H(1)^{2}=\frac{\eta(4 \tau) \eta(3 \tau)^{4} \eta(2 \tau)}{\eta(12 \tau)^{3} \eta(6 \tau) \eta(\tau)^{2}}
\]
*** There were NO errors. Each term was modular function on Gammal(24). Also -mintotord=8. To prove the identity we need to check up to \(O\left(q^{\wedge}(10)\right)\).
To be on the safe side we check up to O(q^(56)).
*** The identity below is PROVED!
\([1,2,-1]\)
\[
\left.{ }_{-} G(1)\right)_{-} G(2)-_{-} H(1) \__{-} H(2)=\frac{\eta(8 \tau)^{2} \eta(3 \tau)^{2}}{\eta(24 \tau)^{2} \eta(12 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(36). Also -mintotord=18. To prove the identity we need to check up to \(O\left(q^{\wedge}(20)\right)\).
To be on the safe side we check up to O(q^(90)).
*** The identity below is PROVED!
\([1,3,-1]\)
\[
\left.\__{-} G(1)\right)_{-} G(3)-_{-} H(1) \__{-} H(3)=\frac{\eta(18 \tau) \eta(9 \tau) \eta(4 \tau) \eta(2 \tau)}{\eta(36 \tau)^{2} \eta(12 \tau) \eta(\tau)}
\]
*** There were NO errors. Each term was modular function on Gammal(60). Also -mintotord=40. To prove the identity we need to check up to \(O\left(q^{\wedge}(42)\right)\).
To be on the safe side we check up to \(O\left(q^{\wedge}(160)\right)\).
*** The identity below is PROVED!
\([1,5,-1]\)
\[
\begin{equation*}
{ }_{-} G(1) \__{-} G(5)-_{-} H(1) \__{-} H(5)=\frac{\eta(30 \tau) \eta(20 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(60 \tau)^{2} \eta(12 \tau) \eta(\tau)} \tag{82}
\end{equation*}
\]
myramtype \(2:=[[1,1,-1],[1,1,1],[1,2,-1],[1,3,-1],[1,5,-1]]\)
\(>\) findtype3(24);
*** There were NO errors. Each term was modular function on Gammal(120). Also -mintotord=256. To prove the identity we need to check up to \(O\left(q^{\wedge}(258)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(496)\right.\) ).
*** The identity below is PROVED!
\([1,10,-1,5,2,-1]\)
\[
\frac{G(1)-G(10)-H(1)-H(10)}{-_{-}(5) L_{-} H(2)-_{-} H(5) \__{-} G(2)}=\frac{\eta(60 \tau)^{2} \eta(24 \tau)^{2} \eta(5 \tau) \eta(2 \tau)}{\eta(120 \tau)^{2} \eta(12 \tau)^{2} \eta(10 \tau) \eta(\tau)}
\]
\[
\begin{equation*}
[[1,10,-1,5,2,-1]] \tag{83}
\end{equation*}
\]
=> findtype4 (24);
*** There were NO errors. Each term was modular function on Gammal(48). Also -mintotord=24. To prove the identity we need to check up to \(O\left(q^{\wedge}(26)\right)\). To be on the safe side we check up to \(O\left(q^{\wedge}(120)\right)\).
*** The identity below is PROVED!
\([2,1,-1]\)
\[
\begin{aligned}
& -_{-} G M(2){ }_{-} H M(1)-_{-} G M(1){ }_{-} H M(2)=\frac{\eta(48 \tau) \eta(8 \tau)^{3} \eta(6 \tau) \eta(\tau)}{\eta(24 \tau)^{3} \eta(16 \tau) \eta(4 \tau) \eta(2 \tau)} \\
& \text { "n=", } 5 \\
& \text { "n=", } 10 \\
& \text { "n=", } 15 \\
& \text { " } \mathrm{n}=\text { ", } 20 \\
& {[[2,1,-1]]} \\
& \text { - }>\text { findtype5 (24); } \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(48). Also -mintotord=24. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(26)\right) \text {. } \\
& \text { To be on the safe side we check up to } O\left(q^{\wedge}(120)\right) \text {. } \\
& \text { *** The identity below is PROVED! } \\
& {[2,1,-1]} \\
& \left.{ }_{-} G M(1){ }_{-} G M(2)-_{-} H M(1)\right)_{-} H M(2)=\frac{\eta(16 \tau) \eta(6 \tau) \eta(\tau)}{\eta(48 \tau) \eta(12 \tau) \eta(2 \tau)} \\
& \text { "n=", } 10 \\
& \text { "n=", } 20 \\
& {[[2,1,-1]]} \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(20). Also -mintotord=4. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(6)\right) \text {. } \\
& \text { To be on the safe side we check up to O(q^(44)). } \\
& \text { *** The identity below is PROVED! } \\
& \text { [1, 1, -1] } \\
& \__{-} G(1) \__{-} H M(1)-_{-} G M(1){ }_{-} H(1)=\frac{2 \eta(20 \tau)^{2}}{\eta(10 \tau)^{2}} \\
& \text { *** There were NO errors. Each term was modular function on } \\
& \text { Gammal(20). Also -mintotord=4. To prove the identity } \\
& \text { we need to check up to } O\left(q^{\wedge}(6)\right) \text {. } \\
& \text { To be on the safe side we check up to O(q^(44)). } \\
& \text { *** The identity below is PROVED! } \\
& {[1,1,1]} \\
& { }_{-} G(1) \__{-} H M(1)+{ }_{-} G M(1){ }_{-} H(1)=\frac{2 \eta(4 \tau)^{2}}{\eta(10 \tau) \eta(2 \tau)} \\
& \text { "n=", } 10 \\
& \text { "n=", } 20 \\
& \text { " } \mathrm{n}=\text { ", } 30 \\
& \text { " } \mathrm{n}=\text { ", } 40 \\
& \text { "n=", } 50 \\
& \text { " } \mathrm{n}=\mathrm{"}, 60 \\
& \text { WARNING: There were ebasethreshold problems. } \\
& \text { [[1, 1, -1], [1, 1, 1]] } \\
& \text { [> findtype7 (60); } \\
& \text { "n=", } 10 \\
& \text { "n=", } 20 \\
& \text { "n=", } 30
\end{aligned}
\]
(86)

