FUNCTION : jac2getaprod - Convert a quotient of theta-functions to generalize eta-products using eta-notation CALLING SEQUENCE : jac2getaprodprod() jac2getaprodprod(JJ) PARAMETERS : JJ - Quotient of theta-functions written in in terms of JAC(a,b,infinity) SYNOPSIS : This function is a version of jac2eprod. JJ is a quotient of theta functions encoded in terms of JAC(a,b,infinity). This proc converts this quotient into a quotient of eta-products and generalized eta-products using the notation eta(b*tau) and eta[b,a](tau). Instead of eta(b*tau) and eta[b,a](tau) jac2eprod uses the notation EETA(b) and GETA(b,a). EXAMPLES : > with(thetaids): > jac2getaprod(); ------------------------------------------------------------- jac2getaprod(JJ) This function is a version of jac2eprod. JJ is a quotient of theta functions encoded in terms of JAC(a,b,infinity). This proc converts this quotient into a quotient of eta-products and generalized eta-products using the notation eta(b*tau) and eta[b,a](tau). Instead of eta(b*tau) and eta[b,a](tau) jac2eprod uses the notation EETA(b) and GETA(b,a). ------------------------------------------------------------- > JJ:= JAC(2, 10, infinity)^2*JAC(3, 10, infinity)*q^6*JAC(8, 80, infinity) *JAC(0, 80, infinity)^2*(JAC(40, 80, infinity)/JAC(0, 80, infinity))^(1/2) /(JAC(0, 10, infinity)^3*JAC(4, 10, infinity)*JAC(16, 80, infinity) *JAC(24, 80, infinity)); > jac2eprod(JJ); 2 6 1/2 GETA(10, 2) GETA(10, 3) q GETA(80, 8) EETA(80) GETA(80, 40) ---------------------------------------------------------------- EETA(10) GETA(10, 4) GETA(80, 16) GETA(80, 24) > jac2getaprod(JJ); 2 eta[2, 10](tau) eta[3, 10](tau) eta[8, 80](tau) eta(80 tau) 1/2 eta[40, 80](tau) /(eta(10 tau) eta[4, 10](tau) eta[16, 80](tau) eta[24, 80](tau)) SEE ALSO : jac2eprod