> restart; ac(); > currentdir(); "C:\cygwin\home\fgarvan\maple\mypackages\thetaids\examples2" (1) > currentdir ("C:\\cygwin\\home\\fgarvan\\maple\\mypackages\\thetaids\\examples 2"); "C:\cygwin\home\fgarvan\maple\mypackages\thetaids\examples2" (2) > currentdir(); "H:\maple\mypackages\thetaids\examples2" (3) > read allprogs: > with (qseries) : > read moreprogs: "END" > xprint:=false: proveit:=true: _p=5 > read ramdata; RAMTYPEI := [[11, 1, -1], [16, 1, -1], [6, 1, -1], [7, 2, -1], [8, 3, -1], [9, 4, -1], [36, 1], [36,-111 *RAMTYPE2* := [[1, 4, 1], [1, 4, -1], [1, 9, 1], [2, 3, 1], [1, 14, 1], [1, 24, 1]] *RAMTYPE3* := [[3, 7, 1, 21, 1, -1], [2, 13, 1, 26, 1, -1], [1, 39, 1, 13, 3, -1], [1, 34, 1, 17, 2, (4) -1], [2, 33, 1, 66, 1, -1], [3, 22, 1, 11, 6, -1]] > nops (RAMTYPE1) + nops (RAMTYPE2) + nops (RAMTYPE3) ; 19 (5) G:=j->1/GetaL(qr(5),5,j):H:=j->1/GetaL(qnr(5),5,j): > GM:=j->1/MGetaL(qr(5),5,j): HM:=j->1/MGetaL(qnr(5),5,j): > GE:=j->-GetaLEXP(qr(5),5,j):HE:=j->-GetaLEXP(qnr(5),5,j): > GE(1), HE(1); $-\frac{1}{60}, \frac{11}{60}$ (6) > isolve(GE(a)+HE(b)=0); $\{a = 11 \ Zl, b = Zl\}$ (7) > findtype1(6); *** There were NO errors. Each term was modular function on Gamma1(30). Also -mintotord=8. To prove the identity we need to check up to $O(q^{(10)})$. To be on the safe side we check up to $O(q^{(68)})$. *** The identity below is PROVED! [6, 1, -1] $G(6) H(1) - G(1) H(6) = \frac{\eta(6\tau) \eta(\tau)}{\eta(3\tau) \eta(2\tau)}$ [[6, 1, -1]](8) > myramtype1:=findtype1(36); #actually checked to 500 *** There were NO errors. Each term was modular function on Gamma1(30). Also -mintotord=8. To prove the identity

we need to check up to $O(q^{(10)})$. To be on the safe side we check up to $O(q^{(68)})$. *** The identity below is PROVED! [6, 1, -1] $_G(6) _H(1) - _G(1) _H(6) = \frac{\eta(6\tau) \eta(\tau)}{\eta(3\tau) \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(55). Also -mintotord=40. To prove the identity we need to check up to $O(q^{(42)})$. To be on the safe side we check up to $O(q^{(150)})$. *** The identity below is PROVED! [11, 1, -1] $_G(11) _H(1) - _G(1) _H(11) = 1$ *** There were NO errors. Each term was modular function on Gamma1(70). Also -mintotord=48. To prove the identity we need to check up to $O(q^{(50)})$. To be on the safe side we check up to $O(q^{(188)})$. *** The identity below is PROVED! [7, 2, -1] $G(7) H(2) - G(2) H(7) = \frac{\eta(14\tau) \eta(\tau)}{\eta(7\tau) \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(80). Also -mintotord=64. To prove the identity we need to check up to $O(q^{(66)})$. To be on the safe side we check up to $O(q^{(224)})$. *** The identity below is PROVED! [16, 1, -1] $G(16) H(1) - G(1) H(16) = \frac{\eta(4\tau)^2}{\eta(8\tau) \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(120). Also -mintotord=128. To prove the identity we need to check up to $O(q^{(130)})$. To be on the safe side we check up to $O(q^{(368)})$. *** The identity below is PROVED! [8, 3, -1] $_G(8)_H(3) - _G(3)_H(8) = \frac{\eta(24\tau) \eta(6\tau) \eta(4\tau) \eta(\tau)}{\eta(12\tau) \eta(8\tau) \eta(3\tau) \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(180). Also -mintotord=288. To prove the identity we need to check up to $O(q^{(290)})$. To be on the safe side we check up to $O(q^{(648)})$. *** The identity below is PROVED! [9, 4, -1] $G(9) H(4) - G(4) H(9) = \frac{\eta(36\tau) \eta(6\tau)^2 \eta(\tau)}{\eta(18\tau) \eta(12\tau) \eta(3\tau) \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(180). Also -mintotord=288. To prove the identity we need to check up to $O(q^{(290)})$. To be on the safe side we check up to $O(q^{(648)})$. *** The identity below is PROVED!

[36, 1, -1] $G(36) H(1) - G(1) H(36) = \frac{\eta(9\tau) \eta(6\tau)^2 \eta(4\tau)}{\eta(18\tau) \eta(12\tau) \eta(3\tau) \eta(2\tau)}$ myramtype1 := [[6, 1, -1], [11, 1, -1], [7, 2, -1], [16, 1, -1], [8, 3, -1], [9, 4, -1], [36, 1], [3(9) -1]] > myramtype1set:=convert(myramtype1,set); $mvramtypelset := \{ [6, 1, -1], [7, 2, -1], [8, 3, -1], [9, 4, -1], [11, 1, -1], [16, 1, -1], [36, 1, -1], [$ (10) 1, -1]> nops(myramtype1); 7 (11) > nops (RAMTYPE1) ; (12) > evalb(convert(myramtype1,set) = convert(RAMTYPE1,set)); (13) true > myramtype2:=findtype2(24); #actually checked up to 500 *** There were NO errors. Each term was modular function on Gamma1(20). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(44)})$. *** The identity below is PROVED! [1, 4, -1] $G(1) G(4) - H(1) H(4) = \frac{\eta (10 \tau)^5}{\eta (20 \tau)^2 \eta (5 \tau)^2 \eta (2 \tau)}$ *** There were NO errors. Each term was modular function on Gamma1(20). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(44)})$. *** The identity below is PROVED! [1, 4, 1] $G(1) G(4) + H(1) H(4) = \frac{\eta(2\tau)^4}{\eta(4\tau)^2 \eta(\tau)^2}$ *** There were NO errors. Each term was modular function on Gamma1(30). Also -mintotord=8. To prove the identity we need to check up to $O(q^{(10)})$. To be on the safe side we check up to $O(q^{(68)})$. *** The identity below is PROVED! [2, 3, 1] $G(2) G(3) + H(2) H(3) = \frac{\eta(3\tau) \eta(2\tau)}{\eta(6\tau) \eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(45). Also -mintotord=24. To prove the identity we need to check up to $O(q^{(26)})$. To be on the safe side we check up to $O(q^{(114)})$. *** The identity below is PROVED! [1, 9, 1]

*** The identity below is PROVED! [1, 34, 1, 17, 2, -1] $[G(1)] G(34) + [H(1)] H(34)] [\eta(17\tau) \eta(2\tau)]$ G(17) H(2) - H(17) G(2) $n(34\tau) n(\tau)$ *** There were NO errors. Each term was modular function on Gamma1(195). Also -mintotord=768. To prove the identity we need to check up to $O(q^{(770)})$. To be on the safe side we check up to $O(q^{(1158)})$. *** The identity below is PROVED! [1, 39, 1, 13, 3, -1] $\underline{G(1)} \underline{G(39)} + \underline{H(1)} \underline{H(39)} \underline{-} \underline{\eta(13 \tau)} \eta(3 \tau)$ $\frac{1}{G(13)} \frac{1}{H(3)} - \frac{1}{H(13)} \frac{1}{G(3)} = \frac{1}{\eta(39\tau)} \eta(\tau)$ "n=", 50 abs(mintotord) = -1008, which is too large Try increasing the global var qthreshold. [1, 54, 1, 27, 2, -1] $\underline{G(1)} \underline{G(54)} + \underline{H(1)} \underline{H(54)} = \underline{\eta(27 \tau)} \eta(18 \tau) \eta(3 \tau) \eta(2 \tau)$ G(27) H(2) - H(27) G(2) $\eta(54 \tau) \eta(9 \tau) \eta(6 \tau) \eta(\tau)$ abs(mintotord) = -1152, which is too large Try increasing the global var qthreshold. [7, 8, 1, 56, 1, -1] $\frac{G(7) G(8) + H(7) H(8)}{G(56) H(1) - H(56) G(1)} = \frac{\eta(28\tau) \eta(2\tau)}{\eta(14\tau) \eta(4\tau)}$ abs(mintotord) = -1600, which is too large Try increasing the global var qthreshold. [3, 22, 1, 11, 6, -1] $\underline{G(3)} \underline{G(22)} + \underline{H(3)} \underline{H(22)} = \frac{\eta(33\tau) \eta(2\tau)}{\eta(2\tau)}$ G(11) H(6) - H(11) G(6) $\eta(66\tau)\eta(\tau)$ abs(mintotord) = -1600, which is too large Try increasing the global var qthreshold. [2, 33, 1, 66, 1, -1] $\frac{-G(2) - G(33) + H(2) - H(33)}{-G(66) - H(1) - H(66) - G(1)} = \frac{\eta(22\tau) \eta(3\tau)}{\eta(11\tau) \eta(6\tau)}$ abs(mintotord) = -2688, which is too large Try increasing the global var qthreshold. [4, 21, 1, 12, 7, -1] $\underline{G(4)} \underline{G(21)} + \underline{H(4)} \underline{H(21)} = \frac{\eta(42\tau) \eta(28\tau) \eta(12\tau) \eta(7\tau) \eta(3\tau) \eta(2\tau)}{\eta(2\tau)}$ G(12) H(7) - H(12) G(7) $\eta(84 \tau) \eta(21 \tau) \eta(14 \tau) \eta(6 \tau) \eta(4 \tau) \eta(\tau)$ abs(mintotord) = -2688, which is too large Try increasing the global var qthreshold. [1, 84, 1, 28, 3, -1] $\underline{G(1)} \underline{G(84)} + \underline{H(1)} \underline{H(84)} = \underline{\eta(42 \tau)} \eta(28 \tau) \eta(12 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)$ G(28) H(3) - H(28) G(3)η(84 τ) η(21 τ) η(14 τ) η(6 τ) η(4 τ) η(τ)abs(mintotord) = -3072, which is too large Try increasing the global var qthreshold. [3, 32, 1, 96, 1, -1]

