FUNCTION :  printJACIDORDStable - print a table of ORDS of a jacprod identity

CALLING SEQUENCE :  printJACIDORDStable()                                        
                    
PARAMETERS :  none

GLOBAL VARIABLES : none (although it uses global vars as input)


SYNOPSIS :   
   Print a table of ORDS for each term in a jacprod-identity 
   using global data produced by the function provemodfuncid.
   Table is stored in the matrix bigmat which is returned.   

EXAMPLES :   

>  with(qseries):
>  with(thetaids):
>  CHOIID1:=
   _ETAn(3)*_ETAn(6)*_ETAn(10)^2*_ETAn(12)*_ETAn(20)^3*_ETAn(120)^3*_ETAn(360)*
>       _ETAnm(3,1)*_ETAnm(6,2)*_ETAnm(10,3)*_ETAnm(12,4)*_ETAnm(20,8)^3
>       -_ETAn(1)*_ETAn(2)*_ETAn(5)^2*_ETAn(8)*_ETAn(20)^2*_ETAn(40)*_ETAn(360)^4
>        *_ETAnm(10,4)*_ETAnm(20,6)*_ETAnm(20,8)*_ETAnm(40,16)*_ETAnm(360,120)^3
>       +_ETAn(1)*_ETAn(2)*_ETAn(5)^2*_ETAn(8)*_ETAn(20)^2*_ETAn(40)*_ETAn(360)^4
>        *_ETAnm(5,2)^2*_ETAnm(20,6)*_ETAnm(20,8)*_ETAnm(40,4)*_ETAnm(360,120)^3;
            /749\
            |---|
            \24 /                                           3
CHOIID1 := q      JAC(0, 10, infinity) JAC(0, 120, infinity)

    JAC(0, 360, infinity) JAC(1, 3, infinity) JAC(2, 6, infinity)

                                                                       749
                                                                       ---
                                                                  3    24
    JAC(3, 10, infinity) JAC(4, 12, infinity) JAC(8, 20, infinity)  - q

                                                               2
    JAC(0, 1, infinity) JAC(0, 2, infinity) JAC(0, 5, infinity)

    JAC(0, 8, infinity) JAC(0, 360, infinity) JAC(4, 10, infinity)

    JAC(6, 20, infinity) JAC(8, 20, infinity) JAC(16, 40, infinity)

                                                     /821\
                                                     |---|
                           3                         \24 /
    JAC(120, 360, infinity) /JAC(0, 10, infinity) + q      JAC(0, 1, infinity)

    JAC(0, 2, infinity) JAC(0, 8, infinity) JAC(0, 360, infinity)

                       2
    JAC(2, 5, infinity)  JAC(6, 20, infinity) JAC(8, 20, infinity)

                                                3
    JAC(4, 40, infinity) JAC(120, 360, infinity)

>  NCHOIID1:=processjacid(CHOIID1):
>  jcombobase(NCHOIID1);
                                       40

>  overrideproofq:=true:
> provemodfuncid(NCHOIID1,40);
"TERM ", 1, "of ", 3, " *****************"
"TERM ", 2, "of ", 3, " *****************"
"TERM ", 3, "of ", 3, " *****************"
"mintotord = ", -24
"TO PROVE the identity we need to show that v[oo](ID) > ", 24
*** There were NO errors. 
*** o Each term was modular function on
      Gamma1(40). 
*** o We also checked that the total order of
      each term was zero.
*** o We also checked that the power of q was correct in
      each term.
"*** WARNING: some terms were constants. ***"
"See array CONTERMS."
To prove the identity we will need to verify if up to 
q^(24).
Do you want to prove the identity? (yes/no)
You entered yes.
We verify the identity to O(q^(104)).
RESULT: The identity holds to O(q^(104)).
CONCLUSION: This proves the identity since we had only
            to show that v[oo](ID) > 24.
                                       24

>  printJACIDORDStable();
-------------------------------------------------------------
printJACIDORDStable()                                        
   Print a table of ORDS for each term in a jacprod-identity 
   using global data produced by the function provemodfuncid.
   Table is stored in the matrix bigmat which is returned.   
-------------------------------------------------------------
ORDS Table for the jacprod identity
_G =                            _F[1] - _F[2] + _F[3] = 0

where
_F[1] = 
                                       1

_F[2] = 
           2            2             2             2             2   /
GETA(40, 5)  GETA(40, 6)  GETA(40, 14)  GETA(40, 15)  GETA(40, 16)   /  (
                                                                    /

