FUNCTION : getaprodcuspORDS - ORD of generalized-etaproduct at each cusp CALLING SEQUENCE : getaprodcuspORDS() getaprodcuspORDS(L,cusps,wids) PARAMETERS : L - (geta)-list produced by GETAP2getalist cusps - Set of inequivalent cusps for Gamma[1](N). wids - List of corresponding widths. GLOBAL VARIABLES : toterror - total ORD (should be zero) xprint (default=false) SYNOPSIS : Let G be a generalized-etaproduct corresponding to the getalist L. This proc calculates ORD(G,z) with respect to Gamma[1](N) for each cusp z in cusps. Here cusps is a list of inequivalent cusps of Gamma[1](N) and wids is the list of their corresponding widths. The cusp at infinity is repesented by oo. The total ORD should be 0. Global var toterror = total ORD (for error-checking). If xprint is true then extra info is printed. EXAMPLES : > with(thetaids): > > getaprodcuspORDS(); ------------------------------------------------------------- getaprodcuspORDS(L,cusps,wids) Let G be a generalized-etaproduct corresponding to the getalist L. This proc calculates ORD(G,z) with respect to Gamma[1](N) for each cusp z in cusps. Here cusps is a list of inequivalent cusps of Gamma[1](N) and wids is the list of their corresponding widths. The cusp at infinity is repesented by oo. The total ORD should be 0. Global var toterror = total ORD (for error-checking). ------------------------------------------------------------- > CW40:=CUSPSANDWIDMAKE1(40): > jptmp:=1/JAC(3,40,infinity)*JAC(5,40,infinity)^2*JAC(6,40,infinity)^2 > /JAC(7,40,infinity)/JAC(8,40,infinity)^2/JAC(12,40,infinity)^3 > /JAC(13,40,infinity)*JAC(14,40,infinity)^2 > *JAC(15,40,infinity)^2*JAC(16,40,infinity)^2/JAC(17,40,infinity) > /JAC(20,40,infinity): > eptmp:=jac2eprod(jptmp); 2 2 2 2 2 eptmp := GETA(40, 5) GETA(40, 6) GETA(40, 14) GETA(40, 15) GETA(40, 16) / 2 3 / (GETA(40, 3) GETA(40, 7) GETA(40, 8) GETA(40, 12) GETA(40, 13) / GETA(40, 17) GETA(40, 20)) > gltmp:=GETAP2getalist(eptmp); gltmp := [[40, 3, -1], [40, 5, 2], [40, 6, 2], [40, 7, -1], [40, 8, -2], [40, 12, -3], [40, 13, -1], [40, 14, 2], [40, 15, 2], [40, 16, 2], [40, 17, -1], [40, 20, -1]] > Gamma1ModFunc(gltmp,40); 1 > getaprodcuspORDS(gltmp,CW40[1],CW40[2]); [0, 0, 0, 0, -2, 3, 0, 0, 1, 0, -4, 0, -2, 0, 0, 3, 1, 0, 0, 0, 0, 0, -2, 0, 1, -2, 1, -2, 1, 3, 3, 1, 1, -2, -2, 0, 1, -2, 1, -4, 0, 0, 0, 0, 1, 1, 1, 0] > > xprint:=true: > getaprodcuspORDS(gltmp,CW40[1],CW40[2]); Cusp ords: [[oo, 0], [0, 0], [1/2, 0], [1/3, 0], [1/4, -2], [1/5, 3], [1/6, 0], [1/7, 0], [1/8, 1], [1/9, 0], [1/10, -4], [1/11, 0], [1/12, -2], [1/13, 0], [1/14, 0], [1/15, 3], [1/16, 1], [1/17, 0], [1/18, 0], [1/19, 0], [1/20, 0], [2/5, 0], [3/4, -2], [3/5, 0], [3/8, 1], [3/10, -2], [3/16, 1], [3/20, -2], [3/40, 1], [4/5, 3], [4/15, 3], [5/8, 1], [7/8, 1], [7/10, -2], [7/12, -2], [7/15, 0], 11 [7/16, 1], [7/20, -2], [7/40, 1], [9/10, -4], [9/20, 0], [9/40, 0], [--, 0], 40 13 13 13 17 19 [--, 0], [--, 1], [--, 1], [--, 1], [--, 0]] 15 16 40 40 40 TOTAL ORD = 0 [0, 0, 0, 0, -2, 3, 0, 0, 1, 0, -4, 0, -2, 0, 0, 3, 1, 0, 0, 0, 0, 0, -2, 0, 1, -2, 1, -2, 1, 3, 3, 1, 1, -2, -2, 0, 1, -2, 1, -4, 0, 0, 0, 0, 1, 1, 1, 0] DISCUSSION : SEE ALSO :