\(>\operatorname{FIND} 4 \mathrm{~F}(3,10,300)\);
\[
\begin{equation*}
\__{-} G(1)^{3}{ }_{-} H(3)-_{-} H(1)^{3}{ }_{-} G(3)=\frac{3 \eta(36 \tau)^{2} \eta(9 \tau) \eta(6 \tau) \eta(4 \tau) \eta(3 \tau) \eta(2 \tau)^{2}}{\eta(18 \tau) \eta(12 \tau)^{5} \eta(\tau)^{2}} \tag{89}
\end{equation*}
\]

FIND4F(13,10,300);
\(>\) FIND5F \((2,10,300)\);
\[
\begin{equation*}
\text { "COND: ", }-a+1 \tag{90}
\end{equation*}
\]

FIND5F (11, 10, 300);
findtype9();
*** There were NO errors. Each term was modular function on Gammal(12). Also -mintotord=2. To prove the identity we need to check up to \(O\left(q^{\wedge}(4)\right)\). To be on the safe side we check up to O(q^(26)).
*** The identity below is PROVED!
[11, 13, 0]
\[
\begin{equation*}
{ }_{-} G(1)^{11} \__{-} H(1)^{13}-_{-} H(1)^{11} \__{-} G(1)^{13}=-\frac{\eta(3 \tau)^{11} \eta(2 \tau)^{14}}{\eta(12 \tau)^{4} \eta(6 \tau)^{8} \eta(\tau)^{13}} \tag{91}
\end{equation*}
\]
[[11, 13, 0]]
```

nindtype10 (60);
"n=", 50