 $G(3) \quad G(32) + H(3) \quad H(32) = \eta(48\tau) \eta(12\tau) \eta(8\tau) \eta(2\tau)$ $G(96) H(1) - H(96) G(1) = \eta(24\tau) \eta(16\tau) \eta(6\tau) \eta(4\tau)$ "n=", 100 abs(mintotord) = -5760, which is too large Try increasing the global var qthreshold. [7, 18, 1, 14, 9, -1] $\underline{G(7)} \underline{G(18)} + \underline{H(7)} \underline{H(18)} = \frac{\eta(63 \tau) \eta(42 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(2 \tau)}$ G(14) H(9) - H(14) G(9) $n(126\tau) n(21\tau) n(6\tau) n(\tau)$ abs(mintotord) = -5760, which is too large Try increasing the global var gthreshold. $[2, 63, 1, 126, 1, -\overline{1}]$ $\underline{-G(2) \ }\underline{G(63) + H(2) \ }\underline{H(63)} = \underline{\eta(42 \tau) \eta(18 \tau) \eta(7 \tau) \eta(3 \tau)}$ G(126) $H(1) - H(126) _G(1) = \eta(21 \tau) \eta(14 \tau) \eta(9 \tau) \eta(6 \tau)$ [[3, 7, 1, 21, 1, -1], [1, 24, 1, 12, 2, -1], [2, 13, 1, 26, 1, -1], [1, 34, 1, 17, 2, -1], [1, 39, 1],(16) 13, 3, -1], [1, 54, 1, 27, 2, -1], [7, 8, 1, 56, 1, -1], [3, 22, 1, 11, 6, -1], [2, 33, 1, 66, 1, -1, [4, 21, 1, 12, 7, -1], [1, 84, 1, 28, 3, -1], [3, 32, 1, 96, 1, -1], [7, 18, 1, 14, 9, -1], [2, 63, 1, 126, 1, -1]]> myramtype3:=%; (17) myramtype3 := [[3, 7, 1, 21, 1, -1], [1, 24, 1, 12, 2, -1], [2, 13, 1, 26, 1, -1], [1, 34, 1, 17, 2, 1]-1], [1, 39, 1, 13, 3, -1], [1, 54, 1, 27, 2, -1], [7, 8, 1, 56, 1, -1], [3, 22, 1, 11, 6, -1], 18, 1, 14, 9, -1, [2, 63, 1, 126, 1, -1]> nops(myramtype3); 14 (18) > evalb(convert(myramtype3,set) = convert(RAMTYPE3,set)); false (19) > myramtype3set:=convert(myramtype3,set): RAMTYPE3SET:=convert (RAMTYPE3, set): > nops(myramtype3set intersect RAMTYPE3SET); (20)6 > myramtype3set intersect RAMTYPE3SET; (21) 21, 1, -1], [3, 22, 1, 11, 6, -1]> NEWTYPE3:= myramtype3set minus RAMTYPE3SET; $NEWTYPE3 := \{ [1, 24, 1, 12, 2, -1], [1, 54, 1, 27, 2, -1], [1, 84, 1, 28, 3, -1], [2, 63, 1, 126, ...,$ (22) 1, -1, [3, 32, 1, 96, 1, -1], [4, 21, 1, 12, 7, -1], [7, 8, 1, 56, 1, -1], [7, 18, 1, 14, 9, -1]> nops(%); 8 (23) > ##<--- HERE ---> > findtype4(24); #checked up to 130 "n=", 5 *** There were NO errors. Each term was modular function on Gamma1(120). Also -mintotord=128. To prove the identity we need to check up to $O(q^{(130)})$. To be on the safe side we check up to $O(q^{(368)})$. *** The identity below is PROVED!

we need to check up to
$$O(q^{(6)})$$
.
To be on the safe side we check up to $O(q^{(44)})$.
*** The identity below is PROVED!
[1, 1, 1]
 $G(1) _{IIM}(1) + _{GM}(1) _{II}(1) = \frac{2 \eta(4 \tau)^2}{\eta(2 \tau)^2}$
"n=", 10
"n=", 20
[[1, 1, -1], [1, 1, 1]] (26)
> findtype7(24);
*** There were NO errors. Each term was modular function on
Gammal(180). Also -mintotord=288. To prove the identity
we need to check up to $O(q^{(290)})$.
To be on the safe side we check up to $O(q^{(648)})$.
*** The identity below is PROVED!
[9, 1, -1]
 $_{GM}(1) _{G}(9) = _{HM}(1) _{H}(9) = \frac{\eta(18 \tau)^2 \eta(12 \tau) \eta(\tau)}{\eta(36 \tau) \eta(9 \tau) \eta(6 \tau) \eta(2 \tau)}$
"n=", 20
[9, 1, -1]
"n=", 20
[9, 1, -1]] (27)
> read moreprogs:
"END"
[9 TT1:=500: TT2:=600:
> xprint:=false:
> findtype8(60);
*** The identity below is PROVED!
[3, -1]
 $_{G}(1)^3 _{H}(3) - _{H}(1)^3 _{G}(3) = \frac{3 \eta(15 \tau)^3}{\eta(5 \tau) \eta(3 \tau) \eta(\tau)}$
"n=", 30
"n=", 30
"n=", 60
WARNING: There were 2 ebasethreshold problems.
See the global array EBL.
[3, -1]
[6 (1)^2 _{H}(2) - _{H}(1)^2 _{G}(2) _{H}(2) + _{H}(1)^2 _{G}(2)]
> series (jac2scrise (G(1)^2 + 2(2) _{H}(2) - _{H}(1)^2 - 2(2) _{J}(0) /_{q}^*(4/3), q, 300):

$$\frac{2 JMC(0, 10, \infty)^{5}}{JMC(2, 10, \infty) JMC(3, 10, \infty) JMC(4, 10, \infty)^{2} JMC(5, 10, \infty)}$$
(36)
> findtype9();
*** There were NO errors. Each term was modular function on
Gammal (5). Also -mintotord=2. To prove the identity
we need to check up to $O(q^{-}(12))$.
*** The identity below is PROVED!
[11, 1, 1]

$$= G(1)^{11} - H(1) - H(1)^{11} - G(1) - 1 = \frac{11 \eta(5 \tau)^{6}}{\eta(\tau)^{6}}$$
[[11, 1, 1]]
(31)
> xprint:=false:read moreprogs:
> findtype10(76*2);
"n=", 50
abs(mintotord)=-2160, which is too large
Try increasing the global var qthreshold.
[19, 4, -1, 76, 1, 1]

$$= \frac{G(19) H(4) - H(19) G(4)}{G(76) - H(12) - G(76) \eta(2 \tau)} = \frac{\eta(76 \tau) \eta(2 \tau)}{\eta(38 \tau) \eta(4 \tau)}$$
abs(mintotord)=-2400, which is too large
Try increasing the global var qthreshold.
[28, 3, -1, 12, 7, 1]

$$= \frac{G(28) H(3) - H(28) G(3)}{G(12) - H(12) - GM(7)} = \frac{\eta(21 \tau) \eta(14 \tau)^{2} \eta(6 \tau) \eta(4 \tau) \eta(\tau)}{\eta(42 \tau) \eta(28 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)^{2}}$$
abs(mintotord)=-2400, which is too large
Try increasing the global var qthreshold.
[12, 7, -1, 28, 3, 1]

$$= \frac{G(12) H(7) - H(12) G(7)}{G(28) - HM(3) + H(28) - GM(3)} = \frac{\eta(84 \tau) \eta(21 \tau) \eta(14 \tau) \eta(6 \tau)^{2} \eta(\tau)}{\eta(42 \tau)^{2} \eta(12 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)}$$
abs(mintotord)=-2400, which is too large
Try increasing the global var qthreshold.
[12, 7, -1, 2, 8, 3, 1]

$$= \frac{G(12) H(7) - H(12) G(7)}{H(3) + H(28) - GM(3)} = \frac{\eta(84 \tau) \eta(21 \tau) \eta(14 \tau) \eta(6 \tau)^{2} \eta(\tau)}{\eta(42 \tau)^{2} \eta(12 \tau) \eta(7 \tau) \eta(3 \tau) \eta(2 \tau)}$$

$$= \frac{11}{\pi^{-1}, 100}$$
"n=", 100
"n=", 100
"n=", 200
"n=", 200

p=8
> G:=j->1/GetaL([1],8,j): H:=j->1/GetaL([3],8,j): _> GM:=j->1/MGetaL([1],8,j): HM:=j->1/MGetaL([3],8,j): > GE:=j->-GetaLEXP([1],8,j): HE:=j->-GetaLEXP([3],8,j): > GE(1), HE(1); $-\frac{11}{48}, \frac{13}{48}$ (34) > myramtype1:=findtype1(15); *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=6. To prove the identity we need to check up to $O(q^{(8)})$. To be on the safe side we check up to $O(q^{(54)})$. *** The identity below is PROVED! [3, 1, -1] $G(3) H(1) - G(1) H(3) = \frac{\eta (12\tau)^2 \eta (\tau)}{\eta (24\tau) \eta (8\tau) \eta (3\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=6. To prove the identity we need to check up to $O(q^{(8)})$. To be on the safe side we check up to $O(q^{(54)})$. *** The identity below is PROVED! [3, 1, 1] $G(3) H(1) + G(1) H(3) = \frac{\eta(6\tau)^2 \eta(4\tau)^2 \eta(2\tau)}{\eta(12\tau) \eta(8\tau)^2 \eta(3\tau) \eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(40). Also -mintotord=20. To prove the identity we need to check up to $O(q^{(22)})$. To be on the safe side we check up to $O(q^{(100)})$. *** The identity below is PROVED! [5, 1, -1] $G(5) H(1) - G(1) H(5) = \frac{\eta(20\tau) \eta(10\tau) \eta(2\tau)}{\eta(40\tau) \eta(8\tau) \eta(5\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(56). Also -mintotord=36. To prove the identity we need to check up to $O(q^{(38)})$. To be on the safe side we check up to $O(q^{(148)})$. *** The identity below is PROVED! [7, 1, -1] $G(7) H(1) - G(1) H(7) = \frac{\eta(28\tau) \eta(4\tau)}{\eta(56\tau) \eta(8\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(72). Also -mintotord=60. To prove the identity we need to check up to $O(q^{(62)})$. To be on the safe side we check up to $O(q^{(204)})$. *** The identity below is PROVED! [9, 1, -1] $G(9) H(1) - G(1) H(9) = \frac{\eta(36\tau) \eta(6\tau)^2 \eta(4\tau)}{\eta(72\tau) \eta(12\tau) \eta(8\tau) \eta(3\tau)}$

