FUNCTION :  jac2eprod - Convert a quotient of theta-functions to generalize eta-products
                
CALLING SEQUENCE :  jac2eprod(JJ)

PARAMETERS :      JJ - Quotient of theta-functions written in
                       in terms of JAC(a,b,infinity)

SYNOPSIS :   Converts the JAC-quotient JJ into a quotient of
             eta-products and generalized eta-products.
             The output is in terms of EETA(b) and GETA(b,a).
             EETA(b) corresponds to eta(b*tau) (omitting power of q)
             GETA(b,a) corresponds to the generalized eta-function
             eta[b,a](tau) (omitting power of q).

EXAMPLES :   

> JJ := JAC(1,40,infinity)/JAC(0,40,infinity)^12*JAC(2,40,infinity)
        /JAC(4,40,infinity)*JAC(5,40,infinity)^2*JAC(6,40,infinity)^2
        *JAC(9,40,infinity)*JAC(11,40,infinity)*JAC(14,40,infinity)^2
        *JAC(15,40,infinity)^2*JAC(18,40,infinity)*JAC(19,40,infinity)
        /JAC(20,40,infinity);
                                                              2
JAC(1, 40, infinity) JAC(2, 40, infinity) JAC(5, 40, infinity)
                        2
    JAC(6, 40, infinity)  JAC(9, 40, infinity) JAC(11, 40, infinity)
                         2                      2
    JAC(14, 40, infinity)  JAC(15, 40, infinity)
                                                  /
    JAC(18, 40, infinity) JAC(19, 40, infinity)  /  (
                                                /
                        12
    JAC(0, 40, infinity)   JAC(4, 40, infinity)
    JAC(20, 40, infinity))

> jac2eprod(JJ);
                                   2            2
GETA(40, 1) GETA(40, 2) GETA(40, 5)  GETA(40, 6)  GETA(40, 9)

                             2             2
    GETA(40, 11) GETA(40, 14)  GETA(40, 15)  GETA(40, 18)

    GETA(40, 19)/(GETA(40, 4) GETA(40, 20))


DISCUSSION :

SEE ALSO :