```
"> findtype11(100);
"n=", 50
"n=", 100
\(====\)
\(====\)
\([p=13\)
> G:=j->1/GetaL (qr (13) ,13,j): H:=j->1/GetaL (qnr (13), 13, j) :
[> GM:=j->1/MGetaL(qr (13) \(13, \mathrm{j}): \mathrm{HM}:=j->1 / \mathrm{MGetaL}(q n r(13), 13, j):\)
\(>\operatorname{GE}:=j->-G e t a L E X P(q r(13), 13, j): H E:=j->-G e t a L E X P(q n r(13), 13, j):\)
\(>\) GE (1) , HE (1) ;
\[
\begin{align*}
& -\frac{1}{4}, \frac{3}{4}  \tag{94}\\
& -\frac{1}{4}, \frac{3}{4} \tag{95}
\end{align*}
\]
[> myramtype1:=findtype1 (48);
*** There were NO errors. Each term was modular function on

Gammal(39). Also -mintotord=24. To prove the identity we need to check up to O(q^(26)).
To be on the safe side we check up to \(O\left(q^{\wedge}(102)\right)\).
*** The identity below is PROVED!
[3, 1, -1]
\[
\begin{gather*}
G(3) \_H(1)-_{-} G(1) \_H(3)=1 \\
\text { myramtype1 }:=[[3,1,-1]] \tag{96}
\end{gather*}
\]
*** There were NO errors. Each term was modular function on Gamma1 (130). Also -mintotord=432. To prove the identity we need to check up to \(O\left(q^{\wedge}(434)\right)\).
To be on the safe side we check up to O(q^(692)).
*** The identity below is PROVED!
\([2,5,1,10,1,-1]\)
\[
\frac{G(2))_{-} G(5)+_{-} H(2) \underbrace{}_{-} H(5)}{-G(10) \_H(1)-_{-} H(10) \_G(1)}=1
\]
*** There were NO errors. Each term was modular function on Gammal(182). Also -mintotord=864. To prove the identity we need to check up to \(O\left(q^{\wedge}(866)\right)\).
To be on the safe side we check up to O(q^(1228)).
*** The identity below is PROVED!
\([1,14,1,7,2,-1]\)
\[
\begin{gather*}
\frac{G(1) \__{-} G(14)+H(1) \__{-} H(14)}{G(7) \_H(2)-_{-} H(7) \_G(2)}=\frac{\eta(91 \tau) \eta(26 \tau) \eta(7 \tau) \eta(2 \tau)}{\eta(182 \tau) \eta(14 \tau) \eta(13 \tau) \eta(\tau)} \\
\quad[[1,2,1,2,1,-1],[2,5,1,10,1,-1],[1,14,1,7,2,-1]] \tag{98}
\end{gather*}
\]

\footnotetext{
> findtype4 (48) ;
"n=", 5
" \(\mathrm{n}=\mathrm{"}, 10\)
"n=", 15
"n=", 20
"n=", 25
"n=", 30
"n=", 35
"n=", 40
" \(\mathrm{n}=\) ", 45
findtype5 (48);
"n=", 10
"n=", 20
" \(\mathrm{n}=\) ", 30
"n=", 40
}
```

 []
    ```
```