*** There were NO errors. Each term was modular function on Gamma1(120). Also -mintotord=144. To prove the identity we need to check up to $O(q^{(146)})$. To be on the safe side we check up to $O(q^{(384)})$. *** The identity below is PROVED! [5, 3, -1] $[G(5)]_{H(3)} - [G(3)]_{H(5)} = \frac{\eta(60\tau) \eta(15\tau) \eta(10\tau) \eta(6\tau) \eta(4\tau) \eta(\tau)}{\eta(40\tau) \eta(30\tau) \eta(24\tau) \eta(5\tau) \eta(3\tau) \eta(2\tau)}$ myramtype1 := [[3, 1, -1], [3, 1, 1], [5, 1, -1], [7, 1, -1], [9, 1, -1], [5, 3, -1]]> myramtype2:=findtype2(60); *** There were NO errors. Each term was modular function on Gamma1(8). Also -mintotord=1. To prove the identity we need to check up to $O(q^{(3)})$. To be on the safe side we check up to $O(q^{(17)})$. *** The identity below is PROVED! [1, 1, -1] $_G(1)^{2} - _H(1)^{2} = \frac{\eta(4\tau)^{6}}{\eta(8\tau)^{4}\eta(2\tau)\eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(8). Also -mintotord=1. To prove the identity we need to check up to $O(q^{(3)})$. To be on the safe side we check up to $O(q^{(17)})$. *** The identity below is PROVED! [1, 1, 1] $[G(1)^{2} + [H(1)^{2}] = \frac{\eta(2\tau)^{6}}{\eta(8\tau)^{2}\eta(4\tau)\eta(\tau)^{3}}$ *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=6. To prove the identity we need to check up to $O(q^{(8)})$. To be on the safe side we check up to $O(q^{(54)})$. *** The identity below is PROVED! [1, 3, -1] $G(1) G(3) - H(1) H(3) = \frac{\eta (12\tau)^2 \eta (6\tau) \eta (2\tau)^2}{\eta (24\tau)^2 \eta (4\tau) \eta (3\tau) \eta (\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=6. To prove the identity we need to check up to $O(q^{(8)})$. To be on the safe side we check up to $O(q^{(54)})$. *** The identity below is PROVED! [1, 3, 1] $G(1) G(3) + H(1) H(3) = \frac{\eta(4\tau)^2 \eta(3\tau)}{\eta(24\tau) \eta(8\tau) \eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(40). Also -mintotord=20. To prove the identity we need to check up to $O(q^{(22)})$. To be on the safe side we check up to $O(q^{(100)})$. *** The identity below is PROVED! [1, 5, 1]

(35)

To be on the safe side we check up to $O(q^{(58)})$. *** The identity below is PROVED! [1, 3, 1, 3, 1, 1] $\frac{-G(1) - G(3) + H(1) - H(3)}{-G(3) - H(1) + H(3) - G(1)} = \frac{\eta(12\tau) \eta(8\tau) \eta(3\tau)^2}{\eta(24\tau) \eta(6\tau)^2 \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(40). Also -mintotord=32. To prove the identity we need to check up to $O(q^{(34)})$. To be on the safe side we check up to $O(q^{(112)})$. *** The identity below is PROVED! [1, 5, 1, 5, 1, -1] $\frac{G(1) G(5) + H(1) H(5)}{G(5) H(1) - H(5) G(1)} = \frac{\eta(5\tau) \eta(4\tau)}{\eta(20\tau) \eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(72). Also -mintotord=120. To prove the identity we need to check up to $O(q^{(122)})$. To be on the safe side we check up to $O(q^{(264)})$. *** The identity below is PROVED! [3, 3, -1, 9, 1, -1] $\frac{G(3)^2 - H(3)^2}{G(9) H(1) - H(9) G(1)} = \frac{\eta(72\tau) \eta(12\tau)^7 \eta(8\tau)}{\eta(36\tau) \eta(24\tau)^4 \eta(6\tau)^3 \eta(4\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(72). Also -mintotord=108. To prove the identity we need to check up to $O(q^{(110)})$. To be on the safe side we check up to $O(q^{(252)})$. *** The identity below is PROVED! [3, 3, 1, 9, 1, -1] $\frac{_{G(3)^{2}} + _{H(3)^{2}}}{_{G(9)} _{H(1)} - _{H(9)} _{G(1)}} = \frac{\eta(72 \tau) \eta(8 \tau) \eta(6 \tau)^{4}}{\eta(36 \tau) \eta(24 \tau)^{2} \eta(4 \tau) \eta(3 \tau)^{2}}$ *** There were NO errors. Each term was modular function on Gamma1(72). Also -mintotord=96. To prove the identity we need to check up to $O(q^{(98)})$. To be on the safe side we check up to $O(q^{(240)})$. *** The identity below is PROVED! [1, 9, 1, 9, 1, -1] $\frac{G(1) G(9) + H(1) H(9)}{G(9) H(1) - H(9) G(1)} = \frac{\eta (18 \tau) \eta (12 \tau)^2 \eta (3 \tau)^2 \eta (2 \tau)}{\eta (36 \tau) \eta (9 \tau) \eta (6 \tau)^2 \eta (4 \tau) \eta (\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(120). Also -mintotord=256. To prove the identity we need to check up to $O(q^{(258)})$. To be on the safe side we check up to $O(q^{(496)})$. *** The identity below is PROVED! [3, 5, -1, 15, 1, 1] $\frac{G(3) G(5) - H(3) H(5)}{G(15) H(1) + H(15) G(1)} = \frac{\eta(60\tau) \eta(4\tau)}{\eta(20\tau) \eta(12\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(120). Also -mintotord=224. To prove the identity we need to check up to $O(q^{(226)})$.

```
To be on the safe side we check up to O(q^{(464)}).
*** The identity below is PROVED!
[3, 5, 1, 15, 1, -1]
            \underline{G(3)} \underline{G(5)} + \underline{H(3)} \underline{H(5)} = \frac{\eta(120\tau) \eta(20\tau) \eta(12\tau) \eta(8\tau)}{\eta(8\tau)}
            \frac{G(15)}{G(15)} \frac{G(1)}{H(1)} = \frac{G(1)}{H(15)} = \frac{1}{\eta(60\tau) \eta(40\tau) \eta(24\tau) \eta(4\tau)}
*** There were NO errors. Each term was modular function on
      Gamma1(120). Also -mintotord=192. To prove the identity
      we need to check up to O(q^{(194)}).
      To be on the safe side we check up to O(q^{(432)}).
*** The identity below is PROVED!
[1, 15, -1, 5, 3, 1]
 \underline{G(1)} \underline{G(15)} - \underline{H(1)} \underline{H(15)} = \underline{\eta(60 \tau)^2 \eta(40 \tau)^2 \eta(24 \tau)^2 \eta(10 \tau) \eta(6 \tau) \eta(4 \tau)^2}
  G(5) H(3) + H(5) G(3)
                                       -\frac{1}{\eta(120 \tau)^2 \eta(30 \tau) \eta(20 \tau)^2 \eta(12 \tau)^2 \eta(8 \tau)^2 \eta(2 \tau)}
*** There were NO errors. Each term was modular function on
      Gamma1(120). Also -mintotord=288. To prove the identity
      we need to check up to O(q^{(290)}).
      To be on the safe side we check up to O(q^{(528)}).
*** The identity below is PROVED!
[1, 15, 1, 5, 3, -1]
_G(1) _G(15) + _H(1) _H(15)
 G(5) H(3) - H(5) G(3)
    =\frac{\eta(40\,\tau)\,\eta(30\,\tau)^2\,\eta(24\,\tau)\,\eta(20\,\tau)\,\eta(12\,\tau)\,\eta(5\,\tau)^2\,\eta(3\,\tau)^2\,\eta(2\,\tau)^2}{\eta(120\,\tau)\,\eta(60\,\tau)\,\eta(15\,\tau)^2\,\eta(10\,\tau)^2\,\eta(8\,\tau)\,\eta(6\,\tau)^2\,\eta(4\,\tau)\,\eta(\tau)^2}
*** There were NO errors. Each term was modular function on
      Gamma1(168). Also -mintotord=528. To prove the identity
      we need to check up to O(q^{(530)}).
      To be on the safe side we check up to O(q^{(864)}).
*** The identity below is PROVED!
[3, 7, 1, 21, 1, -1]
           \underline{-G(3)} \underline{-G(7)} + \underline{-H(3)} \underline{-H(7)} = \frac{\eta(168 \tau) \eta(28 \tau) \eta(21 \tau) \eta(8 \tau)}{\eta(8 \tau)}
            \frac{G(21) H(1) - H(21) G(1)}{G(21) H(1) - H(21) G(1)} = \frac{1}{\eta} (84 \tau) \eta (56 \tau) \eta (24 \tau) \eta (7 \tau)
*** There were NO errors. Each term was modular function on
      Gamma1(168). Also -mintotord=528. To prove the identity
      we need to check up to O(q^{(530)}).
      To be on the safe side we check up to O(q^{(864)}).
*** The identity below is PROVED!
[1, 21, 1, 7, 3, -1]
            \underline{-G(1) \ }\underline{-G(21) + \underline{-H(1) \ }\underline{-H(21)}} = \underline{\eta(56 \tau) \eta(24 \tau) \eta(4 \tau) \eta(3 \tau)}
              \frac{1}{G(7)} \frac{1}{H(3)} - \frac{1}{H(7)} \frac{1}{G(3)} = \frac{1}{\eta(168 \tau) \eta(12 \tau) \eta(8 \tau) \eta(\tau)}
 abs(mintotord) = -1632, which is too large
 Try increasing the global var gthreshold.
[1, 39, 1, 13, 3, -1]
  \underline{G(1) \ G(39) + H(1) \ H(39)} = \frac{\eta(104 \tau) \eta(78 \tau) \eta(24 \tau) \eta(13 \tau) \eta(3 \tau) \eta(2 \tau)}{\eta(13 \tau) \eta(3 \tau) \eta(2 \tau)}
  \frac{-}{G(13)} \frac{-}{H(3)} - \frac{-}{H(13)} \frac{-}{G(3)} - \frac{-}{\eta(312\tau)} \eta(39\tau) \eta(26\tau) \eta(8\tau) \eta(6\tau) \eta(\tau)
"n=", 50
 abs(mintotord) = -3680, which is too large
 Try increasing the global var qthreshold.
[1, 55, 1, 11, 5, -1]
```

