FUNCTION :  Gamma1ModFunc - Checks whether the generalized eta-quotient
                            corresponding to the geta-list L is a
                            modular function of Gamma[1](N)

CALLING SEQUENCE :  Gamma1ModFunc(L,N)

PARAMETERS :      L - (geta)-list produced by GETAP2getalist
                      and corresponds to a generalized eta-quotient
                      on Gamma[1](N).
                  N - positive integer

SYNOPSIS :   Checks whether the generalized eta-quotient
             corresponding to the geta-list L is a modular function 
             of Gamma[1](N). It returns 1 if it is a modular function
             otherwise it returns 0. It also prints diagnostics.
             This function is needed in the proc provemodfuncid.

EXAMPLES :   

> eprod := GETA(40,3)^2/GETA(40,4)^5*GETA(40,5)^4/GETA(40,6)^3
           *GETA(40,7)^2*GETA(40,8)^2/GETA(40,10)^2*GETA(40,13)^2
           /GETA(40,14)^3*GETA(40,15)^4/GETA(40,16)^4*GETA(40,17)^2
           /GETA(40,20)/GETA(20,1)^2*GETA(20,2)^3/GETA(20,3)^2
           *GETA(20,4)*GETA(20,6)^3/GETA(20,7)^2*GETA(20,8)
           /GETA(20,9)^2;

> L2:=GETAP2getalist(eprod);
L2 := [[40, 3, 2], [40, 4, -5], [40, 5, 4], [40, 6, -3], [40, 7, 2],
    [40, 8, 2], [40, 10, -2], [40, 13, 2], [40, 14, -3], [40, 15, 4],
    [40, 16, -4], [40, 17, 2], [40, 20, -1], [20, 1, -2], [20, 2, 3],
    [20, 3, -2], [20, 4, 1], [20, 6, 3], [20, 7, -2], [20, 8, 1],
    [20, 9, -2]]

> Gamma1ModFunc(L2,40);                                        
                    %All n are divisors of %, 40

                             %val0=%, 0

                          %which is even.%

                            %valinf=%, 2

                          %which is even.%

                %It IS a modfunc on Gamma1(%, 40, %)%
                                  1

DISCUSSION : We see that the generalized eta-quotient eprod is
             a Modular Function on Gamma[1](40).

SEE ALSO :  GETAP2getalist, provemodfuncid