> findtype7(48);

```
> findtype7(48);
    "n=", 10
    "n=", 10
    "n=", 20
    "n=", 20
    "n=", 30
    "n=", 30
    "n=", 40
    "n=", 40
        [ ]
        [ ]
    [ ]
    [ ]
<> FIND4F(3,10,300);
<> FIND5F(2,10,100);
> FIND5F(3,10,100);
-G(1)}\mp@subsup{}{-}{3}H(1)\mp@subsup{_}{-}{}H(1\mp@subsup{)}{}{3}\mp@subsup{_}{-}{}G(1)=1+\frac{3\eta(13\tau\mp@subsup{)}{}{2}}{\eta(\tau\mp@subsup{)}{}{2}
<> FIND5F(5,10,100);
> findtype9();
*** There were NO errors. Each term was modular function on
    Gammal(13). Also -mintotord=6. To prove the identity
        we need to check up to O(q^(8)).
        To be on the safe side we check up to O(q^(32)).
    *** The identity below is PROVED!
    [3, 1, 1]
                                    _}G(1\mp@subsup{)}{}{3}\mp@subsup{_}{-}{}H(1)-\mp@subsup{_}{-}{}H(1\mp@subsup{)}{}{3}\mp@subsup{_}{-}{}G(1)-1=\frac{3\eta(13\tau\mp@subsup{)}{}{2}}{\eta(\tau\mp@subsup{)}{}{2}
                                    [[3, 1, 1]]
= findtype10(84*2);
    "n=", 50
    "n=", 100
    "n=", 150
                                    [ ]
            findtype11(100);
    "n=", 50
    "n=", 100
    [ ]
E \(p=15\)
[ \(>\) G:=j->1/GetaL \(([1,4], 15, j): H:=j->1 / G e t a L([2,7], 15, j):\)
- \(>\) GE:=j->-GetaLEXP \(([1,4], 15, j): \operatorname{HE}:=j->-G e t a L E X P([2,7], 15, j):\)
[> GM:=j->1/MGetaL([1,4],15,j): HM:=j->1/MGetaL ([2, 7],15,j):
```

 (106)
    ```
        GE (1) , HE (1) ;
\[
\begin{equation*}
-\frac{17}{30}, \frac{7}{30} \tag{108}
\end{equation*}
\]
    \(\stackrel{\text { checkL }}{ }([1,4], 15)\);
        \(1,\{1,4,11,14\},\{2,7,8,13\}\)
        \(2,\{2,7,8,13\},\{1,4,11,14\}\)
        \(4,\{1,4,11,14\},\{2,7,8,13\}\)
        \(7,\{2,7,8,13\},\{1,4,11,14\}\)
        \(8,\{2,7,8,13\},\{1,4,11,14\}\)
        \(11,\{1,4,11,14\},\{2,7,8,13\}\)
        \(13,\{2,7,8,13\},\{1,4,11,14\}\)
        \(14,\{1,4,11,14\},\{2,7,8,13\}\)
    > myramtype1:=findtype1 (60);
        myramtypel := [ ]
    [> myramtype2:=findtype2 (60);
    *** There were NO errors. Each term was modular function on
            Gammal(60). Also -mintotord=48. To prove the identity
            we need to check up to \(O\left(q^{\wedge}(50)\right)\).
            To be on the safe side we check up to \(O\left(q^{\wedge}(168)\right)\).
    *** The identity below is PROVED!
    \([1,4,-1]\)
        \({ }_{-} G(1){ }_{-} G(4)-_{-} H(1){ }_{-} H(4)=\frac{\eta(30 \tau)^{2} \eta(12 \tau) \eta(10 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(60 \tau)^{2} \eta(15 \tau)^{2} \eta(4 \tau) \eta(\tau)}\)
    "n=", 50
                                    myramtype \(2:=[[1,4,-1]]\)
    > findtype3(60);
    *** There were NO errors. Each term was modular function on
        Gammal(90). Also -mintotord=120. To prove the identity
        we need to check up to \(O\left(q^{\wedge}(122)\right)\).
        To be on the safe side we check up to \(O\left(q^{\wedge}(300)\right)\).
    *** The identity below is PROVED!
    \([2,3,-1,6,1,-1]\)
        \(\frac{G(2) \__{-} G(3)-_{-} H(2) \__{-} H(3)}{G(6)-H(1)-_{-} H(6){ }_{-} G(1)}=\frac{\eta(90 \tau) \eta(15 \tau)^{3} \eta(10 \tau) \eta(6 \tau)}{\eta(45 \tau) \eta(30 \tau)^{3} \eta(5 \tau) \eta(3 \tau)}\)
    "n=", 50
        \([[2,3,-1,6,1,-1]]\)
\(\rangle=\) findtype4 (60);
    "n=", 5
    " \(\mathrm{n}=\mathrm{"}, 10\)
    "n=", 15
    "n=", 20
    "n=", 25
    "n=", 30
    " \(\mathrm{n}=\) ", 35
    " \(\mathrm{n}=\) ", 40
    " \(\mathrm{n}=\) ", 45
    " \(\mathrm{n}=\mathrm{"}, 50\)
```