 $\frac{G(1) G(55) + H(1) H(55)}{G(11) H(5) - H(11) G(5)} = \frac{\eta(110\tau) \eta(88\tau) \eta(40\tau) \eta(11\tau) \eta(5\tau) \eta(2\tau)}{q^{55/3} \eta(55\tau) \eta(22\tau) \eta(10\tau) \eta(8\tau) \eta(\tau)}$ [[1, 3, -1, 3, 1, -1], [1, 3, -1, 3, 1, 1], [1, 3, 1, 3, 1, -1], [1, 3, 1, 3, 1, 1], [1, 5, 1, 5, 1, -1],(37) [3, 3, -1, 9, 1, -1], [3, 3, 1, 9, 1, -1], [1, 9, 1, 9, 1, -1], [3, 5, -1, 15, 1, 1], [3, 5, 1, 15, 1], [3, 5, 1, 15, 1], [3, 5, 1, 15, 1], [3, 5, 1, 15, 1], [3, 5, 1, 15, 1], [3, 5, 1, 15, 1], [3, 5, 1],1, -1], [1, 15, -1, 5, 3, 1], [1, 15, 1, 5, 3, -1], [3, 7, 1, 21, 1, -1], [1, 21, 1, 7, 3, -1], [1, 39, 1, 13, 3, -1], [1, 55, 1, 11, 5, -1]] > etamake(series(jac2series((G(1)*G(55)+H(1)*H(55))/(G(11)*H(5)-H (11) *G(5)),1000) *q^ (35/3),q,1000),q,800); $\frac{q^{35/3} \eta(110 \tau) \eta(88 \tau) \eta(40 \tau) \eta(11 \tau) \eta(5 \tau) \eta(2 \tau)}{\eta(440 \tau) \eta(55 \tau) \eta(22 \tau) \eta(10 \tau) \eta(8 \tau) \eta(\tau)}$ (38) > findtype4(60); "n=", 5 "n=", 10 "n=", 15 "n=", 20 "n=", 25 "n=", 30 "n=", 35 "n=", 40 "n=", 45 "n=", 50 "n=", 55 "n=", 60 (39) [] > findtype5(60); "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 [] (40) > xprint:=false:read moreprogs: "END" > TT1; 300 (41) > findtype6(120); "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 "n=", 70 "n=", 80 "n=", 90 "n=", 100 "n=", 110 "n=", 120 WARNING: There were 20 ebasethreshold problems. See the global array EBL.

.....

[] (42) > ebasethreshold; 1000 (43) > findtype7(120); "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 "n=", 70 "n=", 80 "n=", 90 "n=", 100 "n=", 110 "n=", 120 WARNING: There were 22 ebasethreshold problems. See the global array EBL. (44) [] > read moreprogs: "END" > findtype8(10); *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=10. To prove the identity we need to check up to $O(q^{(12)})$. To be on the safe side we check up to $O(q^{(58)})$. *** The identity below is PROVED! [3, -1] $[G(1)^{3} H(3) - H(1)^{3} G(3) = \frac{3 \eta (24 \tau)^{2} \eta (6 \tau) \eta (4 \tau) \eta (2 \tau)^{3}}{\eta (8 \tau)^{4} \eta (3 \tau) \eta (\tau)^{2}}$ "n=", 10 WARNING: There were 2 ebasethreshold problems. See the global array EBL. [[3, -1]](45) > EBL; $\left[_G(1)^2_H(2) - _H(1)^2_G(2), _G(1)^2_H(2) + _H(1)^2_G(2) \right]$ (46) > jacprodmake(series(jac2series(G(1)^2*H(2)-H(1)^2*G(2),300)/q^ (13/12),q,300),q,250); $\frac{2 JAC(0, 16, \infty)^5 JAC(4, 16, \infty)}{JAC(1, 16, \infty) JAC(3, 16, \infty) JAC(5, 16, \infty) JAC(6, 16, \infty) JAC(7, 16, \infty) JAC(8, 16, \infty)}$ (47) > jac2getaprod(%); $\frac{2\,\eta_{16,\,4}(\tau)}{\eta_{16,\,1}(\tau)\,q^{13/12}\,\eta_{16,\,3}(\tau)\,\eta_{16,\,5}(\tau)\,\eta_{16,\,6}(\tau)\,\eta_{16,\,7}(\tau)\,\eta_{16,\,8}(\tau)}$ (48) > FIND4F(17,10,300); > FIND5F(2,10,300); "COND: ", $-\frac{3}{5}a + \frac{3}{5}$ (49)

> [seq([ithprime(j),modp(ithprime(j),5)],j=1..20)]; [[2, 2], [3, 3], [5, 0], [7, 2], [11, 1], [13, 3], [17, 2], [19, 4], [23, 3], [29, 4], [31, 1], [37,(50) 2], [41, 1], [43, 3], [47, 2], [53, 3], [59, 4], [61, 1], [67, 2], [71, 1]] > FIND5F(61,10,300); > findtype9(); *** There were NO errors. Each term was modular function on Gamma1(8). Also -mintotord=1. To prove the identity we need to check up to $O(q^{(3)})$. To be on the safe side we check up to $O(q^{(17)})$. *** The identity below is PROVED! [13, 11, 0] $[G(1)^{13} H(1)^{11} - H(1)^{13} G(1)^{11} = \frac{\eta(4\tau)^6 \eta(2\tau)^{10}}{\eta(8\tau)^4 \eta(\tau)^{12}}$ [[13, 11, 0]] (51) > findtype10(84*3); "n=", 50 "n=", 100 "n=", 150 "n=", 200 "n=", 250 [] (52) > findtype11(300); "n=", 50 "n=", 100 "n=", 150 "n=", 200 "n=", 250 "n=", 300 [] (53) _p=8 Version 2 > GetaL([4],8,1); $\frac{JAC(4, 8, \infty)}{q^{1/3} JAC(0, 8, \infty)}$ (54) > GetaB(4,8,1); $JAC(4, 8, \infty)$ (55) $JAC(0, 8, \infty)$ jac2prod(%); $(a^4, a^8)^2$ (56) > G:=j->1/GetaL([1],8,j)/sqrt(GetaL([4],8,j)): H:=j->1/GetaL([3],8, j)/sqrt(GetaL([4],8,j)): > GM:j->1/MGetaL([1,4],8,j): HM:=j->1/MGetaL([3,4],8,j): > GE:=j->-GetaLEXP([1],8,j)-1/2*GetaLEXP([4],8,j); $GE := j \rightarrow -GetaLEXP([1], 8, j) - \frac{1}{2} GetaLEXP([4], 8, j)$ (57) HE:=j->-GetaLEXP([3],8,j)-1/2*GetaLEXP([4],8,j);

$$HE := j \rightarrow -GetaLEXP([3], 8, j) - \frac{1}{2} GetaLEXP([4], 8, j)$$
(58)

> GE(a), HE(b);

$$-\frac{1}{16}a, \frac{7}{16}b$$
 (59)

> series(jac2series(G(7)*H(1)-H(7)*G(1),300),q,300): > series((jac2series(G(1)^7*H(1)-H(1)^7*G(1),300)-1),q,300): > etamake(%,q,280);

$$\frac{7 \eta (8 \tau)^4 \eta (2 \tau)^2}{\eta (4 \tau)^2 \eta (\tau)^4}$$
(60)

> series (jac2series (G (1) *H (1), 300) /q^ (3/8), q, 40);

$$1 + q + q^2 + 2q^3 + 4q^4 + 5q^5 + 6q^6 + 9q^7 + 13q^8 + 17q^9 + 21q^{10} + 28q^{11} + 39q^{12}$$
 (61)
 $+ 49q^{13} + 60q^{14} + 78q^{15} + 101q^{16} + 125q^{17} + 153q^{18} + 192q^{19} + 241q^{20} + 295q^{21}$
 $+ 357q^{22} + 438q^{23} + 540q^{24} + 652q^{25} + 781q^{26} + 946q^{27} + 1145q^{28} + 1368q^{29}$
 $+ 1627q^{30} + 1945q^{31} + 2324q^{32} + 2754q^{33} + 3249q^{34} + 3845q^{35} + 4550q^{36}$
 $+ 5348q^{37} + 6265q^{38} + 7356q^{39} + O(q^{40})$
> etamake (%, q, 38);

$$\frac{\eta(8\tau)^2\eta(2\tau)}{q^{3/8}\eta(4\tau)^2\eta(\tau)}$$
(62)

> findtype1(12);
Error, (in JACP2jaclist) chk<>0
> series(S2,q,10);

$$1 - q^{5/3} - q^{8/3} + 2 q^{3} - q^{-11/3} + 3 q^{4} - q^{-14/3} + q^{5} - 2 q^{-17/3} + 3 q^{6} - 2 q^{-20/3} + 6 q^{7} - 2 q^{-23/3} + 8 q^{8} - 3 q^{-26/3} + 7 q^{9} - 4 q^{-29/3} + O(q^{-10})$$
(63)

> G:=j->1/GetaL([1],10,j): H:=j->1/GetaL([3],10,j): > GM:=j->1/MGetaL([1],10,j): HM:=j->1/MGetaL([3],10,j): > GE:=j->-GetaLEXP([1],10,j): HE:=j->-GetaLEXP([3],10,j): > GE(1),HE(1);

$$-\frac{23}{60}, \frac{13}{60}$$
 (64)