                                       2             3
    GETA(40, 3) GETA(40, 7) GETA(40, 8)  GETA(40, 12)  GETA(40, 13)

    GETA(40, 17) GETA(40, 20))

_F[3] = 
           2                        2
GETA(40, 2)  GETA(40, 3) GETA(40, 5)  GETA(40, 6) GETA(40, 7) GETA(40, 13)

                             2                          2
    GETA(40, 14) GETA(40, 15)  GETA(40, 17) GETA(40, 18) /(GETA(40, 12)

    GETA(40, 20))

          [cusp    ORD(_F[1])    ORD(_F[2])    ORD(_F[3])    ORD(_G)]
          [                                                         ]
          [ oo         0             0             3            0   ]
          [                                                         ]
          [ 0          0             0             1            0   ]
          [                                                         ]
          [1/2         0             0             0            0   ]
          [                                                         ]
          [1/3         0             0             1            0   ]
          [                                                         ]
          [1/4         0             -2            -2          -2   ]
          [                                                         ]
          [1/5         0             3             0            0   ]
          [                                                         ]
          [1/6         0             0             0            0   ]
          [                                                         ]
          [1/7         0             0             1            0   ]
          [                                                         ]
          [1/8         0             1             0            0   ]
          [                                                         ]
          [1/9         0             0             1            0   ]
          [                                                         ]
          [1/10        0             -4            -4          -4   ]
          [                                                         ]
          [1/11        0             0             1            0   ]
          [                                                         ]
          [1/12        0             -2            -2          -2   ]
          [                                                         ]
          [1/13        0             0             1            0   ]
          [                                                         ]
          [1/14        0             0             0            0   ]
          [                                                         ]
          [1/15        0             3             0            0   ]
          [                                                         ]
          [1/16        0             1             0            0   ]
          [                                                         ]
          [1/17        0             0             1            0   ]
          [                                                         ]
          [1/18        0             0             0            0   ]
          [                                                         ]
          [1/19        0             0             1            0   ]
          [                                                         ]
          [1/20        0             0             0            0   ]
          [                                                         ]
          [2/5         0             0             1            0   ]
          [                                                         ]
          [3/4         0             -2            -2          -2   ]
          [                                                         ]
          [3/5         0             0             1            0   ]
          [                                                         ]
          [3/8         0             1             0            0   ]
          [                                                         ]
          [3/10        0             -2            -2          -2   ]
          [                                                         ]
          [3/16        0             1             0            0   ]
          [                                                         ]
          [3/20        0             -2            -2          -2   ]
          [                                                         ]
          [3/40        0             1             0            0   ]
          [                                                         ]
          [4/5         0             3             0            0   ]
          [                                                         ]
          [4/15        0             3             0            0   ]
          [                                                         ]
          [5/8         0             1             0            0   ]
          [                                                         ]
          [7/8         0             1             0            0   ]
          [                                                         ]
          [7/10        0             -2            -2          -2   ]
          [                                                         ]
          [7/12        0             -2            -2          -2   ]
          [                                                         ]
          [7/15        0             0             1            0   ]
          [                                                         ]
          [7/16        0             1             0            0   ]
          [                                                         ]
          [7/20        0             -2            -2          -2   ]
          [                                                         ]
          [7/40        0             1             0            0   ]
          [                                                         ]
          [9/10        0             -4            -4          -4   ]
          [                                                         ]
          [9/20        0             0             0            0   ]
          [                                                         ]
          [9/40        0             0             3            0   ]
          [                                                         ]
          [ 11                                                      ]
          [ --         0             0             3            0   ]
          [ 40                                                      ]
          [                                                         ]
          [ 13                                                      ]
          [ --         0             0             1            0   ]
          [ 15                                                      ]
          [                                                         ]
          [ 13                                                      ]
          [ --         0             1             0            0   ]
          [ 16                                                      ]
          [                                                         ]
          [ 13                                                      ]
          [ --         0             1             0            0   ]
          [ 40                                                      ]
          [                                                         ]
          [ 17                                                      ]
          [ --         0             1             0            0   ]
          [ 40                                                      ]
          [                                                         ]
          [ 19                                                      ]
          [ --         0             0             3            0   ]
          [ 40                                                      ]

This confirms the calculation done by provemodfuncid.
The last column of the table gives a lower bound for
ORDS of _G. By summing this last column (except for oo)
we see that the identity can be proved by showing that
the coefficients of
q^0, q^1, ... q^25 are all zero.
This confirms the calculation done by provemodfuncid.
                                     bigmat


DISCUSSION :  See above.

SEE ALSO :  provemodfuncid