```
"n=", 55
"n=", 60
=> findtype5 (60);
    "n=", 10
    "n=", 20
    "n=", 30
    "n=", 40
    "n=", 50
    "n=", 60
        [ ]
    > findtype6(60);
    *** There were NO errors. Each term was modular function on
        Gamma1(60). Also -mintotord=48. To prove the identity
        we need to check up to O(q^(50)).
        To be on the safe side we check up to O(q^(168)).
    *** The identity below is PROVED!
    [1, 1, -1]
    _G(1)_HM(1) ___-GM(1)_H(1)=\frac{2\eta(60\tau\mp@subsup{)}{}{2}\eta(10\tau)\eta(6\tau)}{}\mp@subsup{)}{}{3}\eta(4\tau)
    "n=", 10
    "n=", 20
    "n=", 30
    "n=", 40
    "n=", 50
    "n=", 60
    WARNING: There were ebasethreshold problems.
                                    [[1, 1, -1]]
    > findtype7(60);
    "n=", 10
    "n=", 20
    "n=", 30
    "n=", 40
    "n=", 50
    "n=", 60
    WARNING: There were ebasethreshold problems.
            [ ]
            findtype8(24);
    *** There were NO errors. Each term was modular function on
        Gammal(30). Also -mintotord=12. To prove the identity
        we need to check up to O(q^(14)).
        To be on the safe side we check up to O(q^(72)).
        *** The identity below is PROVED!
            [2, 1]
            _G(1)}\mp@subsup{}{-}{2}H(2)\mp@subsup{+}{_}{}H(1\mp@subsup{)}{}{2}\mp@subsup{_}{-}{}G(2)=\frac{2\eta(10\tau\mp@subsup{)}{}{2}\eta(6\tau)\eta(3\tau\mp@subsup{)}{}{2}}{\eta(15\tau\mp@subsup{)}{}{3}\eta(2\tau)\eta(\tau)
    "n=", 10
    "n=", 20
        [[2,1]]
[> FIND4F(11,10,300);
>> FIND5F(2,10,300);
```

 (117)
 $$
\begin{equation*}
\text { "COND: ", }-\frac{4}{5} a+\frac{4}{5} \tag{118}
\end{equation*}
$$

$\begin{aligned} & {[>\text { FIND5F }(31,10,300) ;} \\ & \lceil>\operatorname{GE}(1), \mathrm{HE}(1) ; \end{aligned}$	
	$17 \quad 7$
	30,30
[> findtype9 ();	
[> findtype10 (160);	
"n=", 50	
"n=", 100	
"n=", 150	
	[]
$\left[\begin{array}{l} >\text { findtype11 (100) ; } \\ " \mathrm{n}=", 50 \\ " \mathrm{n}=", ~ 100 \end{array}\right.$	
	[]
[p=16	
${ }^{>}$phi(16) ;	
	8
[> checkL ([1, 7], 16);	
	$1,\{1,7,9,15\},\{3,5,11,13\}$
	$3,\{3,5,11,13\},\{1,7,9,15\}$
	$5,\{3,5,11,13\},\{1,7,9,15\}$
	$7,\{1,7,9,15\},\{3,5,11,13\}$
	$9,\{1,7,9,15\},\{3,5,11,13\}$
	11, $\{3,5,11,13\},\{1,7,9,15\}$
	$13,\{3,5,11,13\},\{1,7,9,15\}$
-	$15,\{1,7,9,15\},\{3,5,11,13\}$

[> GM:=j->1/MGetaL (qr (17),17,j): HM:=j->1/MGetaL(qnr(17),17,j):
[> GE:=j->-GetaLEXP (qr (17), 17,j): HE:=j->-GetaLEXP (qnr (17), 17,j):
> GE (1) , HE (1);

$$
-\frac{2}{3}, \frac{4}{3}
$$

> myramtype1:=findtype1 (2); \#actually checked up to 120
*** There were NO errors. Each term was modular function on Gammal(34). Also -mintotord=16. To prove the identity we need to check up to O(q^(18)). To be on the safe side we check up to O(q^(84)).