> F1:=G(1)*q^(23/60);

$$FI := \frac{JAC(0, 10, \infty)}{JAC(1, 10, \infty)}$$
(65)

$$F2 := GM(1) * q^{(23/60)};$$

$$F2 := \frac{JAC(0, 20, \infty) JAC(1, 10, \infty)}{JAC(2, 20, \infty) JAC(0, 10, \infty)}$$
(66)
series (subs (g=-g, jac2series (F1, 300)) - jac2series (F2, 300), g, 10);

eries (subs (q=-q, jac2series (F1, 300)) - jac2series (F2, 300), q, 10); $O(q^{10})$ (67)

> myramtype1:=findtype1(6); #actually checked up to 150 *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=40. To prove the identity we need to check up to $O(q^{(42)})$. To be on the safe side we check up to $O(q^{(160)})$. *** The identity below is PROVED! [6, 1, -1] $[G(6) [H(1) - [G(1)]] H(6) = \frac{\eta (30 \tau)^3 \eta (12 \tau) \eta (5 \tau) \eta (4 \tau)}{\eta (60 \tau)^2 \eta (15 \tau) \eta (10 \tau)^2 \eta (6 \tau)}$ *myramtype1* := [[6, 1, -1]] (68) > myramtype2:=findtype2(9); #actually checked up to 100 *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=40. To prove the identity we need to check up to $O(q^{(42)})$. To be on the safe side we check up to $O(q^{(160)})$. *** The identity below is PROVED! [2, 3, -1] $G(2) G(3) - H(2) H(3) = \frac{\eta(15\tau) \eta(12\tau) \eta(10\tau)^{3} \eta(4\tau)}{\eta(30\tau)^{2} \eta(20\tau)^{2} \eta(5\tau) \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(90). Also -mintotord=96. To prove the identity we need to check up to $O(q^{(98)})$. To be on the safe side we check up to $O(q^{(276)})$. *** The identity below is PROVED! [1, 9, -1] $[G(1) G(9) - H(1) H(9) = \frac{\eta(45\tau) \eta(30\tau)^2 \eta(18\tau) \eta(5\tau) \eta(3\tau) \eta(2\tau)}{\eta(90\tau)^2 \eta(15\tau) \eta(10\tau)^2 \eta(9\tau) \eta(\tau)}$ myramtype2 := [[2, 3, -1], [1, 9, -1]](69) > findtype3(120); "n=", 50 "n=", 100 [] (70) > xprint:=true:read moreprogs: "END" > findtype4(120); "n=", 5

"n=", 5 "n=", 10 "n=", 15 "n=", 20 "n=", 25 "n=", 30 "n=", 35 "n=", 40 "n=", 45 "n=", 50 "n=", 55 "n=", 60 "n=", 65 "n=", 70

"n=", 75 "n=", 80 "n=", 80 "n=", 85 "n=", 90 "n=", 95 "n=", 100 "n=", 105 "n=", 110 "n=", 115 "n=", 120 [] (71) > findtype5(120); *** There were NO errors. Each term was modular function on Gamma1(80). Also -mintotord=64. To prove the identity we need to check up to $O(q^{(66)})$. To be on the safe side we check up to $O(q^{(224)})$. *** The identity below is PROVED! [4, 1, -1] $_GM(1) _GM(4) - _HM(1) _HM(4) = \frac{\eta(40\tau) \eta(16\tau) \eta(10\tau) \eta(4\tau)^{3} \eta(\tau)}{\eta(80\tau) \eta(20\tau) \eta(8\tau)^{2} \eta(5\tau) \eta(2\tau)^{2}}$ "n=", 10 "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 "n=", 70 "n=", 80 "n=", 90 "n=", 100 "n=", 110 "n=", 120 [[4, 1, -1]](72) > xprint:=false: > findtype6(80); *** There were NO errors. Each term was modular function on Gamma1(20). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(44)})$. *** The identity below is PROVED! [1, 1, -1] $_G(1)_HM(1) - _GM(1)_H(1) = \frac{2\eta(20\tau)^2}{\eta(10\tau)^2}$ *** There were NO errors. Each term was modular function on Gamma1(20). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(44)})$. *** The identity below is PROVED! [1, 1, 1] $G(1) HM(1) + GM(1) H(1) = \frac{2 \eta (4 \tau)^2}{\eta (10 \tau) \eta (2 \tau)}$

"n=", 10 "n=", 20 n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 "n=", 70 "n=", 80 [[1, 1, -1], [1, 1, 1]](73) > findtype7(80); "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 "n=", 70 "n=", 80 [] (74) > findtype8(24); *** There were NO errors. Each term was modular function on Gamma1(20). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(44)})$. *** The identity below is PROVED! [2, -1] $[G(1)^{2} H(2) - H(1)^{2} G(2) = \frac{2 \eta (20 \tau)^{2} \eta (5 \tau) \eta (2 \tau)}{\eta (10 \tau)^{3} \eta (\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(20). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(44)})$. *** The identity below is PROVED! [2, 1] $[G(1)^{2} H(2) + H(1)^{2} G(2) = \frac{2 \eta (5 \tau) \eta (4 \tau)^{2}}{\eta (10 \tau)^{2} \eta (\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(30). Also -mintotord=16. To prove the identity we need to check up to $O(q^{(18)})$. To be on the safe side we check up to $O(q^{(76)})$. *** The identity below is PROVED! [3, -1] $[G(1)^{3} H(3) - H(1)^{3} G(3) = \frac{3 \eta (30 \tau) \eta (15 \tau) \eta (6 \tau) \eta (5 \tau)^{2} \eta (2 \tau)^{3}}{\eta (10 \tau)^{5} \eta (3 \tau) \eta (\tau)^{2}}$ "n=", 10 "n=", 20 [[2, -1], [2, 1], [3, -1]](75) > findtype9();

[]

(76)

> findtype10(100); "n=", 50 "n=", 100 [] (77) > findtype11(100); "n=", 50 "n=", 100 [] (78) _p=12 > phi(12); 4 (79) > G:=j->1/GetaL([1],12,j): H:=j->1/GetaL([5],12,j): > GM:=j->1/MGetaL([1],12,j): HM:=j->1/MGetaL([5],12,j): > GE:=j->-GetaLEXP([1],12,j): HE:=j->-GetaLEXP([5],12,j): > GE(1), HE(1); $-\frac{13}{24}, \frac{11}{24}$ (80) > myramtype1:=findtype1(20); *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(52)})$. *** The identity below is PROVED! [2, 1, -1] $G(2) H(1) - G(1) H(2) = \frac{\eta(6\tau) \eta(4\tau) \eta(\tau)}{\eta(12\tau)^2 \eta(2\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=4. To prove the identity we need to check up to $O(q^{(6)})$. To be on the safe side we check up to $O(q^{(52)})$. *** The identity below is PROVED! [2, 1, 1] $G(2) H(1) + G(1) H(2) = \frac{\eta(4\tau) \eta(3\tau)^2}{\eta(12\tau)^2 \eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(36). Also -mintotord=12. To prove the identity we need to check up to $O(q^{(14)})$. To be on the safe side we check up to $O(q^{(84)})$. *** The identity below is PROVED! [3, 1, -1] $G(3) H(1) - G(1) H(3) = \frac{\eta(18\tau) \eta(2\tau)}{\eta(36\tau) \eta(12\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(36). Also -mintotord=12. To prove the identity we need to check up to $O(q^{(14)})$. To be on the safe side we check up to $O(q^{(84)})$. *** The identity below is PROVED!

$$\begin{bmatrix} [3, 1, 1] \\ -G(3) _H(1) + _G(1) _H(3) = \frac{\eta(9\tau)^2 \eta(6\tau)^5 \eta(4\tau)}{\eta(18\tau)^2 \eta(2\tau)^3 \eta(3\tau)^2 \eta(2\tau)} \\ *** There were NO errors. Each term was modular function on Gammal(48). Also -mintotord=24. To prove the identity we need to check up to O(q^{(120)}). To be on the safe side we check up to O(q^{(120)}). \\ *** The identity below is PROVED! \\ (4, 1, -1) \\ -G(4) _H(1) = _G(1) _H(4) = \frac{\eta(16\tau) \eta(3\tau)}{\eta(48\tau) \eta(12\tau)} \\ *** There were NO errors. Each term was modular function on Gammal(60). Also -mintotord=40. To prove the identity we need to check up to O(q^{(120)}). \\ *** There were NO errors. Each term was modular function on Gammal(60). Also -mintotord=40. To prove the identity we need to check up to O(q^{(160)}). \\ *** The identity below is PROVED! \\ (5, 1, -1] \\ _G(5) _H(1) = _G(1) _H(5) = \frac{\eta(15\tau) \eta(10\tau) \eta(6\tau) \eta(4\tau)}{\eta(60\tau) \eta(12\tau)^2 \eta(5\tau)} \\ *** There were NO errors. Each term was modular function on Gammal(72). Also -mintotord=48. To prove the identity we need to check up to O(q^{(192)}). \\ *** The identity below is PROVED! \\ (3, 2, -1] \\ _G(3) _H(2) = _G(2) _H(3) = \frac{\eta(72\tau) \eta(12\tau) \eta(9\tau) \eta(8\tau) \eta(6\tau) \eta(7)}{\eta(36\tau)^2 \eta(24\tau)^2 \eta(3\tau) \eta(2\tau)} \\ *** The identity below is PROVED! \\ (5, 1, -1] \\ _G(6) _H(1) = _G(1) _H(6) = \frac{\eta(9\tau) \eta(8\tau)}{\eta(72\tau) \eta(12\tau)} \\ mynamypel := [[2, 1, -11, [2, 1, 11, [3, 1, -11, [3, 1, -11, [3, 1, -11, [3, 2, -11], [6, 1, -1]] \\ _G(6) _H(1) = _G(1) _H(6) = \frac{\eta(9\tau) \eta(8\tau)}{\eta(72\tau) \eta(12\tau)} \\ myramypel := [[2, 1, -11, [2, 1, 11, [3, 1, -11, [3, 1, -11, [3, 1, -11, [3, 2, -11], [6, 1, -1]] \\ _G(1)^2 = _H(1)^2 = \frac{\eta(6\tau)^3 \eta(2\tau)^3}{\eta(12\tau)^4 \eta(\tau)^2} \\ *** The identity below is PROVED! \\ (7, 1, -1) \\ _G(1)^2 = _H(1)^2 = \frac{\eta(6\tau)^3 \eta(2\tau)^3}{\eta(12\tau)^4 \eta(\tau)^2} \\ *** The identity below is PROVED! \\ (1, 1, -1) \\ _G(1)^2 = _H(1)^2 = \frac{\eta(6\tau)^3 \eta(2\tau)^3}{\eta(12\tau)^4 \eta(\tau)^2} \\ *** There were NO errors. Each term was modular function on Gammal(12). Also -mintotord=2. To prove the identity we need to check up to O(q^{(20)}). \\ *** The identity below is PROVED! \\ (1, 1, -1) \\ _G(1)^2 = _H(1)^2 = \frac{\eta(6\tau)^3 \eta(2\tau)^3}{\eta(12\tau)^4$$

