FUNCTION : getaprodcuspORDS - ORD of generalized-etaproduct at each cusp CALLING SEQUENCE : getaprodcuspORDS(L,cusps,wids) PARAMETERS : L - (geta)-list produced by GETAP2getalist cusps - Set of inequivalent cusps for Gamma[1](N). wids - List of corresponding widths. GLOBAL VARIABLES : toterror - total ORD (should be zero) SYNOPSIS : Let G be a generalized-etaproduct corresponding to the getalist L. This proc calculates ORD(G,z) with respect to Gamma[1](N) for each cusp z in cusps. Here cusps is a list of inequivalent cusps of Gamma[1](N) and wids is the list of their corresponding widths. The cusp at infinity is repesented by oo. The total ORD should be 0. Global var toterror = total ORD (for error-checking). EXAMPLES : > cusps40:=cuspmake1(40): > cusps40:=cusps40 minus {[1,0]}: > cusps40:=convert(cusps40,list): > wids40:=map(x->cuspwid1(x[1],x[2],40),cusps40): > wids40:=[1,op(wids40)]: > CUSPS40:=map(x->x[1]/x[2],cusps40): > CUSPS40:=[oo,op(CUSPS40)]: > > jptmp:=1/JAC(3,40,infinity)*JAC(5,40,infinity)^2*JAC(6,40,infinity)^2/JAC(7,40,infinity) > /JAC(8,40,infinity)^2/JAC(12,40,infinity)^3/JAC(13,40,infinity)*JAC(14,40,infinity)^2 > *JAC(15,40,infinity)^2*JAC(16,40,infinity)^2/JAC(17,40,infinity)/JAC(20,40,infinity): > eptmp:=jac2eprod(jptmp); 2 2 2 2 2 eptmp := GETA(40, 5) GETA(40, 6) GETA(40, 14) GETA(40, 15) GETA(40, 16) / 2 3 / (GETA(40, 3) GETA(40, 7) GETA(40, 8) GETA(40, 12) GETA(40, 13) / GETA(40, 17) GETA(40, 20)) > gltmp:=GETAP2getalist(eptmp); gltmp := [[40, 3, -1], [40, 5, 2], [40, 6, 2], [40, 7, -1], [40, 8, -2], [40, 12, -3], [40, 13, -1], [40, 14, 2], [40, 15, 2], [40, 16, 2], [40, 17, -1], [40, 20, -1]] > getaprodcuspORDS(gltmp,CUSPS40,wids40); %Cusp ords: % [[oo, 0], [0, 0], [1/3, 0], [1/7, 0], [1/9, 0], [1/11, 0], [1/13, 0], [1/17, 0], [1/19, 0], [1/2, 0], [1/6, 0], [1/14, 0], [1/18, 0], [1/4, -2], [3/4, -2], [1/12, -2], [7/12, -2], [1/5, 3], [3/5, 0], [2/5, 0], [4/5, 3], [1/15, 3], 13 [--, 0], [7/15, 0], [4/15, 3], [1/8, 1], [3/8, 1], [7/8, 1], [5/8, 1], 15 13 [1/16, 1], [3/16, 1], [7/16, 1], [--, 1], [1/10, -4], [3/10, -2], 16 [7/10, -2], [9/10, -4], [1/20, 0], [3/20, -2], [7/20, -2], [9/20, 0], 11 13 17 19 [3/40, 1], [7/40, 1], [9/40, 0], [--, 0], [--, 1], [--, 1], [--, 0]] 40 40 40 40 %TOTAL ORD = %, 0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, -2, -2, 3, 0, 0, 3, 3, 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, -4, -2, -2, -4, 0, -2, -2, 0, 1, 1, 0, 0, 1, 1, 0] DISCUSSION : SEE ALSO :