```
*** The identity below is PROVED!
[2, 1, -1]
                _G(2) _H(1) -__G(1) _H(2)=1
                                    myramtype1:= [[2, 1, -1]]
\> R2:=series (jac2series (G (1)^2*H(1) -G(1)*H(1)^2,500),q,500):
\> E17:=series(q^2*etaq(q,17,3000)^3/etaq(q,1,3000)^3,q,3000):
[> P17:=sift(E17,q,17,0,2999):
[> findnonhom([(R2^2-1)/8,E17],q,4,1);
        # of terms , 37
        -----RELATIONS----of order---, 4
        {-\frac{1}{4}\mp@subsup{X}{2}{3}+\mp@subsup{X}{1}{4}+\mp@subsup{X}{2}{4}-\frac{1}{16}\mp@subsup{X}{2}{2}-\mp@subsup{X}{1}{}\mp@subsup{X}{2}{2}+\mp@subsup{X}{1}{3}\mp@subsup{X}{2}{}-\frac{7}{4}\mp@subsup{X}{1}{2}\mp@subsup{X}{2}{2}-\mp@subsup{X}{1}{}\mp@subsup{X}{2}{3}}
[> EnvExplicit:=true:
[\begin{array}{ll}{> galois(%,x1); "4T5",{"S(4)"},"-", 24, {"(1 4)", "(2 4)", "(3 4)"}}\end{array}]
```


(136)
(138)
(139)

(150)
(151)

```
> findtype7(24);
    "n=", 10
    "n=", 20
    WARNING: There were 14 ebasethreshold problems.
                                    See the global array EBL.
                                    [ ]
> findtype8 (24);
    "n=", 10
    "n=", 20
                                [ ]
                        [ ]

```

(165)
FIND4F(13,10,300);
findtype9();
> checkL ([1,11],30);
$1,\{1,11,19,29\},\{7,13,17,23\}$
$7,\{7,13,17,23\},\{1,11,19,29\}$
$11,\{1,11,19,29\},\{7,13,17,23\}$
$13,\{7,13,17,23\},\{1,11,19,29\}$
$17,\{7,13,17,23\},\{1,11,19,29\}$
$19,\{1,11,19,29\},\{7,13,17,23\}$
$23,\{7,13,17,23\},\{1,11,19,29\}$
$29,\{1,11,19,29\},\{7,13,17,23\}$
(168)
[> G:=j->1/GetaL $([1,11], 30, j): H:=j->1 / \operatorname{GetaL}([7,13], 30, j):$
[$>$ GM:=j->1/MGetaL $([1,11], 30, j): ~ H M:=j->1 / M G e t a L([7,13], 30, j):$
[> GE:=j->-GetaLEXP $([1,11], 30, j): H E:=j->-G e t a L E X P([7,13], 30, j):$
$>$ GE (1) , HE (1) ;

$$
\begin{equation*}
-\frac{31}{30}, \frac{41}{30} \tag{169}
\end{equation*}
$$

[> TT1:=100:TT2:=300:
[> findramtype1:=findtype1 (24);
findramtypel := []
(170)
> findramtype2:=findtype2 (24);
findramtype2:= []

[]
(173)