we need to check up to $O(q^{(4)})$. To be on the safe side we check up to $O(q^{(26)})$. *** The identity below is PROVED! [1, 1, 1] $[G(1)^{2} + [H(1)^{2}] = \frac{\eta(4\tau) \eta(3\tau)^{4} \eta(2\tau)}{\eta(12\tau)^{3} \eta(6\tau) \eta(\tau)^{2}}$ *** There were NO errors. Each term was modular function on Gamma1(24). Also -mintotord=8. To prove the identity we need to check up to $O(q^{(10)})$. To be on the safe side we check up to $O(q^{(56)})$. *** The identity below is PROVED! [1, 2, -1] $G(1) G(2) - H(1) H(2) = \frac{\eta(8\tau)^2 \eta(3\tau)^2}{\eta(24\tau)^2 \eta(12\tau) \eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(36). Also -mintotord=18. To prove the identity we need to check up to $O(q^{(20)})$. To be on the safe side we check up to $O(q^{(90)})$. *** The identity below is PROVED! [1, 3, -1] $_G(1) _G(3) - _H(1) _H(3) = \frac{\eta(18\tau) \eta(9\tau) \eta(4\tau) \eta(2\tau)}{\eta(36\tau)^2 \eta(12\tau) \eta(\tau)}$ *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=40. To prove the identity we need to check up to $O(q^{(42)})$. To be on the safe side we check up to $O(q^{(160)})$. *** The identity below is PROVED! [1, 5, -1] $[G(1) G(5) - H(1) H(5) = \frac{\eta(30\tau) \eta(20\tau) \eta(3\tau) \eta(2\tau)}{\eta(60\tau)^2 \eta(12\tau) \eta(\tau)}$ myramtype2 := [[1, 1, -1], [1, 1, 1], [1, 2, -1], [1, 3, -1], [1, 5, -1]](82) > findtype3(24); *** There were NO errors. Each term was modular function on Gamma1(120). Also -mintotord=256. To prove the identity we need to check up to $O(q^{(258)})$. To be on the safe side we check up to $O(q^{(496)})$. *** The identity below is PROVED! [1, 10, -1, 5, 2, -1] $\frac{-G(1) G(10) - H(1) H(10)}{-G(5) H(2) - H(5) G(2)} = \frac{\eta (60 \tau)^2 \eta (24 \tau)^2 \eta (5 \tau) \eta (2 \tau)}{\eta (120 \tau)^2 \eta (12 \tau)^2 \eta (10 \tau) \eta (\tau)}$ [[1, 10, -1, 5, 2, -1]] (83) > findtype4(24); *** There were NO errors. Each term was modular function on Gamma1(48). Also -mintotord=24. To prove the identity we need to check up to $O(q^{(26)})$. To be on the safe side we check up to $O(q^{(120)})$. *** The identity below is PROVED! [2, 1, -1]

$$\begin{bmatrix} -GM(2) - HM(1) - -GM(1) - HM(2) = \frac{\eta(48 \text{ t}) \eta(8 \text{ t})^3 \eta(6 \text{ t}) \eta(1)}{\eta(2 \text{ t})^3 \eta(16 \text{ t}) \eta(4 \text{ t}) \eta(2 \text{ t})} \\ \pi_{n=1}^{n}, 5 \\ \pi_{n=1}^{n}, 10 \\ \pi_{n=1}^{n}, 20 \\ \hline \\ \text{findtype5(24);} \\ \text{*** There were NO errors. Each term was modular function on Gammal(43). Also -mintotord=24. To prove the identity we need to check up to O(q^{(2)}). \\ \text{To be on the safe side we check up to O(q^{(120)}). \\ \text{*** The identity below is PROVED!} \\ \hline \\ 2, 1, -1] \\ -GM(1) - GM(2) = -IM(1) - IM(2) = -\frac{\eta(16 \text{ t}) \eta(6 \text{ t}) \eta(2)}{\eta(48 \text{ t}) \eta(12 \text{ t}) \eta(2 \text{ t})} \\ \pi_{n=1}^{n}, 20 \\ \hline \\ \text{"n=1}^{n}, 20 \\ \hline \\ \text{"n=1}^{n}, 20 \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ -G(1) - HM(1) - -GM(1) - H(1) = \frac{2\eta(20 \text{ t})^2}{\eta(10 \text{ t})^2} \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ -G(1) - HM(1) - -GM(1) - H(1) = \frac{2\eta(20 \text{ t})^2}{\eta(10 \text{ t})^2} \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ -G(1) - HM(1) - -GM(1) - H(1) = \frac{2\eta(420 \text{ t})^2}{\eta(10 \text{ t})^2} \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ 1, 1, -1] \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below is PROVED!} \\ \hline \\ \hline \\ \text{*** The identity below$$

$$\begin{array}{ll} \label{eq:solution} & \mbox{"n=", 50} \\ \mbox{"n=", 60} & \mbox{[1]} & \mbox{(57)} \\ \mbox{$>$ FINDAF(2,10,300); \\ & \mbox{$=$} G(1)^2 - H(2) - -H(1)^2 - G(2) - \frac{2 \pi (24 \tau)^3 \pi (6 \tau) \pi (4 \tau)^2 \pi (3 \tau)}{\pi (12 \tau)^5 \pi (8 \tau) \pi (\tau)} & \mbox{(88)} \\ \mbox{$>$ FINDAF(3,10,300); \\ & \mbox{$=$} G(1)^3 - H(1)^3 - G(3) = \frac{3 \pi (36 \tau)^2 \pi (9 \tau) \pi (6 \tau) \pi (4 \tau) \pi (3 \tau) \pi (2 \tau)^2}{\pi (18 \tau) \pi (12 \tau)^5 \pi (\tau)^2} & \mbox{(89)} \\ \mbox{$>$ FINDAF(13,10,300); \\ & \mbox{$>$ FINDSF(2,10,300); \\ & \mbox{$>$ findtypeld(60); \\ & \mbox{$>$ max$$>$ findtypel1(100); \\ & \mbox{$$$ max$$>$ max$$>$ findtypel1(100); \\ & \mbox{$$$$ ma$$

Gamma1(39). Also -mintotord=24. To prove the identity we need to check up to $O(q^{(26)})$. To be on the safe side we check up to $O(q^{(102)})$. *** The identity below is PROVED! [3, 1, -1]G(3) H(1) - G(1) H(3) = 1*myramtype1* := [[3, 1, -1]] (96) > myramtype2:=findtype2(48); (97) myramtype2 := []> findtype3(48); *** There were NO errors. Each term was modular function on Gamma1(26). Also -mintotord=18. To prove the identity we need to check up to $O(q^{(20)})$. To be on the safe side we check up to $O(q^{(70)})$. *** The identity below is PROVED! [1, 2, 1, 2, 1, -1] $\frac{G(1) G(2) + H(1) H(2)}{G(2) H(1) - H(2) G(1)} = \frac{\eta (13 \tau)^2 \eta (2 \tau)^2}{\eta (26 \tau)^2 \eta (\tau)^2}$ *** There were NO errors. Each term was modular function on Gamma1(130). Also -mintotord=432. To prove the identity we need to check up to $O(q^{(434)})$. To be on the safe side we check up to $O(q^{(692)})$. *** The identity below is PROVED! [2, 5, 1, 10, 1, -1] $\frac{G(2) G(5) + H(2) H(5)}{G(10) H(1) - H(10) G(1)} = 1$ *** There were NO errors. Each term was modular function on Gamma1(182). Also -mintotord=864. To prove the identity we need to check up to $O(q^{(866)})$. To be on the safe side we check up to $O(q^{(1228)})$. *** The identity below is PROVED! [1, 14, 1, 7, 2, -1] $\underline{-G(1)}\underline{-G(14)} + \underline{-H(1)}\underline{-H(14)} = \underline{-\eta(91\tau)}\eta(26\tau)\eta(7\tau)\eta(2\tau)$ $\frac{-G(7)}{H(2)} - \frac{-H(7)}{G(2)} = \frac{-H(7)}{\eta(182\tau)} \eta(14\tau) \eta(13\tau) \eta(\tau)$ [[1, 2, 1, 2, 1, -1], [2, 5, 1, 10, 1, -1], [1, 14, 1, 7, 2, -1]](98) > findtype4(48); > findtyy
"n=", 5
"n=", 10
"n=", 15
"n=", 20
"n=", 25
"n=", 30
"n=", 35
"n=", 40
"n=", 45 (99) [] > findtype5(48); "n=", 10 "n=", 20 "n=", 30 "n=", 40 /4 ^ ^

