FUNCTION : jac2eprod - Convert a quotient of theta-functions to generalize eta-products CALLING SEQUENCE : jac2eprod(JJ) PARAMETERS : JJ - Quotient of theta-functions written in in terms of JAC(a,b,infinity) SYNOPSIS : Converts the JAC-quotient JJ into a quotient of eta-products and generalized eta-products. The output is in terms of EETA(b) and GETA(b,a). EETA(b) corresponds to eta(b*tau) (omitting power of q) GETA(b,a) corresponds to the generalized eta-function eta[b,a](tau) (omitting power of q). EXAMPLES : > JJ := JAC(1,40,infinity)/JAC(0,40,infinity)^12*JAC(2,40,infinity) /JAC(4,40,infinity)*JAC(5,40,infinity)^2*JAC(6,40,infinity)^2 *JAC(9,40,infinity)*JAC(11,40,infinity)*JAC(14,40,infinity)^2 *JAC(15,40,infinity)^2*JAC(18,40,infinity)*JAC(19,40,infinity) /JAC(20,40,infinity); 2 JAC(1, 40, infinity) JAC(2, 40, infinity) JAC(5, 40, infinity) 2 JAC(6, 40, infinity) JAC(9, 40, infinity) JAC(11, 40, infinity) 2 2 JAC(14, 40, infinity) JAC(15, 40, infinity) / JAC(18, 40, infinity) JAC(19, 40, infinity) / ( / 12 JAC(0, 40, infinity) JAC(4, 40, infinity) JAC(20, 40, infinity)) > jac2eprod(JJ); 2 2 GETA(40, 1) GETA(40, 2) GETA(40, 5) GETA(40, 6) GETA(40, 9) 2 2 GETA(40, 11) GETA(40, 14) GETA(40, 15) GETA(40, 18) GETA(40, 19)/(GETA(40, 4) GETA(40, 20)) DISCUSSION : SEE ALSO :