FUNCTION : printJACIDORDStable - print a table of ORDS of a jacprod identity CALLING SEQUENCE : printJACIDORDStable() PARAMETERS : none GLOBAL VARIABLES : none (although it uses global vars as input) SYNOPSIS : Print a table of ORDS for each term in a jacprod-identity using global data produced by the function provemodfuncid. Table is stored in the matrix bigmat which is returned. EXAMPLES : > with(qseries): > with(thetaids): > CHOIID1:= _ETAn(3)*_ETAn(6)*_ETAn(10)^2*_ETAn(12)*_ETAn(20)^3*_ETAn(120)^3*_ETAn(360)* > _ETAnm(3,1)*_ETAnm(6,2)*_ETAnm(10,3)*_ETAnm(12,4)*_ETAnm(20,8)^3 > -_ETAn(1)*_ETAn(2)*_ETAn(5)^2*_ETAn(8)*_ETAn(20)^2*_ETAn(40)*_ETAn(360)^4 > *_ETAnm(10,4)*_ETAnm(20,6)*_ETAnm(20,8)*_ETAnm(40,16)*_ETAnm(360,120)^3 > +_ETAn(1)*_ETAn(2)*_ETAn(5)^2*_ETAn(8)*_ETAn(20)^2*_ETAn(40)*_ETAn(360)^4 > *_ETAnm(5,2)^2*_ETAnm(20,6)*_ETAnm(20,8)*_ETAnm(40,4)*_ETAnm(360,120)^3; /749\ |---| \24 / 3 CHOIID1 := q JAC(0, 10, infinity) JAC(0, 120, infinity) JAC(0, 360, infinity) JAC(1, 3, infinity) JAC(2, 6, infinity) 749 --- 3 24 JAC(3, 10, infinity) JAC(4, 12, infinity) JAC(8, 20, infinity) - q 2 JAC(0, 1, infinity) JAC(0, 2, infinity) JAC(0, 5, infinity) JAC(0, 8, infinity) JAC(0, 360, infinity) JAC(4, 10, infinity) JAC(6, 20, infinity) JAC(8, 20, infinity) JAC(16, 40, infinity) /821\ |---| 3 \24 / JAC(120, 360, infinity) /JAC(0, 10, infinity) + q JAC(0, 1, infinity) JAC(0, 2, infinity) JAC(0, 8, infinity) JAC(0, 360, infinity) 2 JAC(2, 5, infinity) JAC(6, 20, infinity) JAC(8, 20, infinity) 3 JAC(4, 40, infinity) JAC(120, 360, infinity) > NCHOIID1:=processjacid(CHOIID1): > jcombobase(NCHOIID1); 40 > overrideproofq:=true: > provemodfuncid(NCHOIID1,40); "TERM ", 1, "of ", 3, " *****************" "TERM ", 2, "of ", 3, " *****************" "TERM ", 3, "of ", 3, " *****************" "mintotord = ", -24 "TO PROVE the identity we need to show that v[oo](ID) > ", 24 *** There were NO errors. *** o Each term was modular function on Gamma1(40). *** o We also checked that the total order of each term was zero. *** o We also checked that the power of q was correct in each term. "*** WARNING: some terms were constants. ***" "See array CONTERMS." To prove the identity we will need to verify if up to q^(24). Do you want to prove the identity? (yes/no) You entered yes. We verify the identity to O(q^(104)). RESULT: The identity holds to O(q^(104)). CONCLUSION: This proves the identity since we had only to show that v[oo](ID) > 24. 24 > printJACIDORDStable(); ------------------------------------------------------------- printJACIDORDStable() Print a table of ORDS for each term in a jacprod-identity using global data produced by the function provemodfuncid. Table is stored in the matrix bigmat which is returned. ------------------------------------------------------------- ORDS Table for the jacprod identity _G = _F[1] - _F[2] + _F[3] = 0 where _F[1] = 1 _F[2] = 2 2 2 2 2 / GETA(40, 5) GETA(40, 6) GETA(40, 14) GETA(40, 15) GETA(40, 16) / ( / 2 3 GETA(40, 3) GETA(40, 7) GETA(40, 8) GETA(40, 12) GETA(40, 13) GETA(40, 17) GETA(40, 20)) _F[3] = 2 2 GETA(40, 2) GETA(40, 3) GETA(40, 5) GETA(40, 6) GETA(40, 7) GETA(40, 13) 2 2 GETA(40, 14) GETA(40, 15) GETA(40, 17) GETA(40, 18) /(GETA(40, 12) GETA(40, 20)) [cusp ORD(_F[1]) ORD(_F[2]) ORD(_F[3]) ORD(_G)] [ ] [ oo 0 0 3 0 ] [ ] [ 0 0 0 1 0 ] [ ] [1/2 0 0 0 0 ] [ ] [1/3 0 0 1 0 ] [ ] [1/4 0 -2 -2 -2 ] [ ] [1/5 0 3 0 0 ] [ ] [1/6 0 0 0 0 ] [ ] [1/7 0 0 1 0 ] [ ] [1/8 0 1 0 0 ] [ ] [1/9 0 0 1 0 ] [ ] [1/10 0 -4 -4 -4 ] [ ] [1/11 0 0 1 0 ] [ ] [1/12 0 -2 -2 -2 ] [ ] [1/13 0 0 1 0 ] [ ] [1/14 0 0 0 0 ] [ ] [1/15 0 3 0 0 ] [ ] [1/16 0 1 0 0 ] [ ] [1/17 0 0 1 0 ] [ ] [1/18 0 0 0 0 ] [ ] [1/19 0 0 1 0 ] [ ] [1/20 0 0 0 0 ] [ ] [2/5 0 0 1 0 ] [ ] [3/4 0 -2 -2 -2 ] [ ] [3/5 0 0 1 0 ] [ ] [3/8 0 1 0 0 ] [ ] [3/10 0 -2 -2 -2 ] [ ] [3/16 0 1 0 0 ] [ ] [3/20 0 -2 -2 -2 ] [ ] [3/40 0 1 0 0 ] [ ] [4/5 0 3 0 0 ] [ ] [4/15 0 3 0 0 ] [ ] [5/8 0 1 0 0 ] [ ] [7/8 0 1 0 0 ] [ ] [7/10 0 -2 -2 -2 ] [ ] [7/12 0 -2 -2 -2 ] [ ] [7/15 0 0 1 0 ] [ ] [7/16 0 1 0 0 ] [ ] [7/20 0 -2 -2 -2 ] [ ] [7/40 0 1 0 0 ] [ ] [9/10 0 -4 -4 -4 ] [ ] [9/20 0 0 0 0 ] [ ] [9/40 0 0 3 0 ] [ ] [ 11 ] [ -- 0 0 3 0 ] [ 40 ] [ ] [ 13 ] [ -- 0 0 1 0 ] [ 15 ] [ ] [ 13 ] [ -- 0 1 0 0 ] [ 16 ] [ ] [ 13 ] [ -- 0 1 0 0 ] [ 40 ] [ ] [ 17 ] [ -- 0 1 0 0 ] [ 40 ] [ ] [ 19 ] [ -- 0 0 3 0 ] [ 40 ] This confirms the calculation done by provemodfuncid. The last column of the table gives a lower bound for ORDS of _G. By summing this last column (except for oo) we see that the identity can be proved by showing that the coefficients of q^0, q^1, ... q^25 are all zero. This confirms the calculation done by provemodfuncid. bigmat DISCUSSION : See above. SEE ALSO : provemodfuncid