[] (100)> findtype6(48); "n=", 10 "n=", 20 "n=", 30 "n=", 40 [] (101)> findtype7(48); "n=", 10 "n=", 20 "n=", 30 "n=", 40 [] (102)> findtype8(24); "n=", 10 "n=", 20 [] (103)> FIND4F(3,10,300); > FIND5F(2,10,100); > FIND5F(3,10,100); $[G(1)^{3} H(1) - H(1)^{3} G(1) = 1 + \frac{3 \eta (13 \tau)^{2}}{\eta (\tau)^{2}}$ (104)> FIND5F(5,10,100); > findtype9(); *** There were NO errors. Each term was modular function on Gamma1(13). Also -mintotord=6. To prove the identity we need to check up to $O(q^{(8)})$. To be on the safe side we check up to $O(q^{(32)})$. *** The identity below is PROVED! [3, 1, 1] $[G(1)^{3} H(1) - H(1)^{3} G(1) - 1 = \frac{3 \eta (13 \tau)^{2}}{\eta (\tau)^{2}}$ [[3, 1, 1]](105)> findtype10(84*2); "n=", 50 "n=", 100 "n=", 150 [] (106) > findtype11(100); "n=", 50 "n=", 100 [] (107)_p=15 > G:=j->1/GetaL([1,4],15,j): H:=j->1/GetaL([2,7],15,j): > GE:=j->-GetaLEXP([1,4],15,j): HE:=j->-GetaLEXP([2,7],15,j): > GM:=j->1/MGetaL([1,4],15,j): HM:=j->1/MGetaL([2,7],15,j):

> GE(1), HE(1); $-\frac{17}{30}, \frac{7}{30}$ (108)> checkL([1,4],15); $1, \{1, 4, 11, 14\}, \{2, 7, 8, 13\}$ $2, \{2, 7, 8, 13\}, \{1, 4, 11, 14\}$ 4, $\{1, 4, 11, 14\}$, $\{2, 7, 8, 13\}$ 7, $\{2, 7, 8, 13\}$, $\{1, 4, 11, 14\}$ 8, {2, 7, 8, 13}, {1, 4, 11, 14} $11, \{1, 4, 11, 14\}, \{2, 7, 8, 13\}$ $13, \{2, 7, 8, 13\}, \{1, 4, 11, 14\}$ $14, \{1, 4, 11, 14\}, \{2, 7, 8, 13\}$ (109) > myramtype1:=findtype1(60); "n=", 50 mvramtvpe1 := [] (110)> myramtype2:=findtype2(60); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=48. To prove the identity we need to check up to $O(q^{(50)})$. To be on the safe side we check up to $O(q^{(168)})$. *** The identity below is PROVED! [1, 4, -1] $G(1) G(4) - H(1) H(4) = \frac{\eta (30 \tau)^2 \eta (12 \tau) \eta (10 \tau) \eta (3 \tau) \eta (2 \tau)}{\eta (60 \tau)^2 \eta (15 \tau)^2 \eta (4 \tau) \eta (\tau)}$ "n=", 50 myramtype2 := [[1, 4, -1]](111) > findtype3(60); *** There were NO errors. Each term was modular function on Gamma1(90). Also -mintotord=120. To prove the identity we need to check up to $O(q^{(122)})$. To be on the safe side we check up to $O(q^{(300)})$. *** The identity below is PROVED! [2, 3, -1, 6, 1, -1] $\frac{G(2) G(3) - H(2) H(3)}{G(6) H(1) - H(6) G(1)} = \frac{\eta(90\tau) \eta(15\tau)^{3} \eta(10\tau) \eta(6\tau)}{\eta(45\tau) \eta(30\tau)^{3} \eta(5\tau) \eta(3\tau)}$ "n=", 50 [[2, 3, -1, 6, 1, -1]](112) > findtype4(60); "n=", 5 "n=", 10 "n=", 15 "n=", 20 "n=", 20 "n=", 25 "n=", 30 "n=", 35 "n=", 40 "n=", 45 "n=", 50

"n=", 55 "n=", 60 [] (113) > findtype5(60); "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 [] (114) > findtype6(60); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=48. To prove the identity we need to check up to $O(q^{(50)})$. To be on the safe side we check up to $O(q^{(168)})$. *** The identity below is PROVED! [1, 1, -1] $\underline{G(1) HM(1) - GM(1) H(1)} = \frac{2 \eta (60 \tau)^2 \eta (10 \tau) \eta (6 \tau)^3 \eta (4 \tau)}{\eta (30 \tau)^4 \eta (12 \tau) \eta (2 \tau)^2}$ "n=", 10 "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 WARNING: There were ebasethreshold problems. [[1, 1, -1]](115) > findtype7(60); "n=", 10 "n=", 10 "n=", 20 "n=", 30 "n=", 40 "n=", 50 "n=", 60 WARNING: There were ebasethreshold problems. [] (116) > findtype8(24); *** There were NO errors. Each term was modular function on Gamma1(30). Also -mintotord=12. To prove the identity we need to check up to $O(q^{(14)})$. To be on the safe side we check up to $O(q^{(72)})$. *** The identity below is PROVED! [2, 1] $[G(1)^{2} H(2) + H(1)^{2} G(2) = \frac{2 \eta (10 \tau)^{2} \eta (6 \tau) \eta (3 \tau)^{2}}{\eta (15 \tau)^{3} \eta (2 \tau) \eta (\tau)}$ "n=", 10 "n=", 20 [[2, 1]](117) > FIND4F(11,10,300); > FIND5F(2,10,300);

	"COND: ", $-\frac{4}{5}a + \frac{4}{5}$	(118)	
<pre>> FIND5F(31,10,300); > GE(1),HE(1);</pre>	17 7	(110)	
	$-\frac{17}{30}, \frac{7}{30}$	(119)	
<pre>> findtype9();</pre>	[]	(120)	
<pre>> findtype10(160); "n=", 50 "n=", 100 "n=", 150</pre>		(120)	
	[]	(121)	
<pre>> findtype11(100); "n=", 50 "n=", 100</pre>			
l F	[]	(122)	
[p=16			
> phi(16);	8	(123)	
<pre>> checkL([1,7],16);</pre>			
	1, $\{1, 7, 9, 15\}$, $\{3, 5, 11, 13\}$ 3, $\{3, 5, 11, 13\}$, $\{1, 7, 9, 15\}$		
	$5, \{3, 5, 11, 13\}, \{1, 7, 9, 15\}$ $5, \{3, 5, 11, 13\}, \{1, 7, 9, 15\}$		
	7, {1, 7, 9, 15}, {3, 5, 11, 13}		
	9, {1, 7, 9, 15}, {3, 5, 11, 13}		
	$11, \{3, 5, 11, 13\}, \{1, 7, 9, 15\}$		
	13, {3, 5, 11, 13}, {1, 7, 9, 15}		
	15, {1, 7, 9, 15}, {3, 5, 11, 13}	(124)	
[=====================================			
_======= _p=17			
<pre>> G:=j->1/GetaL(qr(1))</pre>	7),17,j): H:=j->1/GetaL(qnr(17),17,j):		
SM:=j->1/MGetaL(qr	(17),17,j): HM:=j->1/MGetaL(qnr(17),17,j):		
<pre>> GE:=j->-GetaLEXP(q: > GE(1), HE(1);</pre>	r(17),17,j): HE:=j->-GetaLEXP(qnr(17),17,j):		
> GE(1), HE(1);	2 4		
	$-\frac{2}{3},\frac{4}{3}$	(125)	
<pre>> xprint:=false: > myramtype1:=findtype1(2); #actually checked up to 120 *** There were NO errors. Each term was modular function on Gamma1(34). Also -mintotord=16. To prove the identity we need to check up to O(q^(18)). To be on the safe side we check up to O(q^(84)).</pre>			
I			

*** The identity below is PROVED! [2, 1, -1]G(2) H(1) - G(1) H(2) = 1*myramtype1* := [[2, 1, -1]] (126) R2:=series(jac2series(G(1)^2*H(1)-G(1)*H(1)^2,500),q,500): > E17:=series(q^2*etaq(q,17,3000)^3/etaq(q,1,3000)^3,q,3000): > P17:=sift(E17,q,17,0,2999): > findnonhom([(R2^2-1)/8,E17],q,4,1); # of terms, 37-----RELATIONS----of order---, 4 $\left\{-\frac{1}{4}X_2^3 + X_1^4 + X_2^4 - \frac{1}{16}X_2^2 - X_1X_2^2 + X_1^3X_2 - \frac{7}{4}X_1^2X_2^2 - X_1X_2^3\right\}$ (127) > EnvExplicit:=true: > galois(%,x1); "4T5", {"S(4)"}, "-", 24, {"(1 4)", "(2 4)", "(3 4)"} (128) > myramtype2:=findtype2(120); "n=", 50 "n=", 100 (129) myramtype2 := []> xprint:=false; > findtype3(24); *xprint* := *false* [] (130) > findtype4(24); "n=", 5 "n=", 10 "n=", 15 "n=", 20 [] (131) > findtype5(24); "n=", 10 "n=", 20 [] (132) > findtype6(24); "n=", 10 "n=", 20 WARNING: There were ebasethreshold problems. [] (133) > findtype7(24); "n=", 10 "n=", 20 [] (134) > findtype8(24); "n=", 10 "n=", 20 [] (135)

<pre>> FIND4F(17,10,300);</pre>		
<pre>> FIND5F(5,10,300);</pre>		
<pre>> findtype9();</pre>		(120)
	[]	(136)
> findtype10(120);		
'n=", 50 'n=", 100		
ii— , 100	[]	(137)
	L J	(157)
o=26		
)-20	8	(138)
• phi(26);	0	(150)
· phi (20) ;	12	(139)
	12	(139)
<pre>> primroot(26);</pre>	7	(1.40)
	7	(140)
[seq(modp(7^(2*i),26),		
	[1, 23, 9, 25, 3, 17]	(141)
[seq(modp(7 ^(2*i+1) , 26)),i=05)];	
	[7, 5, 11, 19, 21, 15]	(142)
	$-\frac{7}{4},\frac{5}{4}$	(143)
	4 4	, , , , , , , , , , , , , , , , , , ,
<pre>findtype1(24);</pre>		
	[]	(144)
<pre>> findtype2(24);</pre>		
	[]	(145)
<pre>> findtype3(24);</pre>		
	[]	(146)
<pre>> findtype4(24);</pre>		
"n=", 5		
"n=", 10 "n=", 15		
"n=", 15 "n=", 20		
. , 20	[]	(147)
<pre>> findtype5(24);</pre>	LJ	(1+1)
'n=", 10		
'n=", 20		
	r 7	
> TT1:=300:TT2:=600:		(148)
	[]	(148)
	[]	(148)
<pre>> findtype6(24);</pre>	[]	(148)
<pre>> findtype6(24); "n=", 10</pre>		(148)
<pre>> findtype6(24); "n=", 10</pre>	[]	(148) (149)
<pre>> findtype6(24); "n=", 10 "n=", 20 > TT1,TT2;</pre>		