```
"n=", 20
                                    [ ]
    TT1:=300: TT2:=600:
    > findtype6(24);
    *** There were NO errors. Each term was modular function on
                Gammal(60). Also -mintotord=48. To prove the identity
                we need to check up to \(O\left(q^{\wedge}(50)\right)\).
                        To be on the safe side we check up to \(O\left(q^{\wedge}(168)\right)\).
    *** The identity below is PROVED!
    [1, 1, -1]
                                    \(\left.\__{-} G(1) \__{-} H M(1)-_{-} G M(1)\right)_{-} H(1)=\frac{2 \eta(60 \tau)^{2} \eta(6 \tau)^{2} \eta(4 \tau)}{\eta(30 \tau)^{3} \eta(12 \tau) \eta(2 \tau)}\)
    "n=", 10
    "n=", 20
        [[1, 1, - 1]]
> findtype7 (24);
    "n=", 10
" \(\mathrm{n}=\) =', 20
                                    [ ]
> findtype8 (24) ;
*** There were NO errors. Each term was modular function on
            Gammal(60). Also -mintotord=48. To prove the identity
            we need to check up to \(O\left(q^{\wedge}(50)\right)\).
            To be on the safe side we check up to O(q^(168)).
*** The identity below is PROVED!
\([2,-1]\)
\[
\__{-} G(1)^{2}{ }_{-} H(2)-_{-} H(1)_{-}^{2} G(2)=\frac{2 \eta(60 \tau)^{2} \eta(6 \tau) \eta(5 \tau) \eta(4 \tau) \eta(3 \tau)}{\eta(30 \tau)^{2} \eta(15 \tau) \eta(12 \tau) \eta(10 \tau) \eta(\tau)}
\]
\[
\text { "n=", } 10
\]
\[
\text { "n=", } 20
\]
\[
[[2,-1]]
\]
\(>\) FIND4F \((2,10,300)\);
\[
\begin{equation*}
\__{-} G(1)^{2} H(2)-_{-} H(1)_{-}^{2} G(2)=\frac{2 \eta(60 \tau)^{2} \eta(6 \tau) \eta(5 \tau) \eta(4 \tau) \eta(3 \tau)}{\eta(30 \tau)^{2} \eta(15 \tau) \eta(12 \tau) \eta(10 \tau) \eta(\tau)} \tag{178}
\end{equation*}
\]
\(\gg \operatorname{FIND} 4 \mathrm{~F}(3,10,300)\);
\(\gg \operatorname{FIND} 4 \mathrm{~F}(13,10,300)\)
> FIND5F (11, 10, 300);
> findtype9();
[> findtype10 (24);
[ ]
                                    (174)
                                    (175)
```

 3
 [> seq(modp (3^ (2*j),34),j=0..7);
> seq(modp (3^ (2*j+1),34),j=0..7);
3,27, 5, 11, 31, 7, 29, 23
| G:=j->1/GetaL([1,9,13,15],34,j): H:=j->1/GetaL([3,5,7,11],34,j):
> GM:=j->1/MGetaL([1,9,13,15],34,j): HM:=j->1/MGetaL([3,5,7,11],34,
j):
GE:=j->-GetaLEXP([1,9,13,15],34,j): HE:=j->-GetaLEXP([3,5,7,11],
34,j):
> GE(1),HE(1);
\frac{2}{3},-\frac{4}{3}
\> TT1:=100: TT2:=400:
>> findtype1(24);
[]
[]
[]
[]
(189)
> findtype5(24);
"n=", 10
"n=", 20
[]
> findtype6(24);
"n=", 10
"n=", 20
/> findtype7(24);
"n=", 10
"n=", 20
[]
(192)
\> findtype8(24);
[]
FIND4F(19,10,300);
> read moreprogs:
"END"
/> findtype9();
*** There were NO errors. Each term was modular function on
Gammal(34). Also -mintotord=16. To prove the identity
we need to check up to O(q^(18)).

```


|> findtype9(24);```