1	200, 600	(150)
> findtype7(24);		
"n=", 10 "n=", 20		
··· / 20	[]	(151)
<pre>> findtype8(24);</pre>		, , , , , , , , , , , , , , , , , , ,
"n=", 10		
"n=", 20	[]	(152)
[> TT1, TT2;	LJ	(132)
,,	100, 400	(153)
<pre>> FIND4F(13,10,300);</pre>	,	· · · · · · · · · · · · · · · · · · ·
> FIND5F(5,10,300);		
<pre>> findtype9();</pre>		
	[]	(154)
p=29	12	(155)
<pre>> G:=j->1/GetaL(qr(29),2)</pre>		
<pre>> GM:=j->1/MGetaL(qr(29))</pre>		
<pre>SE:=j->-GetaLEXP(qr(29))</pre>		
> GE(1), HE(1);		
	$-\frac{11}{12}, \frac{25}{12}$	(156)
> TT1, TT2; TT1:=100: TT2::		(157)
	300, 600	(157)
<pre>> findtype1(24);</pre>	[]	(158)
<pre> > findtype2(24);</pre>	LJ	(150)
> 11nacypez (24) ;	[]	(159)
<pre>> findtype3(24);</pre>		
	[]	(160)
> findtype4(24);		
"n=", 5		
"n=", 10 "n=", 15		
"n=", 20		
	[]	(161)
<pre>> findtype5(24);</pre>		
"n=", 10 "n=", 20		
11-, 20	[]	(162)
> TT1:=300: TT2:=600:	LJ	(102)
<pre>> findtype6(24);</pre>		
"n=", 10		
"n=", 20		14
L	[]	(163)

```
> findtype7(24);
"n=", 10
 "n=", 20
WARNING: There were 14 ebasethreshold problems.
            See the global array EBL.
                                                                                    (164)
                                        []
> findtype8(24);
"n=", 10
 "n=", 20
                                        []
                                                                                    (165)
> FIND4F(13,10,300);
> findtype9();
                                        []
                                                                                    (166)
_p=30
> phi(30);
                                         8
                                                                                    (167)
> checkL([1,11],30);
                           1, \{1, 11, 19, 29\}, \{7, 13, 17, 23\}
                           7, {7, 13, 17, 23}, {1, 11, 19, 29}
                           11, \{1, 11, 19, 29\}, \{7, 13, 17, 23\}
                           13, \{7, 13, 17, 23\}, \{1, 11, 19, 29\}
                           17, \{7, 13, 17, 23\}, \{1, 11, 19, 29\}
                           19, \{1, 11, 19, 29\}, \{7, 13, 17, 23\}
                          23, \{7, 13, 17, 23\}, \{1, 11, 19, 29\}
                          29, \{1, 11, 19, 29\}, \{7, 13, 17, 23\}
                                                                                    (168)
> G:=j->1/GetaL([1,11],30,j): H:=j->1/GetaL([7,13],30,j):
> GM:=j->1/MGetaL([1,11],30,j): HM:=j->1/MGetaL([7,13],30,j):
> GE:=j->-GetaLEXP([1,11],30,j): HE:=j->-GetaLEXP([7,13],30,j):
> GE(1), HE(1);
                                     -\frac{31}{30}, \frac{41}{30}
                                                                                    (169)
> TT1:=100:TT2:=300:
> findramtype1:=findtype1(24);
                                 findramtype1 := []
                                                                                    (170)
> findramtype2:=findtype2(24);
                                 findramtype2 := []
                                                                                   (171)
> findtype3(24);
                                        []
                                                                                    (172)
> findtype4(24);
 "n=", 5
"n=", 10
"n=", 15
 "n=", 20
                                        []
                                                                                    (173)
> findtype5(24);
"n=", 10
```

"n=", 20 [] (174)> TT1:=300: TT2:=600: > findtype6(24); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=48. To prove the identity we need to check up to $O(q^{(50)})$. To be on the safe side we check up to $O(q^{(168)})$. *** The identity below is PROVED! [1, 1, -1] $[G(1)] HM(1) - [GM(1)] H(1) = \frac{2 \eta (60 \tau)^2 \eta (6 \tau)^2 \eta (4 \tau)}{\eta (30 \tau)^3 \eta (12 \tau) \eta (2 \tau)}$ "n=", 10 "n=", 20 [[1, 1, -1]](175) > findtype7(24); "n=", 10 "n=", 20 (176) [] > findtype8(24); *** There were NO errors. Each term was modular function on Gamma1(60). Also -mintotord=48. To prove the identity we need to check up to $O(q^{(50)})$. To be on the safe side we check up to $O(q^{(168)})$. *** The identity below is PROVED! [2, -1] $[G(1)^{2} H(2) - H(1)^{2} G(2) = \frac{2 \eta (60 \tau)^{2} \eta (6 \tau) \eta (5 \tau) \eta (4 \tau) \eta (3 \tau)}{\eta (30 \tau)^{2} \eta (15 \tau) \eta (12 \tau) \eta (10 \tau) \eta (\tau)}$ "n=", 10 "n=", 20 [[2, -1]](177)> FIND4F(2,10,300); $[G(1)^{2} H(2) - H(1)^{2} G(2) = \frac{2 \eta (60 \tau)^{2} \eta (6 \tau) \eta (5 \tau) \eta (4 \tau) \eta (3 \tau)}{\eta (30 \tau)^{2} \eta (15 \tau) \eta (12 \tau) \eta (10 \tau) \eta (\tau)}$ (178) > FIND4F(3,10,300); > FIND4F(13,10,300); > FIND5F(11,10,300); > findtype9(); [] (179) > findtype10(24); [] (180) _p=34 > phi(34); 16 (181) primroot(34); ----

Ĺ	3	(182)
> seq(modp(3 ^(2*j) ,34),j=0.		
	13, 15, 33, 25, 21, 19	(183)
<pre>> seq(modp(3^(2*j+1),34),j= 3 2</pre>	=07); 7, 5, 11, 31, 7, 29, 23	(184)
<pre></pre>		()
> GM:=j->1/MGetaL([1,9,13,1		
j):	151 04 41 - 775 - 4 5 -	
<pre>> GE:=j->-GetaLEXP([1,9,13,</pre>	,15],34,]): HE:=]->-0	GetaLEXP([5,5,7,11],
> GE(1), HE(1);		
	$\frac{2}{3}, -\frac{4}{3}$	(185)
	3 3	
<pre>> TT1:=100: TT2:=400: > findtype1(24);</pre>		
	[]	(186)
> findtype2(24);		
	[]	(187)
<pre>> findtype3(24);</pre>	r 1	(100)
<pre>> findtype4(24);</pre>	[]	(188)
"n=", 5		
"n=", 10 "n=", 15		
"n=", 20		
	[]	(189)
<pre>> findtype5(24); "n=", 10</pre>		
"n=", 20		
	[]	(190)
> findtype6(24);		
"n=", 10 "n=", 20		
	[]	(191)
<pre>> findtype7(24);</pre>		
"n=", 10 "n=", 20		
	[]	(192)
<pre>> findtype8(24);</pre>		
"n=", 10 "n=", 20		
	[]	(193)
<pre>> FIND4F(19,10,300);</pre>		
<pre>> read moreprogs: "END"</pre>		
<pre>> findtype9();</pre>		
*** There were NO errors.		
Gamma1(34). Also -minto we need to check up to		ne identity

To be on the safe side we check up to $O(q^{(84)})$. *** The identity below is PROVED! [2, 1, 0] $[G(1)^{2} H(1) - H(1)^{2} G(1) = -\frac{\eta(17\tau) \eta(2\tau)^{2}}{\eta(34\tau)^{2} \eta(\tau)}$ [[2, 1, 0]](194) > findtype10(48); [] (195) > findtype11(48); [] (196) p=37 > G:=j->1/GetaL(qr(37),37,j): H:=j->1/GetaL(qnr(37),37,j): > GM:=j->1/MGetaL(qr(37),37,j): HM:=j->1/MGetaL(qnr(37),37,j): > GE:=j->-GetaLEXP(qr(37),37,j): HE:=j->-GetaLEXP(qnr(37),37,j): > GE(1), HE(1); $-\frac{7}{4}, \frac{13}{4}$ (197) > myramtype1:=findtype1(24); myramtype1 := [] (198) > findtype2(24); [] (199) > findtype3(24); (200)[] > findtype4(24); "n=", 5 "n=", 10 "n=", 15 "n=", 20 [] (201)> findtype5(24); "n=", 10 "n=", 20 [] (202)> findtype6(24); "n=", 10 "n=", 20 WARNING: There were 290 ebasethreshold problems. See the global array EBL. [] (203)> findtype7(24); "n=", 10 "n=", 20 WARNING: There were 312 ebasethreshold problems. See the global array EBL. [] (204)

> findtype8(24); "n=", 10 "n=", 20 [] (205)> findtype9(24); [] (206)p=41 S:=j->1/GetaL(qr(41),41,j): H:=j->1/GetaL(qnr(41),41,j): > GM:=j->1/MGetaL(qr(41),41,j): HM:=j->1/MGetaL(qnr(41),41,j): > GE:=j->-GetaLEXP(qr(41),41,j): HE:=j->-GetaLEXP(qnr(41),41,j): > GE(1), HE(1); $-\frac{19}{6}, \frac{29}{6}$ (207)> myramtype1:=findtype1(24); myramtype1 := [] (208)> findtype2(24); [] (209)> findtype3(24); [] (210)> findtype4(24); "n=", 5 "n=", 10 "n=", 15 "n=", 20 [] (211) > findtype5(24); "n=", 10 "n=", 20 [] (212) > findtype6(24); "n=", 10 "n=", 20 WARNING: There were 275 ebasethreshold problems. See the global array EBL. [] (213)> findtype7(24); "n=", 10 "n=", 20 WARNING: There were 295 ebasethreshold problems. See the global array EBL. [] (214) > findtype8(24); "n=", 10 "n=", 20 [] (215) > findtype9(24);